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Abstract

Natural numbers with zero, one, successor, addition and multiplication, constitute a classic ex-
ample of an abstract datatype amenable for equational initial algebra specification. Datatype defin-
ing rewrite systems provide a specification which at the sametime is a complete, that is confluent and
strongly terminating, rewrite system thereby providing means for automatic implementation. Syn-
tax for unary, binary, decimal, and hexadecimal notation isintroduced and corresponding rewrite
systems are designed.
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1 Introduction

I will present four algebraic specifications of the same abstract datatype of natural numbers. Each of
these specifications comprises a complete, that is ground confluent and strongly terminating, rewriting
system. A complete rewriting system serving as a specification for an abstract data type will be called
a Complete Datatype Defining Rewrite System (CDDRS).

The concept of datatype is understood as being more specific than that of an abstract datatype in
the following sense: in a datatype entities are representeduniquely by preferred closed expressions
(normal forms) whereas an abstract datatype, being an isomorphism class of algebras, entities are
represented by classes of expressions.

These specifications incorporate different views on the same abstract data type. The unary view
provides a term rewriting system where terms in unary notation serve as normal forms. The unary
view also provides a semantic specification of binary notation, of decimal notation, and of hexadecimal
notation. The three logarithmic notations were modified w.r.t. to conventional notations in such a way
that syntactic confusion between these notations cannot arise.

In the binary view normal forms are natural number expressions in binary notation. Having bi-
nary expressions as normal forms excludes having terms in unary notation, in decimal notation, or in
hexadecimal notation as normal forms.

I also specify the natural numbers in decimal view with a CDDRS having normal forms in decimal
notation, and finally a CDDRS is given for a hexadecimal view on natural numbers.
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0′ ≡ 1 5′ ≡ 6 A′ ≡ B

1′ ≡ 2 6′ ≡ 7 B′ ≡ C

2′ ≡ 3 7′ ≡ 8 C′ ≡ D

3′ ≡ 4 8′ ≡ 9 D′ ≡ E

4′ ≡ 5 9′ ≡ A E′ ≡ F

Table 1: Enumeration of decimal/hexadecimal digits

1.1 Motivation

The motivation for this work is that it can serve as a basis forfurther development in a variety of
directions. The following objectives can be mentioned:

• Development of arithmetical datatypes for integers, fractions, and rationals.

• Development of a precise definition of fractions, a seemingly well-know notion, that is mostly
dealt with in an unprecise manner. Such a definition must unavoidably be based on an approach
to natural numbers and integers.

• Development of the foundations of an initial part of (potentially innovative) teaching methods
for elementary mathematics based on term rewriting and datatypes.

• Philosophical and pragmatic analysis of the concept of a natural number.

• Conceptual analysis of the notion of a secret key (understood as a natural number).

1.2 Notational conventions

Digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,A,B,C,D,E andF. Digits are enumerated in precisely this order.
The ordering is:

0 < 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9 < A < B < C < D < E < F.

For the digits 0, 1, 2, 3, 4, 5, 6,7, 8,A, B,C,D,E we denote withi′ the successor digit ofi in the given
enumeration. This is specified formally in Table 1.

Further
∧m

i=n [ t = r ], with n,m∈ {0, 1, 2, 3, 4, 5, 6, 7,8,9,A, B,C,D,E, F} andn < m represents the
set of rewrite rulest = r with i instantiated fromn to and includingm.

1.3 A signature for natural numbers

The signatureΣN has the following elements:

1. sortN,
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2. constants 0 and 1,

3. two place functions+, · : N × N→ N,

4. (for unary notation:) a one place functionS : N→ N,

5. (for binary notation:) two one place functions−⊖ 0,−⊖ 1 : N→ N,

6. (for decimal notation:) ten one-place functions−⊘ 0, ...,−⊘9 : N→ N,

7. (for hexadecimal notation:) sixteen one-place functions−⊗0, ...,−⊗F : N→ N.

Unary number terms have the form: 0,S(0),S(S(0)), ..., for such terms brackets are often omit-
ted: 0,S0,S S0, ... . Binary number terms (intended normal forms) have the form:0, 1, 1⊖ 0, 1⊖ 1,
(1⊖ 0)⊖ 0... . In binary number terms like ((1⊖ 0)⊖ 0)⊖ 1 brackets and append operators are usually
omitted, thus obtaining 1001 as a representation of the (decimal) number 9.

In decimal number terms like ((9⊘7)⊘5)⊘0 brackets and composition tokens are usually omitted,
thus obtaining 9750 with its usual meaning. Similarly in hexadecimal notation ((3⊗B)⊗F)⊗7 will be
abbreviated to 3BF7. When needed disambiguation between abbreviated versions of binary, decimal,
and hexadecimal notation may be realized by means of subscripts. I refer to [1] for an account of
natural number notations and their disambiguation.

1.4 About abstract data types and equational specifications

A survey of equational algebraic specifications for abstract data types is provided in [13]. In [9] one
finds the general result that computable data types can be specified by means of specifications which
are confluent and strongly terminating term rewriting systems. In other words: for every computable
abstract datatype there exists a complete datatype definingrewrite system (CDDRS). The result makes
use of the possibility to introduce auxiliary functions.

Some general theory on algebraic specifications is found in [11, 8, 12]. An example of equational
specification in the setting of many-valued logics is given in [2], and several more recent applications
of equational specifications are found in [3, 4, 5, 7, 10].

1.5 RNNs and PRNNs

The predicate (property) of an entity of its being a natural number is supposed to be applicable to
a range of informal entities. In Paragraph 3.3 we consider the question why 23 is a natural number
(assuming it is).

In order to strengthen the language used to discuss “naturalnumberhood” I will make use of the
following predicates and abbreviations for these:

• NN(x): x is a natural number.

• RNN(x): x is a representation of a natural number.

• PRNN(x): x is a preferred representation of a natural number.
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x+ 0 = x (1)

x+ S(y) = S(x+ y) (2)

x · 0 = 0 (3)

x · S(y) = (x · y) + x (4)

∧E
i=0 [ i′ = S(i) ] (5)

∧1
i=0 [ x⊖ i = (x · S(1))+ i ] (6)
∧9

i=0 [ x⊘ i = (x · S(9))+ i ] (7)
∧F

i=0 [ x⊗ i = (x · S(F)) + i ] (8)

Table 2: Natural numbers in unary view (Nubdh)

I will assume that being comfortable with NN(23) and similarassertions is a necessity for any
teacher of elementary mathematics. Each explanation of theontology of natural numbers that must
portray NN(23) as false (in essence) rather than as true creates practical problems because a question
like: “which of the following natural numbers is larger, 37 of 389?” should not be rejected off hands
simply on the ground that 37 or 389 cannot qualify as a naturalnumber.

2 One abstract datatype, four datatypes

Following [8, 9] an abstract datatype may be understood as anisomorphism class of single-sorted
or many sorted algebras. The instantiations of an abstract datatype, which are (concrete rather than
abstract) datatypes. We will consider datatypesNubdh with normal forms in unary notation,Nbudh with
normal forms in binary notation,Ndubh with normal forms in decimal notation,Nhubd with normal
forms in decimal notation. These structures are isomorphic, and for that reason constitute realizations
of the same abstract data type. In each case a datatype defining rewrite system is given.

2.1 Unary view

In Table 2 an algebraic specification is provided of the natural numbers with constants zero and one,
and with successor, addition and multiplication. Successor terms, that is expressions involving zero
and successor only serve as normal forms. We wil refer to the equations contained in this table as
E(Nubdh).

Binary notation and decimal notation are explained by expanding terms into successor terms. This
expansion involves a combinatorial explosion in size. Thatexplosion renders the specification in Ta-
ble 2 unfeasible as a term rewrite system from which an implementation can be generated.

Below we will consider adaptations of this specification, where normal forms are in binary notation
and in decimal notation respectively. Specifications become far more lengthy and involved, but as a
rewrite system the quality improves. We notice that when designing a complete term rewrite system
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∧1
i=0 [0⊖ i = i ] (9)

S(0) = 1 (10)

S(1) = 1⊖ 0 (11)

S(x⊖ 0) = x⊖ 1 (12)

S(x⊖ 1) = S(x)⊖ 0 (13)

x+ 0 = x (14)

0+ x = x (15)

x+ 1 = S(x) (16)

1+ x = S(x) (17)

(x⊖ 0)+ (y⊖ 0) = (x+ y)⊖ 0 (18)

(x⊖ 0)+ (y⊖ 1) = (x+ y)⊖ 1 (19)

(x⊖ 1)+ (y⊖ 0) = (x+ y)⊖ 1 (20)

(x⊖ 1)+ (y⊖ 1) = S(x+ y)⊖ 0 (21)

x · 0 = 0 (22)

x · 1 = x (23)
∧ 1

i=0 [ x · (y⊖ i) = ((x · y)⊖ 0)+ i ] (24)

∧8
i=0 [ i′ = S(i) ] (25)

∧ 9
i=0 [ x⊘ i = (x · S(9))+ i ] (26)
∧ F

i=0 [ x⊗ i = (x · S(F)) + i ] (27)

Table 3: Natural numbers in binary view (Nbudh)

to specify a given algebra a choice needs to be made regardingthe normal forms. Obviously normal
forms in unary notation, binary notation, and decimal notation are mutually exclusive.

In the unary view natural numbers are 0,S(0),S(S(0)),S(S(S(0))), ... . Brackets are often left
out, thus obtaining: 0,S0,S S0,S S S0, ... . When confronted withS S S S0 (or SSSS0) a reader will
recognize the expression as a natural number in successor notation, that is in unary view.

All other terms of the datatype are RNNs, though only the terms exclusively made from 0 andS are
in classified as PRNN (and for that reason in NN).

2.2 Binary view

In Table 3 primitives for binary notation of natural numbersare specified by way of a complete term
rewriting system. In the binary view natural numbers are identified with normal forms in binary no-
tation. This datatype defining rewrite system produces the data typeNbud. We refer to the equations
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∧9
i=0 [0⊘ i = i ] (28)

∧8
i=0 [ S(i) = i′ ] (29)

S(9) = 1⊘0 (30)
∧ 8

i=0 [ S(x⊘ i) = x⊘ i′ ] (31)

S(x⊘ 9) = S(x)⊘0 (32)

x+ 0 = x (33)

0+ x = x (34)
∧8

i=0 [ x+ i′ = S(x) + i ] (35)
∧8

i=0 [ i′ + x = S(x) + i ] (36)
∧9

i=0 [
∧ 9

j=0 [ (x⊘ i) + (y⊘ j) = ((x+ y)⊘ i) + j ]] (37)

x · 0 = 0 (38)
∧8

i=0 [ x · i′ = (x · i) + x] (39)
∧ 9

i=0 [ x · (y⊘ i) = ((x · y)⊘0)+ (x · i) ] (40)

∧ 1
i=0 [ x⊖ i = (x+ x) + i ] (41)

∧ F
i=1 [ x⊗ i = (x · S(F)) + i ] (42)

Table 4: Natural numbers with addition and multiplication in decimal view (Ndubh)

contained in this table asE(Nbudh).

The specification defines a datatype which is isomorphic to the datatype defined by the specification
in Table 2. In other words both datatypes belong to the same abstract datatype.

2.3 Decimal view

In Table 4 a CDDRS for a decimal view of natural numbers is displayed. For a decimal view one
intends to have decimal normal forms. We refer to the equations contained in this table asE(Ndubh).

2.4 Hexadecimal view

In Table 5 a CDDRS for a hexadecimal view of natural numbers isdisplayed. We refer to the equations
contained in this table asE(Nhubd).

7



∧F
i=0 [0⊗ i = i ] (43)
∧E

i=0 [ S(i) = i′ ] (44)

S(F) = 1⊗0 (45)
∧E

i=0 [ S(x⊗ i) = x⊗ i′ ] (46)

S(x⊗ F) = S(x)⊗0 (47)

x+ 0 = x (48)

0+ x = x (49)
∧E

i=0 [ x+ i′ = S(x) + i ] (50)
∧E

i=0 [ i′ + x = S(x) + i ] (51)
∧F

i=0 [
∧ F

j=0 [ (x⊗ i) + (y⊗ j) = ((x+ y)⊗ i) + j ]] (52)

x · 0 = 0 (53)
∧E

i=0 [ x · i′ = (x · i) + x] (54)
∧ F

i=0 [ x · (y⊗ i) = ((x · y)⊗0)+ (x · i) ] (55)

∧ 1
i=0 [ x⊖ i = (x+ x) + i ] (56)

∧ 9
i=1 [ x⊘ i = (x · S(9))+ i ] (57)

Table 5: Natural numbers with addition and multiplication in hexadecimal view (Nhdub)
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2.5 Assessment of the four rewrite systems

We notice that the CDDRS’s provide equivalent algebraic specifications, that isI (ΣN,E(Nubdh) ≃
I (ΣN,E(Nbudh) ≃ I (ΣN,E(Ndubh) ≃ I (ΣN,E(Nhubd). Once a choice for the format of normal forms
has been made four criteria remain for the design of a CDDRS:

1. readability (an informal notion)

2. conciseness (either measured in terms of the number of rules or of the sum of their sizes),

3. effectiveness (how fast can normal forms be found in terms of numbers of steps, given a known
reduction strategy),

4. number of auxiliary functions (auxiliary functions may be needed when encoding fast algorithms
for multiplication in a CDDRS).

The unary view is readable, concise, and does without auxiliary functions. Its main deficiency is
that its algorithmic content is problematic in that, for inputs in binary notation or in decimal notation
normalization of terms of the formt + r takes a number of steps growing exponentially in the size oft
andr. The other two specifications don’t have an algorithmic deficiency though each is quite specific
for its own notation requiring conversions to and from othernotations before and after each operation.
Conciseness and readability are less prominent with the CDDRS’s forNbudh, Ndubh, andNhubd.

3 What are natural numbers? A plurality of datatypes

At this stage one may wish to understand natural numbers as the elements of the carrier of an ab-
stract data type. Unfortunately, abstract datatypes beingisomorphism classes have no elements. Only
carriers of data types, that is carriers of instances of abstract data types, have elements.

That is, we know of the structure of natural numbers as an abstract datatypeI (ΣN,E(Nbudh)), while
individual numbers are only observed as values in carriers of data types. For the three dataypes at hand
these values are different closed terms over the common signatureΣN.

For each base of a number system a rewrite system can be designed having normal forms charac-
teristic of that base. However, for a baseb different from 1, 2, 10, and 16 an extension of the syntax is
needed if a baseb view on natural numbers is to be specified.

3.1 Notations for natural numbers

The proposal of this paper provides 8 notational schemes, conventions, or formats, for natural numbers:
unary, binary, decimal, and hexadecimal format with and without brackets and operator symbols for
appending a digit.

These representations all share the virtue that for each individual scheme numbers have unique rep-
resentation, which we take for a criterion that allows one tosay that such a representation (expression
for a natural number in a particular format) is a natural number, rather than that it merely represents
one.
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Nevertheless one may insist that say 2 is no more than a representation of a natural number. In the
light of our abstract datatype, and using only the bracketedexpressions that number is a four-tuple:
(

(S(S(0)), 1⊖ 0, 2, 2
)

. In other words, taking our abstract datatype for the natural numbers as a point
of departure numbers are quadruples of terms and at first inspection the members of these quadruples
are merely representations of numbers or in other words notations of numbers, and such elements do
not constitute the numbers themselves.

3.2 Taking the notational variation seriously

If one insists to take unbracketed expressions into accountas well a number (say 2) becomes an 8-
tuple:

(

S(S(0)),S S0, 1⊖ 0, 10, 2, 2, 2, 2
)

. At this stage the ordering in the tuple matters because it
helps to avoid confusion between the various logarithmic notations. Needless to say that when writing
a number in practice one prefers to provide only one of the members of the 8-tuple. Moreover one
often prefers unbracketed decimal notation.

3.2.1 Advantages of the multiple datatype understanding ofnatural numbers

Understanding natural numbers as tuples of entities in a range (in this case four) of datatypes is rea-
sonable and complies with ordinary practice. Here are some further comments about the practicality
of that proposal.

• The signatureΣN is a rather natural choice which unifies four notations for natural numbers:
unary, binary, decimal, and hexadecimal.

• For each notation unique normal forms provide canonical representations of natural numbers.
One may indeed say that 5 is the first (leading, decimal) digitof 578 because only 578 is a
normal form representing that number.

• We may state that 578 is a natural number although from a principled point of view it is merely
a representation of a natural number. We notice:

– This use of the language is unproblematic because in its kindthe representation is unique
and the kind (decimal notation) can be derived from the representation.

– That 578 abbreviates (5⊘7)⊘8 creates no confusion, as the introduction of these brackets
and operator symbols follows in a unique and deterministic manner.

• By having multiple views different forms of algorithms for functions and of methods to define
functions can be supported.

3.2.2 Disadvantages of a multiple datatype understanding of natural numbers

The multiple datatype understanding of natural numbers hasat least these weaknesses.

• The signatureΣN is a rather arbitrary choice, both smaller and larger signatures will be useful for
the same purpose of identifying natural numbers. There is no“natural” signature for the natural
numbers.
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• We provide only four datatypes for the abstract datatype at hand while infinitely many such
datatypes might be relevant.

• In our setup a natural number, say 57, is identified with four different terms (each of those
bringing with it its own simplified form) over the same signature which have the same meaning
in the abstract datatype specified by three different specifications sharing the same signature.
This is plurality of terms denoting the same entity demonstrates merely an approximation of the
level of abstraction provided by an abstract datatype.

3.3 Why 23 is a natural number, and why 023 isn’t?

The point of departure for a pragmatic philosophy of naturalnumbers based on a CDDRS portfolio
is my assumption that (the teaching of) elementary mathematics needs to make use of straightforward
terminology while still admitting some precise analysis. Iwill consider in detail the text fragment “23”
and consider the question why 23 might qualify as a natural number.

Following the definitions in Paragraph 1.5, NN(23)≡ “23 is a natural number”. About NN(23) I
maintain the following viewpoints:

1. In school teaching one needs to be able to make assertions like these:

• NN(23),

• “23 is a prime number” (and therefore NN(23)).

• “−23 is an integer”,

• “23+(−23)= 0, that’s how addition works for natural numbers and their negative versions”

2. It is of no use in a school setting if one can only say: “23 is anatural number in decimal
notation”.

3. If one states that “23 is a notation for a natural number”, the obvious reply is to ask: “for which
natural number”. And then the answer can’t be 23 unless 23 is anatural number (and not merely
a notation for a natural number).

4. Notice that 23 is a different natural number in hexadecimal notation (in fact 35), although it is
also the 22th successor of 1 in hexadecimal notation.

5. There is a sliding scale:

• we may want to say: “
∑∞

n=1
1
n2 is a power series converging to a real number” rather than

“
∑∞

n=1
1
n2 is a a real number”.

• But we will not deny that “
∑∞

n=1
1
n2 is a real number” can be correctly asserted.

• If we hold that integers are defined as pairs of naturals (say writing s for shift, s(a, b) for
a, b ∈ N (thus representinga+ (−b)) then−23 is merely a notation fors(0, 23).1

1This viewpoint would be criticized by those who feel that thefoundational approach to mathematical structures which
induces the construction of integers as pairs of naturals isnot meant to have this pedantic influence on the use of “ordinary”
mathematical language.
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• If we write BV(“P = NP”) for “P = NP is a Boolean value”, many readers may object
to a claim of validity for the assertion BV(“P= NP”) on the grounds that it is unclear
which value is meant (that’s the famous open problem), and because “P= NP” is at best an
indirect specification of a Boolean value hardly deserving the description “expression for
a Boolean value”, let alone the simplified “Boolean value”.

6. The assertion NN(23) may be contrasted with NN(023). I hold that it is not plausible to assert
both NN(23) and NN(023) at the same time. In a setting where both 23 and 023 occur as
expressions denoting natural numbers, it is reasonable to say that 23 is a decimal representation
(of the number it denotes) without leading zeroes and that 023 is a representation with a leading
zero, while 23 is a simplified form of 023, with simplificationinvolving the removal of leading
zeroes.

It is implausible to say that 23 is a natural number without leading zeroes, and that 023 is
a natural number with leading zeroes. Natural numbers don’thave that attribute, instead the
presence or absence of leading zeroes is a property of some logarithmic number representations.

7. One may formalize the above argument about 23 and 023. Formalization leads to the following
implication: “if NN(23) then¬ NN(023)”. By consequence “if NN(023) then¬ NN(23)”.

In order to assert NN(23) one implicitly assumes notationalconventions that exclude 023. If
such conventions are absent than 23 advances no further thanto the status of a representation of
a natural number (RNN(23) in the notation of Paragraph 1.5).

Now one finds: “if (RNN(23) and RNN(023)) then¬ NN(23)”. Here it is implicitly assumed
that the condition RNN(23) and RNN(023) is evaluated in the same context. Being equally true
escapes from two valued logic, and this asks for some rephrasing.

One may advance further and write PRNN(w) for “w is a preferred representation of a natu-
ral number”. Clearly PRNN(w) implies RNN(w). Now PRNN(23) may be assumed to imply
NN(23) but a less demanding interpretation is possible. In any case one finds: “if (RNN(23) and
¬ PRNN(23)) then¬ NN(23)”.

8. One may contemplate whether or not 23 is a natural number value (instead of being a natural
number) and 22+1 is also a natural number (but not a natural number value), and if “23 = 22+1”
(assuming its truth) rests on the assumption that 23 and 22+1 are the same kind of entity. We
will hold that:

• 23 is a natural number and it is a natural number value as well.

• 22+1 is a natural number because it denotes a natural number.

• 22+1 is a natural number and it is not a natural number value, though the value of 22+1 is
a natural number.

• 22+1 is a natural number form (NNF, form is assumed to be equivalent with expression).

• α ≡ 32 + 32 + 22 + 1 is a representation of 23 as a sum of four squares. This assertion
can be valid only if the actual form of an NNF matters and can have properties that are not
universal for NNs.

• β ≡ 42 + 22 + 1+ 1+ 1 is a representation of 23 as a sum of five squares. Nowα andβ are
different representations (if a natural number as a sum of squares).
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• α . β in a realistic sense. However in that same sense (as representations in terms of sums
of squares): 42 + 22 + 1+ 1+ 1 ≡ 42 + 22 + 12 + 12 + 12 ≡ 12 + 12 + 12 + 42 + 22.

• A difference between two NNFs is determined (accepted, found, agreed) in the context of
an objective of representational form. It is plausible thatdifferences between representa-
tional forms are defined within dedicated subclasses of NNF.In other words by merely
writing that 42 + 22 + 1+ 1+ 1 . 2 · 10+ 3 we fail to indicate in what quality (property)
both expressions differ.

9. If we write φ ≡ 23+ 23 = 46, φ will be considered a valid assertion by most readers. Inφ
we find two different occurrences of 23 which are at the same time equal, in the sense that both
are natural numbers which, moreover, can only be the same natural numbers. It appears that we
have an inconsistency.

In order to explain this case I propose that as soon as one starts discussing occurrences of 23 one
needs to acknowledge that NN(23) is meant modulo “an arbitrary occurrence of”. Thus NN(23)
can be rephrased as: each occurrence of 23 is an occurrence ofa natural number. In other words,
the meaning of NN(23) depends on the abstraction level at which one is considering the matter.
At a lower level of abstraction a different definition of NN(23) may be needed.

10. Of course one may introduce an equivalence≡ on decimal notations with and without leading
zeroes so that 23≡ 023, and subsequently work modulo that equivalence. However, doing
so creates a situation in which the assertion that removing leading zeroes turns 023 into 23 is
wrong because both are equal modulo≡ and there is no such thing as leading zeroes modulo this
equivalence.

4 Concluding remarks

We have proposed four datatype defining rewrite systems for as many different views on the natural
numbers. These views are instances of the same abstract datatype for which each of the rewrite systems
constitutes an equational initial algebra specification atthe same time.

By considering a limited plurality of datatypes instantiating the same underlying abstract datatype
we determine intermediate abstractions for the individualnatural numbers, lying in between the num-
ber as an entity in a specific datatype and the abstraction of that entity in an abstract datatype.

Acknowledgement. Alban Ponse has transformed the paper from version 2 to version 3 thereby
making use of improved formatting and notations that were developed in our joint sequel to this paper.
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