Note on Paraconsistency and the Logic of Fractions

J.A. Bergstra
I. Bethke
Theory of Computer Science Electronic Report Series
Note on paraconsistency and the logic of fractions

Jan A. Bergstra & Inge Bethke
Informatics Institute, University of Amsterdam

Abstract

We apply a paraconsistent logic to reason about fractions.

1 Introduction

Suppose we want to define an arithmetic framework in which it is possible to reason about fractions in a consistent and reliable way and in which the usual laws of arithmetic hold: e.g. for natural numbers \(n, l \) and \(k \neq 0 \neq m \) the equations

\[
\frac{n}{m} + \frac{l}{k} = \frac{nk + lm}{mk}
\]

and

\[
\frac{n}{m} + \frac{l}{m} = \frac{n+l}{m}
\]

should be valid. At the same time, we want to consider fractions as mathematical expressions with typical syntactic operations like the numerator \(\text{num}(\) \) satisfying

\[
\text{num}(\frac{n}{m}) = n.
\]

Then equational logic dictates

\[
n + l = \text{num}(\frac{n+l}{m}) = \text{num}(\frac{n}{m} + \frac{l}{m}) = \text{num}(\frac{nm + lm}{mm}) = nm + lm.
\]

for arbitrary \(l, n \) and \(m \neq 0 \), and our framework is inconsistent. Nevertheless, fractions are of great practical and abstract importance and we should be able to reason about them without lapsing into absurdity.

In mathematics education, one can get around this predicament in various ways: avoiding the concepts of numerator and denominator (see e.g. [6]), viewing fractions as heterogeneous subject (see e.g. [5]), or accepting cognitive conflicts (see e.g. [7]). In this note, we propose to apply paraconsistent logic.

A paraconsistent logic is a way to reason about inconsistent information without exploding in the sense that if a contradiction is obtained, then everything can be obtained.
Paraconsistent logics come in a broad spectrum, ranging from logics with the thought that if a contradiction were true, then everything would be true, to logics that claim that some contradictions really are true. For a brief discussion see e.g. [4]. In this note, we choose a particular paraconsistent logic to tackle the dilemma sketched above. We do not claim that this is the only possible way how to proceed in our scenario; other paraconsistent logics may be suitable as well.

2 The binary C & P structure

The approach taken is known as the preservationist school. There the fundamental idea is that, given an inconsistent collection of premises, one should not try to reason about the collection of premises as a whole, but rather focus on internally consistent subsets of premises. In 2004, Brown and Priest [3] introduced the Chunk and Permeate (C & P) strategy for dealing with reasoning situations involving incompatible assumptions. In this preservationist logic, a theory is broken up into chunks and only restricted information is allowed to pass from one chunk to another.

Here we only give the rendering of the simple binary structure which is sufficient in our case. We let Σ be the two-sorted signature containing $0, 1$, the numerator and denominator num and denom, the fraction $\frac{\cdot}{\cdot}$, symbols for addition and multiplication of natural numbers and fractions, respectively, and an additional error element a produced by division by zero. The binary C & P structure for our problem is $\langle T_s, T_t, \rho \rangle$ where

- T_s is the source chunk,
- T_t is the target chunk, and
- ρ is the information that is allowed to flow from source to target.

T_s is the equational theory given in Table 1. Here k, l, m, n range over natural numbers or can take the error value, and α, β, γ denote fractions. Observe that in the source, fractions with identical denominators can be added (\dagger):

$$\frac{n}{m} + \frac{k}{m} = \frac{n \cdot 1}{1} + \frac{k \cdot 1}{m} \quad (9)$$

$$= \frac{(n + k) \cdot 1}{m} \quad (6), (7)$$

$$= \frac{n + k}{1} \cdot 1 \quad (10)$$

$$= \frac{n + k}{m} \quad (9)$$

That T_s is consistent can be seen as follows. We let M be the Σ-algebra with the sorts $N_a = N \cup \{a\}$ and $F = N \times N$ where the operations are interpreted as follows. If $o \in \{+,-,\cdot\}$, then $o : N_a \times N_a \rightarrow N_a$ is defined by

$$x \circ y = \begin{cases} x \circ y & \text{if } x, y \in N \\ a & \text{otherwise,} \end{cases}$$
\begin{align*}
n + 0 & = n \quad (1) \\
(n + m) + l & = n + (m + l) \quad (2) \\
n + m & = m + n \quad (3) \\
n \cdot 1 & = n \quad (4) \\
(n \cdot m) \cdot l & = n \cdot (m \cdot l) \quad (5) \\
n \cdot m & = m \cdot n \quad (6) \\
n \cdot (m + l) & = n \cdot m + n \cdot l \quad (7) \\
\frac{n \cdot l}{m \cdot k} & = \frac{n \cdot l}{m \cdot k} \quad (8) \\
\frac{n}{m} & = \frac{n}{m} \quad (9) \\
\frac{n}{1} + \frac{m}{1} & = \frac{n + m}{1} \quad (10) \\
(\alpha + \beta) + \gamma & = \alpha + (\beta + \gamma) \quad (11) \\
\alpha + \beta & = \beta + \alpha \quad (12) \\
(\alpha \cdot \beta) \cdot \gamma & = \alpha \cdot (\beta \cdot \gamma) \quad (13) \\
\alpha \cdot \beta & = \beta \cdot \alpha \quad (14) \\
\alpha \cdot (\beta + \gamma) & = \alpha \cdot \beta + \alpha \cdot \gamma \quad (15) \\
m \neq 0 \land m \neq a \rightarrow \text{num}\left(\frac{n}{m}\right) & = n \quad (16) \\
m \neq 0 \land n \neq a \rightarrow \text{denom}\left(\frac{n}{m}\right) & = m \quad (17)
\end{align*}

Table 1: The equational theory of the source \mathcal{T}_s
and $\frac{x}{y} : \mathbb{N}_a \times \mathbb{N}_a \to F$ is defined by

$$
\frac{x}{y} = \begin{cases}
(x, y) & \text{if } x \in \mathbb{N}, y \in \mathbb{N} \\
(0, 0) & \text{otherwise},
\end{cases}
$$

$num, denom : F \to \mathbb{N}_a$ are defined by

$$
um((n, m)) = \begin{cases}
 n & \text{if } m \neq 0 \\
 a & \text{otherwise},
\end{cases}
$$

and

$$
denom((n, m)) = \begin{cases}
m & \text{if } m \neq 0 \\
a & \text{otherwise},
\end{cases}
$$

and $+, \cdot : F \times F \to F$ are defined by

$$(n, m) + (l, k) = \begin{cases}
(n + l, m) & \text{if } m = k \neq 0 \\
(0, 0) & \text{otherwise},
\end{cases}
$$

and

$$(n, m) \cdot (l, k) = \begin{cases}
(nl, mk) & \text{if } m \neq 0 \neq k \\
(0, 0) & \text{otherwise}.
\end{cases}
$$

It is easy to see that \mathbb{M} is a model for \mathcal{T}_s. The target theory \mathcal{T}_t consists of the single conditional equation

$$
k \neq 0 \rightarrow \frac{nk}{mk} = \frac{n}{m} \quad (18)
$$

Clearly, \mathcal{T}_t is consistent. However, $\mathcal{T}_s \cup \mathcal{T}_t$ is inconsistent since otherwise we have for arbitrary $k \neq 0 \neq m$

$$
mk = denom\left(\frac{nk}{mk}\right) = denom\left(\frac{n}{m}\right) = m.
$$

Moreover, we let ρ be the set of equations $1 - 15$. $\mathcal{T}_t \cup \rho$ is consistent: \mathbb{Q}_0 and \mathbb{Q}_a —the zero-totalized and the a-totalized meadow of the rational numbers (see e.g. [1, 2]), respectively—are both models of $\mathcal{T}_t \cup \rho$. We have thus arrived at a consistent theory were we have full addition of fractions:

$$
\frac{n}{m} + \frac{k}{l} = \frac{nl}{ml} + \frac{km}{lm} \quad (18)
$$

$$
= \frac{nl}{ml} + \frac{km}{lm} \quad (6)
$$

$$
= \frac{nl + km}{ml} \quad (†).
$$
References

Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

Within former series (PRG) the following reports appeared.

The above reports and more are available through the website: ivi.fnwi.uva.nl/tcs/