———
Prof. Dr. Juergen Gall is Professor and Head of the Computer Vision Group at the University of Bonn since 2013, spokesperson of the Transdisciplinary Research Area “Mathematics, Modelling and Simulation of Complex Systems”, and member of the Lamarr Institute for Machine Learning and Artificial Intelligence. After his Ph.D. in computer science from the Saarland University and the Max Planck Institute for Informatics, he was a postdoctoral researcher at the Computer Vision Laboratory, ETH Zurich, from 2009 until 2012 and senior research scientist at the Max Planck Institute for Intelligent Systems in Tübingen from 2012 until 2013. He received a grant for an independent Emmy Noether research group from the German Research Foundation (DFG) in 2013, the German Pattern Recognition Award of the German Association for Pattern Recognition (DAGM) in 2014, an ERC Starting Grant in 2016, and an ERC Consolidator Grant in 2022.
Anticipation: From Human Motion to Wildfires
In this talk, he will give an overview of some recent works on anticipating human motion. In particular, he will discuss Social Diffusion, a diffusion approach for short-term and long-term forecasting of the motion of multiple persons as well as their social interactions. He will also introduce the “Humans in Kitchens” dataset, a new benchmark for multi-person human motion forecasting with scene context. Finally, he will briefly describe an approach for forecasting unintentional actions and, if time permits, he will also discuss how wildfire and agricultural droughts can be forecast.
Yunhua Zhang
Maksim Zhdanov
Jiayi Shen · Xiantong Zhen · Qi (Cheems) Wang · Marcel Worring
Peter Nickl · Lu Xu · Dharmesh Tailor · Thomas Möllenhoff · Mohammad Emtiyaz Khan
Sindy Löwe · Phillip Lippe · Francesco Locatello · Max Welling
David Ruhe · Johannes Brandstetter · Patrick Forré
Andrey Okhotin · Dmitry Molchanov · Vladimir Arkhipkin · Grigory Bartosh · Viktor Ohanesian · Aibek Alanov · Dmitry Vetrov
Ilze Amanda Auzina · Cagatay Yildiz · Sara Magliacane · Matthias Bethges · Efstratios Gavves
Preetha Vijayan · Prashant Shivaram Bhat · Bahram Zonooz · Elahe Arani
Lu Yin · Gen Li · Meng Fang · Li Shen · Tianjin Huang · Zhangyang Wang, Vlado Menkovski · Xiaolong Ma · Mykola Pechenizkiy · Shiwei Liu
Hoang Pham · Anh Ta · Shiwei Liu · Dung D. Le · Long Tran-Thanh
Duc Hoang · Souvik Kundu · Shiwei Liu · Zhangyang Wang
Sattar Vakili · Julia Olkhovskaya
Sarah Rastegar · Hazel Doughty · Cees G. M. Snoek
Pim De Haan · Taco Cohen · Johann Brehmer
Causal Representation Learning Workshop of the NeurIPS Conference 2023
Shuai Wang · Jiayi Shen · Athanasios Efthymiou · Stevan Rudinac Monika Kackovic · Nachoem Wijnberg · Marcel Worring
New Frontiers in Graph Learning Workshop of the NeurIPS Conference 2023
Danru Xu · Dingling Yao · Sebastien Lachapelle · Perouz Taslakian · Julius von Kügelgen · Francesco Locatello · Sara Magliacane
Causal Representation Learning Workshop of the NeurIPS Conference 2023
Dingling Yao · Danru Xu · Sebastien Lachapelle · Sara Magliacane · Perouz Taslakian · Georg Martius · Julius von Kügelgen · Francesco Locatello
Causal Representation Learning Workshop of the NeurIPS Conference 2023
Paula Antequera · Egoitz Gonzalez · Marta Grasa · Martijn van Raaphorst
Machine Learning Reproducibility Challenge of the NeurIPS Conference 2023
Milena Kapralova · Luca Pantea · Andrei Blahovici
New in ML affinity Workshop of the NeurIPS Conference 2023
Marga Don · Satchit Chatterji · Milena Kapralova · Ryan Amaudruz
Machine Learning Reproducibility Challenge of the NeurIPS Conference 2023
Elias Dubbeldam · Aniek Eijpe · Jona Ruthardt · Robin Sasse
Machine Learning Reproducibility Challenge of the NeurIPS Conference 2023
Azhar Syaikh · Sahar Yousefi
Advanced Neural Network Training Workshop of the NeurIPS Conference 2023
Mona Schirmer · Dan Zhang · Eric Nalisnick
Distribution Shifts Workshop of the NeurIPS 2023
Taraneh Younesian · Thiviyan Thanapalasingam · Emile van Krieken · Daniel Daza · Peter Bloem
Distribution Shifts Workshop of the NeurIPS 2023
Angelos Nalmpantis · Phillip Lippe · Sara Magliacane
Causal Representation Learning Workshop of the NeurIPS 2023
Farrukh Baratov · Goksenin Yuksel · Darie Petcu · Jan Bakker
Machine Learning Reproducibility Challenge of the NeurIPS Conference 2023