Variational prototype inference for few-shot semantic segmentation


In this paper, we propose variational prototype inference to address few-shot semantic segmentation in a probabilistic framework. A probabilistic latent variable model infers the distribution of the prototype that is treated as the latent variable. We formulate the optimization as a variational inference problem, which is established with an amortized inference network based on an auto-encoder architecture. The probabilistic modeling of the prototype enhances its generalization ability to handle the inherent uncertainty caused by limited data and the huge intra-class variations of objects. Moreover, it offers a principled way to incorporate the prototype extracted from support images into the prediction of the segmentation maps for query images. We conduct extensive experimental evaluation on three benchmark datasets. Ablation studies show the effectiveness of variational prototype inference for few-shot semantic segmentation by probabilistic modeling. On all three benchmarks, our proposal achieves high segmentation accuracy and surpasses previous methods by considerable margins.

WACV 2021