
Univer sity of Amsterdam

Theor y of Computer Science

Concurrent Models for Function Execution

B. Diertens

Report TCS1101 May 2011



B. Diertens

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

tel. +31 20 525.7593
e-mail: B.Diertens@uva.nl

Theory of Computer Science Electronic Report Series



Concurrent Models for Function Execution

Bob Diertens

section Theory of Computer Science, Faculty of Science, University of Amsterdam

ABSTRACT

We derive an abstract computational model from a sequential computational model that is
generally used for function execution. Thisabstract computational model allows for the
concurrent execution of functions.We discuss concurrent models for function execution
as implementations from the abstract computational model.We giv e an example of a
particular concurrent function construct that can be implemented on a concurrent
machine model using multi-threading. The result is a framework of computational
models at different levels of abstraction that can be used in further development of
concurrent computational models that deal with the problems inherent with concurrency.

Ke ywords: programming languages, computational model, execution model, machine
model, sequential execution, concurrency

1. Introduction

To execute a program written in a particular programming language, it is compiled into executable code for
a particular machine. The machine is actually a machine model representing physical hardware, operation
system, etc, or possibly a virtual machine.The compilation is done according to an execution model
specific for the machine model. An execution model is an implementation of a computational model1

which gives the essential rules for performing computations.The computational model must at least be
adequate for expressing the operational semantics of the programming language. An overview of this all is
given in Figure 1. For long the machine model was based on sequential execution of instructions.
Programming languages were based on sequential execution of instructions as well, as were the
computational models and the execution models.

With the introduction of support for concurrency in machine models, whether or not based on hardware
capabilities, concurrency became available to be incorporated in programs.There are several forms in
which support can be given for the use of concurrency. One of these forms is by using an add-on library
that implements a set of primitives build on top of the concurrency capabilities provided by the machine
model. Atypical example of this is multi-threading [4].A problem with the use of such libraries is that
they may vary on different platform making the programs less portable.This problem can be solved by
using a standard such as Posix [11], or Pthreads.A more important problem is that the programming
language is still based on a computational model for sequential execution of instructions, and compilation is
still based on a model for sequential execution of instructions.Compilers may generate efficient code that
is correct for sequential execution, but incorrent for concurrent execution. Thiswas already shown in [6]
(1995) and again later in [5] (2005) and is caused by communications between threads through shared
memory. The approach above results in the writing of a program, even if it clearly has independent parts
that can be executed concurrently, based on a sequential execution model to which carefully concurrency is
added, instead of onto a model that directly allows for concurrent execution transparently to the user.
Furthermore, one has to keep control over the concurrent execution in order to avoid problems as race
conditions, deadlocks, consistency of data, etc. So there is no transparency whatsoever concerning
concurrency, making it very hard to write reliable software.

Another form to support concurrency is to extend existing programming languages with constructions that
allow for some form of concurrency. These constructions are implemented on top of the existing

1. A computational model is also called an abstract machine model, although the terms can be considered different elsewhere.



- 2 -

computational
model

machine
model

execution
m

odel

programming
language

program

compiler

executable

operationalsemantics
syntax

Figure 1. Overview of program execution related affairs

computational and execution models using the same add-on libraries mentioned earlier. The problems with
compilers generating code for sequential execution are hardly dealt with. Although this approach has some
advantages over the use of add-on libraries, it is unclear how execution takes place and whether it can have
different (unforeseen) results on different machine models.

In both [6] and [5] it is stated that that concurrency must be addressed at the language specification level
and in compiler design. There are of course also new programming languages (or redesigned existing ones)
which support concurrency that come with computational models and execution models which solve some
of the problems, if not all, of concurrency, such as Java, C#, and Ada. But it is quite tricky to avoid
problems with memory models for such a language as is shown in [16] and [15] for Java, and in [1] and [2]
for a C++ standard.

In this article we focus on computational and execution models and leave out the problems with generating
correct code for concurrent execution. We show that, just as the sequential execution model is one possible
implementation of the sequential computational model, the latter just is one possible implementation of an
abstract computational model that allows for concurrent execution of instructions.So instead of adding
concurrency to the sequential execution model one should implement a concurrent execution model from
the abstract computational model.Such an implementation should also keep concurrency as transparent as
possible to the user in order to make writing concurrent software easier. We obtain an abstract
computational model allowing concurrent execution of instructions from the sequential execution model via
the sequential computational model by making the right abstractions.That abstract computational model
can be used as base for exploring possible computational models allowing concurrent execution. From
these computational models an implementation can be made for concurrent execution based on the
capabilities of the machines.

Concurrency is applied at the instruction level in the form of concurrent execution of instructions in loop
constructs. Itis also applied at the function level, as is the case with multi-threading. Here, we focus on
the concurrent execution of functions.A computational model for a programming language with functions
should describe how these functions have to be executed. In this article we set out to develop
computational models for programming languages with concurrent execution of functions.2 We start with

2. Often, the terms synchronous and asynchronous execution of functions are used instead of sequential and concurrent execution
of functions.



- 3 -

deriving a sequential computational model from a sequential execution model in section 2. In section 3 we
abstract from the sequential computational model to obtain an abstract computational model for function
execution with scheduling that allows for concurrent execution of functions. We explore a possible
implementation for the abstract computational model still allowing concurrent execution of functions in
section 4.

2. Sequential Computational Model

A program written in a programming languages is translated to code for a particular machine in order to be
executed. Ingeneral, this translation to machine code is based upon a model for sequential execution of
instructions. We refer to program algebra [3] for information on instruction sequences.A sequence of
instructions can be generalized through parameterization forming a function, making it possible to abstract
from the implementation of the function. Calling a function from another instruction sequence is an
essential element of most programming languages. Therefore, a model for the sequential execution of
instructions must have a mechanism for implementing function calls. Here, we describe such a function
call model up to a certain level of detail followed by a more generalized form of this model.

2.1 SequentialFunction Execution Model

A function call can be described as a change of execution of instructions to the execution of instructions of
the called function, and where the arguments of the function call are made available to the called function.
After the execution of instructions of the called function is finished, the result is made available at the point
of the function call, and the execution of instructions prior to the change is continued.

A function call is implemented in the machine model using some convention. We describe here a scheme
that makes use of a stack.This scheme is based on a calling sequence for the C programming language as
described in [12],3 and the generated assembly code of some C compilers.

1. Thearguments for the function to be called are pushed onto the stack.

2. Theaddress of the instruction where execution has to be continued after the function call (return
address) is pushed onto the stack.

3. Control is passed to the called function by setting the program counter to the start of the called
function. Arguments of the function call are available through referencing in the stack.

1. Thecontents of registers that are used inside the function are saved on the stack.

2. Stackspace is allocated for local variables of the function.

3. Theactual body of the function is executed.

4. Thereturn value is stored somewhere on the stack so that it can be obtained by the caller.

5. Stackspace is freed and register values are restored.

6. Thereturn address is popped of the stack.

7. Control is given back to the caller of the function by setting the program counter to the
return address.

4. Thereturn value is taken from the stack.

5. All the values that had been pushed onto the stack are now popped from the stack (the stack is
restored to its state before the function call) and execution of instructions continues.

The use of a stack in the above scheme for storing the values makes the recursive calls of functions
possible. Butit is not always necessary to use the stack for storing a particular value, for instance the return
value can be saved in a dedicated register. The scheme shows that there is no special mechanism ivolved

3. Other conventions are possible too. More information can be found on http://en.wikipedia.org/wiki/Calling_convention and
http://en.wikipedia.org/wiki/Call_stack.



- 4 -

that takes care of the function call.Instead, the instructions for handling the function call are put inline
with the other instructions.

2.2 GenericModel of Sequential Function Execution

In the scheme described above, the data on the stack is usually accessed through the register calledstack
pointer. The part of the stack that contains the data for a particular function call is called astack frame, and
holds the arguments for the function, the return address, and the local variables of the function.
Alternatively, such a frame may be accessed through a special register calledframe pointerpointing to the
position of the frame on the stack, to allow for manipulation of the stack pointer during execution of the
function. Astack frame consist actually of two parts, a part that is build up by the caller and a part that is
build up by the function.

We can describe this more general without the use of a stack.

1. Thearguments for the function and the return address are put in a frame.

2. Theframe is saved in a place that is available to the function.

3. Anenvironment for the function is set up.

4. Controlis passed to the called function.

1. The function builds up its own frame for storing local variables and saving contents of
registers used inside the function.

2. Arguments are taken from the frame.

3. Theactual body of the function is executed.

4. Thecalled function saves the return value in the frame build up by the caller.

5. Thefunction disposes its own frame.

6. Thereturn address is taken from the frame and control is given back to the caller of the
function.

5. Theenvironment of the function is taken down.

6. Thereturn value is taken from the frame

7. Theframe is disposed off.

Although we called it a stack frame, the actual use of a stack is not mentioned in the scheme above. The
frame can be communicated to the function by pushing it onto the stack as a whole, but alternatives are also
possible, such as communicating only the location of the frame through the stack or using a dedicated
register for this.

2.3 Abstract Sequential Function Call

We use the above generic model for function execution to obtain an abstract model that hides the details of
how a function call is implemented. From the caller’s viewpoint in abstraction the call of the function can
be seen as making the arguments available to the function. If we make a similar abstraction on the function
side we get the following scheme.

1. Callermakes arguments and return address available.

2. Anenvironment for the function is set up.

3. Controlis passed to the function.

1. Functioninitializes.

2. Functiongets arguments.



- 5 -

3. Functionexecutes its body.

4. Functionmakes return value available.

5. Functioncleans up.

6. Controlis given back.

4. Environment is taken down.

5. Callergets return value.

The abstract model given here is the sequential computational model we are looking for. It abstracts from
all possible details of implementation and focusses on the sequential computation of function calls.

3. Abstract Computational Model for Function Execution

The sequential computational model for function execution that we obtained in the previous section
describes a model can be seen as one possible sequential implementation of a concurrent computational
model. In this section we describe how a concurrent computational model can be obtained from the
sequential computational model by abstracting from the details of how a function is scheduled for
execution.

3.1 Abstract Function Call

In abstraction, from the caller’s viewpoint the call of the function can be seen as the sending of arguments
to the function and the receiving of the return value. Ifwe make a similar abstraction on the function side
we get the following scheme.

1. Callersends arguments to function.

1. Functionreceives arguments.

2. Functionexecutes its body.

3. Functionsends return value to caller.

2. Callerreceives return value and continue execution.

The scheme above does not allow for recursive function calls. It also assumes there is a function present
for receiving the arguments and return address, but the function first has to come into existence. Inorder to
solve this a mechanism is needed that creates an instance of the function when it is called, corresponding to
the setup of an environment for the function in the sequential computational model.

3.2 FunctionInstance Controller

In the previous section we recognized the need for a mechanism that creates instances of functions. Such a
mechanism also has to take care of the return values from these instances and the destruction of the
instances after execution. Below we show a scheme in which this mechanism is called the controller.

1. Callersends function-name and arguments to controller.

1. Controllerreceives function-name and arguments.

2. Controllercreates an instance of the function.

3. Controllersends arguments to function.

1. Functionreceives arguments.

2. Functionexecutes its body.

3. Functionsends return value to controller.



- 6 -

4. Controllerreceives return value.

5. Controllerdisposes the instance of the function.

6. Controllersends return value to caller.

2. Callerreceives return value and continues execution.

The abstract viewpoint for the caller and the function are still there, but now the controller acts as
intermediate. Itis also possible that on instantiation a function is supplied with the arguments, making the
sending of arguments by the controller and the receiving of them by the function redundant.The scheme
presented here is more general from the viewpoint of the function, in that it is not necessarilly the controller
supplying the function with arguments. With this scheme it is also possible to consider the sending and
receiving of the arguments as part of the instantiation of the function.

We obtained a scheme in which the controller operates in concurrency with sequential instruction
execution. Thisgives the possibility to separate the concerns of the communication between the two and
their internal operation. Abstracting from details of the internal working makes the model more
comprehensive and at the same time it results in a model that allows for other implementations as well.

3.3 Scheduling of Functions

In the abstract model for function execution we use a controller that acts as intermediate for the
communication with the instances of functions. In this section, we relax some constraints in this model to
obtain a model in which the role of the controller becomes the scheduling of functions.

We can relax the constraints that a function has to wait for the value returned by the called function and that
the controller immediately has to take action on a call of a function.Execution of instructions might as
well continue until a certain point where the return value is needed. The controller may wait with creating
an instance of a function until some criterion is met, such as the availability of resources, the moment the
return value is needed, etc. This is typically the concept of a scheduler.

The tasks of a scheduler consists of receiving function call requests, controlling function execution, and
sending return values back to the callers of the functions. Controlling function execution consists of the
following steps.

1. Schedulersets up an environment and makes the arguments available in this environment.

2. Thefunction is executed in the environment.

3. Theenvironment is taken down.

In this scheme there may be more than one function waiting for execution and they are not necessarilly
executed in the order in which they are called. To deliver the right return values it is necessary to identify
the calls and the instances. This can be done by providing instances of functions with identifiers which
they hav eto send along with their messages.

3.4 Concurrent Execution

With the scheme presented above concurrent execution of function instances is possible. Since it is not
necessary to wait for the return value of a function, other instructions can be executed concurrently with the
execution of the function. At the same time other function calls can be executed as well, resulting in
massive concurrent execution of functions.For parallel execution to happen, more than one sequential
instruction executor has to be available. Thescheduler has to use these sequential instruction executors as
resources for execution of functions.

4. Concurrent Models for Function Execution

We can implement a concurrent computational model from the abstract computational model that resembles
the operational semantics of a programming language supporting a particular form of concurrent execution
of functions. From the concurrent computational model a concurrent execution model can be implemented
for a certain concurrent machine model, as depicted in Figure 2. The figure gives just an abstract view.



- 7 -

sequential
computational

model

sequential
machine
model

execution
m

odel

abstract
computational

model

im
plementatio

n

concurrent
computational

model

concurrent
machine
model

implementation

execution
m

odel

Figure 2. Framework of computational models

There are of course more concurrent computational models possible as implementation from the abstract
computational model, each with one or more concurrent execution models for one or more concurrent
machine models. This is also the case for sequential computational models.Furthermore, there are more
levels of abstraction possible for the computational model as well as for the machine model.

In the framework described above we deal with the execution of functions on different levels of abstraction.
Each lower level is a refinement of the level above, until reaching the target machine model. In the
concurrent computational model we also have to deal with the problems caused by the concurrent execution
of functions, such as problems with shared memory. With the sequential computational model this is not
necessary as these problems dissappear due the inline scheduling of functions.

In the following section we briefly sketch the concurrent models for a particular concurrent function
execution construct in a programming language.

4.1 Concurrent Function Execution

We can implement concurrent functions with constructs that separate the invocation of the function from
the receiving of the return value from the function. In between the invocation of the function and the
receiving of the return value the caller can do something else in concurrency with the execution of the
function. Aprogramming language may support this with the following construction.

fid = invoke(f(...))
.
.
.

r = wait(fid)

Here,invoke returns an identifier which can be used bywait to wait for the function with this identifier
to finish after which it returns the return value of the function.A sequential form of this can then be written
asr = wait(invoke(f(...)), or even shortened tor = f(...).

In a computational model both theinvoke() andwait() can be considered separate requests to the
scheduler. On an invoke() the scheduler reacts with sending back an identifier and taking care of the
execution of the function. On await() the scheduler checks if the function with the given identifier has
finished. If it has, the scheduler sends the return value back. Otherwise the scheduler has to take care of



- 8 -

sending the return value back after the function finishes. In the mean time the caller waits for the return
value.

A program containing these constructs can be compiled to executable code for a particular machine model
that supports concurrent execution, provided that there exists an execution model for it. If a machine model
supports multi-threading, execution of concurrent functions can be mapped onto existing libraries of
functions implementing threads. Sequential function calls can still be implemented using an execution
model for sequential execution of functions.

The result is that we lifted the functionality of multi-threading libraries to the level of the programming
languages and pushed the implementation of the libraries to the machine model. This increases
transparency and makes code more portable across different machines.It is also possible for concurrent
functions to be implemented using different forms of concurrency provided by machine models.The
advantage of this approach is that we can deal with other extensions separately on a lower level of
abstraction. For instance, we can further refine the computational model by adding communication
between functions in the form of message passing or through shared memory.

5. Related Work

In many cases concurrency is added to existing programming languages by providing add-on libraries or by
adding constructs supporting concurrency. The computational model in these cases however is still based
on a sequential computational model.Even entirely new concurrent programming languages are often
based on a sequential computational model.In some cases a clear distinction is made between synchronous
and asynchronous execution of functions, what amounts to sequential and concurrent execution of
functions. Althoughthis distinction is made, there is hardly any mentioning of a computational model
dealing with concurrency. It mostly comes down to building on top of a machine model that is extended
with the functionality of an add-on library. So, concurrency is dealt with on a too low lev el of abstraction.
The framework we presented in this article is in contrast with the work mentioned above, as it deals with
concurrency on a higher level of abstraction. We hav e not seen any other work that tries to model
concurrency at an higher level of abstraction.

We hav enot found any mentioning of using different scheduling mechanism for the execution of functions.
Although different scheduling mechanisms are used, they are not characterized as such.Because of this,
there is no proper understanding of the impact of using different scheduling mechanisms and of their
interaction when used intermixed. Ourframework can be used to study the use of different scheduling
machanism and the consequences they may have on the execution of functions.

There are many different machine architecture supporting parallel execution. Supportinga particular
concurrent programming language on a wide range of these architectures is impractible. At the same time,
many programs are customized to achieve higher performance on a particular architecture, making them
less portable.A solution to this is a machine model4 that can be implemented on many different
architectures. Examplesof such machine models are the Parallel Random Access Machine (PRAM) model
[9], the Bulk-Synchronous Parallel (BSP) model [17], and the LogP model [7].But there are many others
and variants. Comparisonsand analysis of some models can be found in [10],[8], [14], and [13]. The
work on machine models fits perfectly on our framework, since it allows us to focus on concurrency on a
higher level of abstraction instead of on details of specific machines. Furthermore, it increases both
portability and scalability of the programs using concurrency.

6. Conclusions

In this article we derived an abstract computational model for the execution of functions.We started with
the traditional sequential execution model for function execution from which we obtained a sequential
computational model by abstracting from the details of function call implementation.By further
abstraction of how a function is scheduled for execution, we obtained an abstract computational model that

4. Such machine models are often called parallel computation models, but in this context we prefer to call them (abstract) machine
models.



- 9 -

allows for the concurrent execution of functions.

We hav eshown that with abstraction and relaxing constraints a model for execution of functions can be
obtained in which function scheduling plays a key role. Thismodel has as a possible implementation inline
scheduling, the original stack-based function execution model we started with.Moreover, this model
allows for concurrent execution of instructions, and therefore it is suitable as model for implementation of
concurrent software.

Furthermore, we discussed concurrent models for function execution as implementations from the abstract
computational model and we gav e an example of a particular concurrent function construct in a
programming language that could be implemented on a concurrent machine model using multi-threading.
This showed that we can lift the functionality of multi-threading libraries to the level of the programming
languages and with that push the implementation of the libraries to the machine model.

The overall result of computational models at different levels of abstraction can be used as a framework for
further development of concurrent computational modelsthat deal with the problems inherent with
concurrency. The main advantage of this is that we can properly handle these problems on the right level of
abstraction. Theframework shows that it should not be decided what parts of a sequential system can be
done concurrently, but what parts of a concurrent system can or should be done sequentially.

References

[1] A. Alexandrescu, H.J. Boehm, K. Henney, D. Lea, and B. Pugh,Memory Model for C++, 2004.

[2] A. Alexandrescu, H.J. Boehm, K. Henney, B. Hutchings, D. Lea, and B. Pugh,Memory Model for
C++: Issues, 2005.

[3] J.A. Bergstra and M.E. Loots, ‘‘Program Algebra for Sequential Code,’’ Journal of Logic and
Algebraic Programming, vol. 51, no. 2, pp. 125-156, 2002.

[4] A.D. Birrell, ‘‘A n Introduction to Programming with Threads,’’ r eport 35, Digital Equipment
Corporation - Systems Research Centre, 1989.

[5] H.J.Boehm, ‘‘Threads Cannot Be Implemented As a Library,’’ ACM SIGPLAN Notices, vol. 40, no. 6,
pp. 261-268, 2005.

[6] P.A. Buhr, ‘‘A re Safe Concurrency Libraries Possible?,’’ Communications of the ACM, vol. 38, no. 2,
pp. 117-120, 1995.

[7] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subramonian, and T. von
Eicken, ‘‘LogP: Tow ards a Realistic Model of Parallel computation,’’ SIGPLAN Notices, vol. 28, no.
7, pp. 1-12, 1993.

[8] D. Culler, A. Dusseau, R. Martin, and K. Schauser, ‘‘Fast Parallel Sorting under LogP: From Theory
to Practice,’’ i n Portability and Performance for Parallel Processing, ed. T. Hey and J. Ferrante, John
Wiley & Sons, Inc., 1994.

[9] S. Fortune and J. Wyllie, ‘‘Parallelism in Random Access Machines,’’ Proceedings of the 10th
Symposium on Theory of Computing, pp. 114-118, ACM Press, 1978.

[10] M. Goudreau, K. Lang, S. Rao, T. Suel, and T. Tsantilias, ‘‘Tow ards Efficiency and Portability:
Programming with the BSP Model,’’ Proceedings of the 8th Symposium on Parallel Algorithms and
Architectures, pp. 1-12, ACM Press, 1996.

[11] IEEEand The Open Group,IEEE Standard 1003.1-2004,IEEE, 2004.

[12] S.C.Johnson and D.M. Ritchie, ‘‘The C Language Calling Sequence,’’ Computing Science Technical
Report No. 102, Bell Laboratories, September 1981.



- 10 -

[13] B.H.H. Juurlink and H.A.G. Wijshoff, ‘‘A Quantitative Comparison of Parallel Computation Models,’’
ACM Transactions on Computer Systems, vol. 16, no. 3, pp. 271-318, 1998.

[14] B.M. Maggs, L.R. Matheson, and R.E. Tarjan, ‘‘Models of Parallel Computation: A Survey and
Synthesis,’’ System Sciences, vol. 2, pp. 61-70, 1995.

[15] J.Manson, W. Pugh, and S. Adve, ‘‘The Java Memory Model,’’ SIGPLAN Notices, vol. 40, no. 1, pp.
378-391, ACM, 2005.

[16] W. Pugh, ‘‘The Java Memory Model is fatally flawed,’’ Concurrency: Practice and Experience, vol.
12, no. 6, pp. 445-455, 2000.

[17] L.G. Valiant, ‘‘A B ridging Model for Parallel Computation,’’ Communications of the ACM, vol. 33,
no. 8, pp. 103-111, 1990.



Electronic Reports Series of section Theory of Computer Science

Within this series the following reports appeared.

[TCS1001] B.Diertens,On Object-Orientation,section Theory of Computer Science - University of Amsterdam,
2010.

Within former series (PRG) the following reports appeared.

[PRG0914] J.A.Bergstra and C.A. Middelburg, Autosolvability of Halting Problem Instances for Instruction
Sequences,Programming Research Group - University of Amsterdam, 2009.

[PRG0913] J.A.Bergstra and C.A. Middelburg, Functional Units for Natural Numbers, Programming Research
Group - University of Amsterdam, 2009.

[PRG0912] J.A.Bergstra and C.A. Middelburg, Instruction Sequence Processing Operators, Programming
Research Group - University of Amsterdam, 2009.

[PRG0911] J.A. Bergstra and C.A. Middelburg, Partial Komori Fields and Imperative Komori Fields,
Programming Research Group - University of Amsterdam, 2009.

[PRG0910] J.A.Bergstra and C.A. Middelburg, Indirect Jumps Improve Instruction Sequence Performance,
Programming Research Group - University of Amsterdam, 2009.

[PRG0909] J.A. Bergstra and C.A. Middelburg, Arithmetical Meadows,Programming Research Group -
University of Amsterdam, 2009.

[PRG0908] B.Diertens,Software Engineering with Process Algebra: Modelling Client / Server Architecures,
Programming Research Group - University of Amsterdam, 2009.

[PRG0907] J.A.Bergstra and C.A. Middelburg, Inversive Meadows and Divisive Meadows,Programming
Research Group - University of Amsterdam, 2009.

[PRG0906] J.A.Bergstra and C.A. Middelburg, Instruction Sequence Notations with Probabilistic Instructions,
Programming Research Group - University of Amsterdam, 2009.

[PRG0905] J.A.Bergstra and C.A. Middelburg, A Protocol for Instruction Stream Processing,Programming
Research Group - University of Amsterdam, 2009.

[PRG0904] J.A. Bergstra and C.A. Middelburg, A Process Calculus with Finitary Comprehended Terms,
Programming Research Group - University of Amsterdam, 2009.

[PRG0903] J.A.Bergstra and C.A. Middelburg, Tr ansmission Protocols for Instruction Streams,Programming
Research Group - University of Amsterdam, 2009.

[PRG0902] J.A. Bergstra and C.A. Middelburg, Meadow Enriched ACP Process Algebras, Programming
Research Group - University of Amsterdam, 2009.

[PRG0901] J.A.Bergstra and C.A. Middelburg, Timed Tuplix Calculus and the Wesseling and van den Berg
Equation,Programming Research Group - University of Amsterdam, 2009.

[PRG0814] J.A. Bergstra and C.A. Middelburg, Instruction Sequences for the Production of Processes,
Programming Research Group - University of Amsterdam, 2008.

[PRG0813] J.A.Bergstra and C.A. Middelburg, On the Expressiveness of Single-Pass Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0812] J.A.Bergstra and C.A. Middelburg, Instruction Sequences and Non-uniform Complexity Theory,
Programming Research Group - University of Amsterdam, 2008.

[PRG0811] D.Staudt,A Case Study in Software Engineering with PSF: A Domotics Application,Programming
Research Group - University of Amsterdam, 2008.



[PRG0810] J.A.Bergstra and C.A. Middelburg, Thread Algebra for Poly-Threading,Programming Research
Group - University of Amsterdam, 2008.

[PRG0809] J.A.Bergstra and C.A. Middelburg, Data Linkage Dynamics with Shedding, Programming Research
Group - University of Amsterdam, 2008.

[PRG0808] B.Diertens,A Process Algebra Software Engineering Environment,Programming Research Group -
University of Amsterdam, 2008.

[PRG0807] J.A.Bergstra, S. Nolst Trenite, and M.B. van der Zwaag,Tuplix Calculus Specifications of Financial
Tr ansfer Networks,Programming Research Group - University of Amsterdam, 2008.

[PRG0806] J.A.Bergstra and C.A. Middelburg, Data Linkage Algebra, Data Linkage Dynamics, and Priority
Rewriting,Programming Research Group - University of Amsterdam, 2008.

[PRG0805] J.A.Bergstra, S. Nolst Trenite, and M.B. van der Zwaag,UvA Budget Allocatie Model,Programming
Research Group - University of Amsterdam, 2008.

[PRG0804] J.A.Bergstra and C.A. Middelburg, Thread Algebra for Sequential Poly-Threading,Programming
Research Group - University of Amsterdam, 2008.

[PRG0803] J.A. Bergstra and C.A. Middelburg, Thread Extraction for Polyadic Instruction Sequences,
Programming Research Group - University of Amsterdam, 2008.

[PRG0802] A.Barros and T. Hou, A Constructive Version of AIP Revisited, Programming Research Group -
University of Amsterdam, 2008.

[PRG0801] J.A.Bergstra and C.A. Middelburg, Programming an Interpreter Using Molecular Dynamics,
Programming Research Group - University of Amsterdam, 2008.

[PRG0713] J.A.Bergstra, A. Ponse, and M.B. van der Zwaag,Tuplix Calculus,Programming Research Group -
University of Amsterdam, 2007.

[PRG0712] J.A.Bergstra, S. Nolst Trenite, and M.B. van der Zwaag, Towards a Formalization of Budgets,
Programming Research Group - University of Amsterdam, 2007.

[PRG0711] J.A.Bergstra and C.A. Middelburg, Program Algebra with a Jump-Shift Instruction,Programming
Research Group - University of Amsterdam, 2007.

[PRG0710] J.A.Bergstra and C.A. Middelburg, Instruction Sequences with Dynamically Instantiated Instructions,
Programming Research Group - University of Amsterdam, 2007.

[PRG0709] J.A.Bergstra and C.A. Middelburg, Instruction Sequences with Indirect Jumps, Programming
Research Group - University of Amsterdam, 2007.

[PRG0708] B.Diertens,Software (Re-)Engineering with PSF III: an IDE for PSF, Programming Research Group
- University of Amsterdam, 2007.

[PRG0707] J.A.Bergstra and C.A. Middelburg, An Interface Group for Process Components,Programming
Research Group - University of Amsterdam, 2007.

[PRG0706] J.A.Bergstra, Y. Hirschfeld, and J.V. Tucker, Skew Meadows,Programming Research Group -
University of Amsterdam, 2007.

[PRG0705] J.A.Bergstra, Y. Hirschfeld, and J.V. Tucker,Meadows,Programming Research Group - University of
Amsterdam, 2007.

[PRG0704] J.A.Bergstra and C.A. Middelburg, Machine Structure Oriented Control Code Logic (Extended
Version), Programming Research Group - University of Amsterdam, 2007.

[PRG0703] J.A.Bergstra and C.A. Middelburg, On the Operating Unit Size of Load/Store Arc hitectures,
Programming Research Group - University of Amsterdam, 2007.

[PRG0702] J.A.Bergstra and A. Ponse,Interface Groups and Financial Transfer Architectures,Programming
Research Group - University of Amsterdam, 2007.

[PRG0701] J.A.Bergstra, I. Bethke, and M. Burgess,A Process Algebra Based Framework for Promise Theory,
Programming Research Group - University of Amsterdam, 2007.



[PRG0610] J.A. Bergstra and C.A. Middelburg, Parallel Processes with Implicit Computational Capital,
Programming Research Group - University of Amsterdam, 2006.

[PRG0609] B. Diertens, Software (Re-)Engineering with PSF II: from architecture to implementation,
Programming Research Group - University of Amsterdam, 2006.

[PRG0608] A. Ponse and M.B. van der Zwaag, Risk Assessment for One-Counter Threads, Programming
Research Group - University of Amsterdam, 2006.

[PRG0607] J.A. Bergstra and C.A. Middelburg, Synchronous Cooperation for Explicit Multi-Threading,
Programming Research Group - University of Amsterdam, 2006.

[PRG0606] J.A. Bergstra and M. Burgess, Local and Global Trust Based on the Concept of Promises,
Programming Research Group - University of Amsterdam, 2006.

[PRG0605] J.A.Bergstra and J.V. Tucker,Division Safe Calculation in Totalised Fields, Programming Research
Group - University of Amsterdam, 2006.

[PRG0604] J.A.Bergstra and A. Ponse,Projection Semantics for Rigid Loops,Programming Research Group -
University of Amsterdam, 2006.

[PRG0603] J.A.Bergstra and I. Bethke, Predictable and Reliable Program Code: Virtual Machine-based
Projection Semantics (submitted for inclusion in the Handbook of Network and Systems
Administration),Programming Research Group - University of Amsterdam, 2006.

[PRG0602] J.A.Bergstra and A. Ponse,Program Algebra with Repeat Instruction,Programming Research Group
- University of Amsterdam, 2006.

[PRG0601] J.A.Bergstra and A. Ponse,Interface Groups for Analytic Execution Architectures,Programming
Research Group - University of Amsterdam, 2006.

[PRG0505] B.Diertens,Software (Re-)Engineering with PSF, Programming Research Group - University of
Amsterdam, 2005.

[PRG0504] P.H. Rodenburg, Piecewise Initial Algebra Semantics,Programming Research Group - University of
Amsterdam, 2005.

[PRG0503] T.D. Vu, Metric Denotational Semantics for BPPA, Programming Research Group - University of
Amsterdam, 2005.

[PRG0502] J.A.Bergstra, I. Bethke, and A. Ponse,Decision Problems for Pushdown Threads,Programming
Research Group - University of Amsterdam, 2005.

[PRG0501] J.A.Bergstra and A. Ponse,A Bypass of Cohen’s Impossibility Result,Programming Research Group -
University of Amsterdam, 2005.

[PRG0405] J.A.Bergstra and I. Bethke,An Upper Bound for the Equational Specification of Finite State Services,
Programming Research Group - University of Amsterdam, 2004.

[PRG0404] J.A. Bergstra and C.A. Middelburg, Thread Algebra for Strategic Interleaving, Programming
Research Group - University of Amsterdam, 2004.

[PRG0403] B.Diertens,A Compiler-projection from PGLEc.MSPio to Parrot, Programming Research Group -
University of Amsterdam, 2004.

[PRG0402] J.A.Bergstra and I. Bethke, Linear Projective Program Syntax, Programming Research Group -
University of Amsterdam, 2004.

[PRG0401] B. Diertens, Molecular Scripting Primitives,Programming Research Group - University of
Amsterdam, 2004.

[PRG0302] B.Diertens,A Toolset for PGA,Programming Research Group - University of Amsterdam, 2003.

[PRG0301] J.A.Bergstra and P. Walters,Projection Semantics for Multi-File Programs,Programming Research
Group - University of Amsterdam, 2003.

[PRG0201] I. Bethke and P. Walters, Molecule-oriented Java Programs for Cyclic Sequences,Programming
Research Group - University of Amsterdam, 2002.



The above reports and more are available through the website: www.science.uva.nl/research/prog/





Electronic Report Series

section Theory of Computer Science
Faculty of Science
University of Amsterdam

Science Park 107
1098 XG Amsterdam
the Netherlands

www.science.uva.nl/research/prog/


