
Unified approach to qualitative motion planning in dynamic environments

Domen Šoberl and Ivan Bratko
Faculty of Computer and Information Science

Večna pot 113, Ljubljana, Slovenia
{domen.soberl, ivan.bratko}@fri.uni-lj.si

Abstract

Traditional motion planning methods rely on precise kine-
matic models to either compute the goal trajectory off-line,
or to make on-line decisions based on current observations
from a dynamic environment. With the increasing use of
qualitative modeling in cognitive robotics, different planning
approaches are needed to handle the lack of numerical data
in manually constructed or autonomously learned qualitative
domain theories. We propose a new motion planning algo-
rithm that makes on-line decisions based on given qualitative
domain description to reach a goal state. Decisions are stated
in the form of simple qualitative actions that can easily be in-
terpreted by robot’s controller and transformed to a numerical
output. We demonstrate its use on three classical problems:
pursuing, obstacle avoidance and object pushing.

Introduction
Motion planning techniques for robotic systems in closed
and controlled environment have become very efficient in re-
cent years. Methods such as Probabilistic RoadMap (PRM)
(Kavraki et al. 1996) or Rapidly-exploring random tree
(RRT) (LaValle 2006) can produce a detailed motion plan,
if precise mathematical model of the system’s dynamics is
provided. Such off-line planning is often unsuitable in real-
world scenarios where complete and robust theories are rare,
while environment is unpredictably changing, which is espe-
cially the case when human interaction is present.

To deal with challenges of motion planning in dynamic
environments, reactive planners were proposed even in the
early beginnings of motion planning, with emphasis on path
construction and obstacle avoidance using a car-like vehi-
cle (Fraichard, Hassoun, and Laugier 1991). Later works
employ adaptations of certain off-line motion planning al-
gorithms for dynamic plan modification. In (Leven and
Hutchinson 2002) the PRM algorithm is used in two stages.
A roadmap that corresponds to an obstacle-free environment
is first built off-line and later dynamically updated with ob-
stacle information by an on-line planner. A partial replan-
ning with RRT is possible during the execution of the plan
by recomputing only the necessary tree branches (Ferguson,
Kalra, and Stentz 2006).

For a planner to predict exact future configurations that
follow certain actions, a precise kinematic model of the sys-
tem is needed. With the increasing use of qualitative model-

ing in cognitive robotics during the last few years, new chal-
lenges in automated planning emerged due to the lack of
numerical information in qualitative domain theories. One
of the main reasons to prefer qualitative over traditional nu-
merical modeling, especially in the area of autonomous con-
cept discovery, is its tendency to capture more general re-
lations and express meaningful concepts which can signif-
icantly simplify the agent’s theory (Bratko 2011). It has
been demonstrated (Troha and Bratko 2011) that a wheeled
robot can learn qualitative physics of pushing a rectangular
box by experimentation. We later showed how such models
can be used by a robot to plan the pushing of arbitrary con-
vex polygonal objects (Šoberl, Žabkar, and Bratko 2015).
However, our planner was specialized for planning actions
of pushing and possibilities for a more general solution still
needed to be addressed.

In this paper we propose a general motion planning al-
gorithm together with a new domain description language
which allows domain relations to be stated in the form of
monotonic qualitative constraints (e.g. (Bratko and Šuc
2003)). We demonstrate the algorithm on three classical
problems: pursuing, obstacle avoidance and object pushing.
Our work differs from symbolic qualitative planning (Wi-
ley, Sammut, and Bratko 2014), where qualitative plans are
elaborate and used as a basis for further numerical learning.
Our planner produces more basic qualitative actions, inter-
preted directly by the robot’s controlling mechanism, and is
therefore suitable for more straightforward tasks.

The rest of the paper is structured as follows. In the fol-
lowing section we give a general description of our plan-
ning mechanism and define the notion of robotic domain and
qualitative action as used by our planner. Next we introduce
our domain description language and describe its individ-
ual elements. We continue with in-depth analysis on how
the planner interprets the given domain description to pro-
duce appropriate actions. We then describe three different
experiments that we conducted in a simulated environment
and present the results. Finally, we conclude and discuss our
future work.

Our planning approach
We presume that the configuration space of the robot is con-
tinuous and connected. Let x1, . . . xn denote domain at-
tributes where x1, . . . , xk are directly controllable, meaning

that the control mechanism is able to increase or decrease
their value, and so they represent output signals. All other at-
tributes are controllable indirectly, using relations defined by
the given qualitative model. A relation x3 = M+−(x1, x2)
states that x3 monotonically increases in x1 and decreases
in x2. If both x1 and x2 increase or decrease, we deem the
direction of x3 inconclusive. We define qualitative action as
a mapping of controllable attributes x1, . . . , xk to {+,−, 0}
and write a = (x+1 , x

−
2 , x

0
3) to denote an action a that maps

x1 7→ +, x2 7→ − and x3 7→ 0, meaning that the controller
should increase the value of x1, decrease the value of x2 and
keep the current value of x3. It is then up to the controller
to choose the numerical step. In the past we achieved satis-
fying results with simulated and real robots using the trivial
mapping: x+i 7→ max(xi), x−i 7→ min(xi) and x0i 7→ xi.
Say such a signal represents the output power to a motor.
Setting it to the highest value takes some time for the motor
to actually reach the highest speed. Providing a sufficiently
high refresh frequency, observed attributes rarely reach their
extremes, as the planner tends to guide them to a certain
value. This differs from the classical PID control principle
in the fact that with PID controllers the target value of the
output signal is known in advance, whereas in our case it is
the task of the planner to make such decisions.

ro
bo

t

co
nt

ro
l

m
ec

ha
ni

sm

planner domain
description

observations
goal

qual. action
(or message)

Figure 1: Reactive qualitative planning mechanism. Goal
can be stated dynamically or set statically as a part of domain
description.

Communication between the planner and the robot’s con-
trol mechanism is shown in Fig. 1. The controller starts a
new communication cycle by updating the values obtained
from the robot’s sensing system. The planner uses values
from the previous cycle to record velocity (the signed speed)
of each attribute. Those velocities are needed internally by
the planner, but being regarded as attributes they can be used
as a part of domain description by adding the apostrophe
character ’ after an identifier (e.g. x’ to denote the velocity
ẋ). The goal state can be specified statically as a part of do-
main description, or given dynamically, together with input
attribute values. A Goal condition is given as a set of simple
equations {xi = gi}, where gi is the goal value of attribute
xi and can be a constant or a numerical expression. If the
robot should pursue an object, the goal can be specified as
equality of their respective coordinates. If more than one
goal is given (dynamically, statically or mixed), the planner
chooses the most promising one for that cycle. The planner
can implicitly set additional goals to satisfy given numerical
constraints or avoid their violation. If the robot should avoid
an obstacle, a constraint D > 0, where D is the distance
between the robot and the object, should imply actions that

lead away from the obstacle, especially if no other goal is
given.

As soon as input values are set, the planner responds with
the next action to be performed, or with one of the following
messages:

• No goal. No goal to reach, neither explicit or implicit.
This happens if no goal has been specified or when ex-
pressions that are part of the goal definition failed to be
evaluated. This is usually the result of a poor domain def-
inition or insufficient input data.

• No solution. Constraints have been violated. Depend-
ing on the design of the problem, this can represent an
unwanted situation (e.g. a configuration where a reset is
needed) or a part of the planning process. We demonstrate
the latter case in our third experiment - pushing an object -
where a constraint on action score fires no solution, when
no available action is good enough. We then reposition
the robot to a more favorable pushing position.

• Goal reached. According to the current speed of the sys-
tem, goal attributes are close enough to their goal config-
urations. This means that for each goal attribute the dis-
tance between its current and goal value is smaller than
the distance it can make between two communication cy-
cles. However, the controller always has the liberty to
impose its own conditions and end the process on its own
terms.

Returning an answer the communication cycle ends. It is not
required to invoke cycles with a constant frequency, but it is
helpful for the planner to properly evaluate the tolerance of
the goal state.

Domain description language
To describe the problem domain, qualitative model alone is
usually insufficient. Besides defining actions and specifying
goal conditions, additional numerical constraints often need
to be set. Those define undesirable system configurations
and make the configuration space non-convex. We propose
a new domain description language, suitable to our planning
approach.

A domain is described by a set of statements
{S1, S2, . . . , Sn}, where each statement can evaluate as
true, false or inconclusive. Statements can be interdepen-
dent, and since the language is declarative, it is the task of
the planner to resolve the dependency of their evaluation.
If one of the statements fails (is evaluated as false), the no
solution answer is triggered. A statement is evaluated as in-
conclusive if insufficient data is provided, in which case it is
ignored. This may also lead to inconclusive goal states and
the no goal answer in the case no goal state is conclusive.
There are seven types of statements: boolean expression, at-
tribute range, numerical equation or inequation, qualitative
relation, conditional statement, definition of action and spec-
ification of a goal state.

Boolean expressions
Statements can be combined into boolean expressions us-
ing the standard logical operators. The use of primitives

true and false is also permitted. If one or more statements
in the expression evaluate as inconclusive, the expression
evaluates to inconclusive only if the result cannot be derived
from other values. For instance, boolean expression true ∨
inconclusive evaluates as true, while true ∧ inconclusive
evaluates as inconclusive.

Attributes and their ranges
Attributes are used as variables in classical programming
languages, but their nature is significantly different. All
statements must agree on a single value of an attribute for
the current cycle. Statements that propose different values
to the same attribute, fail. If the value of an attribute is not
set, statements that use it are evaluated as inconclusive. Be-
sides the computed (or observed) numerical value, a pre-
dicted qualitative1 value can also be assigned to an attribute.
However, this can only be done implicitly by the planner.

An attribute can be bound to a range. There are three
distinct ranges:

• An interval. Open, closed or half-closed intervals can be
stated. Statement x in I[a, b) binds the attribute
x to half-closed interval [a, b) where a and b are arbi-
trary numerical expressions. The statement succeeds if no
statement evaluates x to a value outside the given bound-
aries. This also sets an implicit goal for the planner to
avoid both extremes. Infinity keywords -inf and inf
can also be used instead of a or b respectively, making the
planner avoid only one extreme.

• A sphere S1. Statement x in S[a, b) makes the at-
tribute x circular and normalizes its value to the given
range. This statement always succeeds, sets no implicit
goal, but allows the planner to choose between two direc-
tions to reach a desired state. A typical use of circular
attributes is to specify rotations, e.g. orientation of the
robot within [0◦, 360◦).

• A qualitative range. Allows the user to limit the predicted
value. Statement x in Q[0+] results in elimination of
all actions for which the planner deduces a negative pre-
dicted value.

Numerical equations and inequations
There is no clear distinction between comparison and as-
signment. If all attributes contained in a statement evaluate
to some value, the statement either succeeds or fails. Sim-
ple equations (a single attribute on either the left or the right
side) try to set the value so that the statement succeeds. This
can happen only if all other statements agree on the same
value. Simple inequations set an implicit goal to the single
attribute to avoid the violation of the rule. Complex compar-
isons remain inconclusive if one or more attributes cannot be
evaluated. Note that a statement of the form x = x + 1,
so frequent in classical programming languages, definitely
fails here.

1Currently, our planner can only predict qualitatively. Incorpo-
rating some form of numerical machine learning should enable the
planner to also make numerical predictions.

Qualitative relations
Qualitative relations between attributes are the basis for the
planner to predict the outcome of an individual action. A
domain is well defined when one can track relations from
controllable to goal attributes. Relations are stated in the
form of equations, with the M-notation on one side, and a
single attribute on the other. As in the case of numerical
equations, this can be interpreted as both, an assignment and
comparison.

Consider the relation Ḋ = M−+(v, ω) from our sec-
ond example, which states that (under certain conditions) the
speed of distancing the robot from the obstacle increases by
monotonically decreasing its forward speed v and increasing
its rotational speed ω. Recall that every attribute holds two
values, one numerical and one qualitative (its predicted fu-
ture dynamic), of which either one can be set or unset. If the
planner can derive qualitative values of all three attributes,
Ḋ, v and ω, and those values agree on the stated relation, the
statement will succeed. If the qualitative value of Ḋ cannot
be derived from other stated relations, the statement will set
it so that the statement succeeds, while its numerical value
will remain intact. If two or more independent attributes
contradict, say we have v+ and ω+, the above statement is
inconclusive. It sets no values and has no impact on the final
outcome.

Conditional statements
A conditional statement is an implication of the form
{G1, . . . , Gm} ⇒ {S1, . . . , Sn}, where statements Gi rep-
resent the guard. Only if all guarding statementsGi succeed,
the implied statements Sj are considered a part of domain
definition. An inconclusive guarding statement makes the
guard and thus the whole statement inconclusive. By the
rule of implication, a failed guard evaluates the whole state-
ment as true, while omitting the implied statements Si from
the rest of definition.

If a conditional statement succeeds, its guarding state-
ments Gi also becomes a part of domain definition. Con-
sider a statement of the form {x = 1} ⇒ {S0, . . . , Sn}
whose guard succeeds by setting the attribute x to 1.
The equality x = 1 is always considered by statements
S0, . . . , Sn, but becomes a globally valid assertion only if
the whole implication succeeds.

Conditional statements can be used to describe qualita-
tive models as sets of qualitative relations that hold under
given conditions, e.g. the implication {ϕ > 90◦} ⇒ {Ḋ =
M−+(v, ω)} states that the right-hand relation holds only
when ϕ > 90◦. Models obtained by programs such as QUIN
(Bratko and Šuc 2003) or Padé (Žabkar, Bratko, and Demšar
2007) can easily be rewritten using such a form.

Actions
Classes of legal actions are defined by statements of the
form action(x1, x2, . . . , xn), giving the planner the free-
dom to choose among 3n possible actions. If more than one
such statement is used, the planner has the option to choose
among different types of actions. Specifying no actions is
considered a poor domain description and results in the no

solution message, unless a goal state has been reached ini-
tially.

Each action is evaluated and assigned a score. A higher
value indicates an action that will have a more desirable ef-
fect in favor of reaching the goal state. A positively scored
action is predicted to advance the configuration closer to the
goal state while negatively scored action should result in
moving away from the goal. A zero value could mean an ac-
tion without an effect or leading to a state equally distant to
the goal state. The planner evaluates an action by applying
it to the current attribute state and deducing its qualitative
effect through stated attribute relations, tracked down to a
goal statement. If qualitative deduction reaches a valid goal
statement, the score is computed and assigned to the action,
otherwise the action is discarded. In the case of multiple
goals, the closest goal is selected according to Manhattan
distance over all attributes, normalized by their speeds:

distance(G) =
n∑

i=1

|gi − xi|
|ẋi|

(1)

where G = {g1, . . . , gn} are explicit goal values of at-
tributes x1, . . . , xn. When all actions are evaluated, the
planner returns the one with the highest value, or triggers
no solution if all actions were discarded.

It is possible to state additional constraints on action
scores. Statement s = action(x1, x2, . . . , xn) will
compare / assign the highest score to attribute s, which
can further be used in other numerical statements. In our
third experiment we used this feature to trigger no solution
when no positively evaluated action was found, which was
achieved by numerical constraint s > 0.

Goals

A goal condition is defined as a set of simple equations
{xi = gi}, where xi is an attribute and gi a numerical con-
stant or expression. To specify an explicit goal we use state-
ments of the form goal(x1 → a, x2 → b, . . .). The arrow
symbol makes a clearer distinction between the attribute and
its goal value and also denotes an operation a bit different
from the usual numerical comparison. The goal statement
not only compares numerical values, but also assesses its
distance and predicts future dynamics based on currently set
qualitative values of attributes. For attributes with unset pre-
dictions, the planner will try to make predictions based on
the direction of attribute’s speed. To each explicitly defined
goal, implicit goals may be added by the planner internally,
to avoid possible constraint violations. An implicit goal is
stated as a set of pairs {(xi, Ii)}, where Ii is the interval to
which the attribute xi is bound. Attributes that are used in
explicit goals are not used in implicit goals.

The goal statement always succeeds unless some of the
values cannot be deduced, in which case it remains incon-
clusive. When successful, it outputs the score which is as-
signed to the action that is currently being evaluated. We
discuss further details on score evaluation in the following
section.

The planning algorithm
During each cycle, the planner follows the following algo-
rithm:

1. Check if input values conflict with any of the statements
given in domain description. If so, return no solution.

2. Locate valid action statements and generate the list of
possible actions.

3. For each action repeat:
3.1. Set predicted values of attributes as specified by the ac-

tion (e.g. action (v+, w−) sets qualitative part of v and
w to + and −, respectively). Check if set values con-
flict with any of the statements. If so, discard the action
and return to step 3.

3.2. Following valid qualitative relations, deduce predic-
tions for all possible attributes.

3.3. Locate valid goal statements. If no goal is found, dis-
card the action and return to step 3.

3.4. Compute the score of each goal and assign the highest
value to the action. If conditions of some goal are met,
return goal reached.

3.5. If the assigned score conflicts with numerical state-
ments, discard the action.

4. Return the action with the highest score. If no action is
left, return no solution.
We say valid actions, goals and relations to emphasize the

fact that any statement can be conditioned using conditional
statements. Putting an action or a goal under a guard makes
it possible to divide the planning problem into separate tasks
or phases.

Consider an action a that is being evaluated under a goal
(x1 → g1, . . . , xk → gk | (xk+1, Ik+1), . . . , (xn, In)),
where gi are explicitly defined goal values and Ii intervals,
assigned to non-goal attributes xi>k, and so comprise an im-
plicit goal. Assume that all numerical values of xi and gi are
set, and that all qualitative predictions of xi were deduced
under action a, making the goal statement successful. The
score of action a is set using the following function:

score(a) =
k∑

i=1

p(xi) ·
gi − xi
|ẋi|

+

+
n∑

i=k+1

p(xi) · wI(xi) · |ẋi|
(2)

For explicitly defined goals, each attribute contributes a
weight proportional to the distance from its goal value and
normalized by its speed. The greater the distance, the more
important the attribute. Function p(xi) maps the qualitative
value +, − or 0 of xi to its respective numerical represen-
tation +1, −1 or 0. This results in contributing a negative
weight if the attribute is predicted to move away from its
goal value.

Attributes that are part of an implicitly defined goal, thus
bound to some interval, contribute their weights according
to the w function, defined as

wI(x) = cos

(
π

b− a
·
(
x− a+ b

2

))−1

− 1 (3)

x

wI(x)

a b

(a) Function w in the case x ∈ I = (a, b).

x

wI(x)

a

(b) Function w in the case x ∈ I = (a,∞).

Figure 2: The weight of a bounded attribute is based on the w function.

for bounded intervals I = (a, b), and

wI(x) =

{
(x− a)−1, I = (a,∞)
(b− x)−1, I = (−∞, b) (4)

for half-bounded intervals. The same function is used for
closed and half-closed intervals. When an attribute is fully
bounded, the planner will tend to keep its value close to the
midpoint between both extremes. The contributed weight
will stay relatively low for the major part of the interval, but
will start to rise very rapidly when the attribute gets close
to its extreme, as shown in Fig. 2. Weight is then mul-
tiplied by the speed of the attribute (see equation (2)), so
faster attributes contribute more to the final score, as they
are in higher danger to hit their forbidden zone quicker.

Experiments
To asses the performance of our planner we conducted three
different experiments using a simple two-wheeled robot ve-
hicle. Experiments were done in a simulator, assuming an
overhead camera and object recognition system as sensory
input. The sensory system recorded absolute location and
orientation of single objects. All data were passed directly
to the planner without any preprocessing. The refresh rate
was 25 Hz and the planner was invoked whenever a change
in configuration of objects was observed. Otherwise the val-
ues decided by the last cycle were held on the output.

The controller was able to interpret qualitative actions in
the form (v+−0, ω+−0), where v is translational and ω an-
gular velocity of the robot, being positive in the CCW di-
rection. Using an independent sensory feedback, controller
was able to adjust and maintain given speeds, but when in-
structed to increase / decrease one of them, it aimed for the
maximum / minimum achievable value. Having a system
with limited output capabilities, some action might not al-
ways be executable. Scenarios such as moving at a full speed
forward while receiving instruction to increase ω and keep-
ing v unchanged need a special consideration. In such cases
our robot first lowered the forward speed by half, maintain-
ing the same ratio between the left and the right wheel, and
then proceeded with the intended action execution.

Pursuing objects
The goal of this task is to follow and eventually catch an an-
imate object by choosing the appropriate translational v and

angular ω speed of the robot at every step of the process.
For this experiment we conducted no learning phase and de-
signed the model manually. This way we demonstrated what
we believe is an advantage of qualitative modeling. We were
able to describe the domain intuitively, as we understood it,
in a concise non-algorithmic way, and the robot behaved as
we intended it.

Our reasoning was the following. We understand pursu-
ing as the process of decreasing the distance to the target
while orienting towards it. We believe the most efficient way
to describe this domain is to use an egocentric approach (the
robot sees itself as the center of the world). LetD denote the
distance to the target and ϕ its angular offset, as depicted in
Fig. 3. These need to be derived from the absolute robot
position (x0, y0), its orientation θ, and position of the target
(x, y). This can be done using the following equations:

D =
√
(x− x0)2 + (y − y0)2

ϕ = atan2(y − y0, x− x0)− θ
(5)

We understand that increasing or decreasing the speed
of the robot does not directly affect the distance D, but
rather its speed Ḋ. In relation to that, we recognize two
distinct qualitative states: the target is in front of the robot
(|ϕ| ≤ 90), and the target is behind the robot (|ϕ| > 90). We
also understand that the speed of ϕ decreases by increasing
angular speed and vice versa. The goal should be reached
by orientating towards the target (ϕ → 0) and decrease the
distance (D → 0).

0◦

90◦ −90◦

180◦

D ϕ

Figure 3: Relation of the robot to a target.

Listing 1 shows our domain description. Note that our

implementation of the language demands statements to be
terminated by a semicolon, and that we use the # symbol for
comments. Single-statement guards and implications need
not be enclosed in curly braces.

Listing 1 Pursuing an object
Input values:
x0, y0, theta - robot configuration
x, y - target position

phi in S[-180, 180); # phi is circular

Egocentric values
D = sqrt((x - x0)ˆ2 + (y - y0)ˆ2);
phi = atan2(y - y0, x - x0) - theta;

Qualitative model
abs(phi) <= 90; => D’ = M-(v);
abs(phi) > 90; => D’ = M+(v);
phi’ = M-(w);

action(v, w);
goal(D -> 0, phi -> 0);

A trajectory made by our robot during one of the trials is
shown in Fig. 4. We initially positioned the robot facing
backwards to its target. The pursuing began as soon as the
target started moving from the left to the right with a con-
stant speed. The robot first made a backward turn by 90◦

and so made a transition from qualitative state |ϕ| > 90◦ to
|ϕ| ≤ 90◦. We observed that by choosing action (v−, ω−),
the planner was able to simultaneously utilize rules Ḋ =
M+(v) and ϕ̇ = M−(ω), and therefore satisfy both goal
directions, D → 0 and ϕ → 0. We find such a maneu-
ver visually very intuitive from a human perspective. Being
slightly faster than the target, the robot managed to stay in
the |ϕ| ≤ 90◦ qualitative state until the end of the task, al-
ternating between actions (v+, ω+) and (v+, ω−) to simul-
taneously shorten the distance and regulate its orientation
towards the target.

Figure 4: Trajectory made by the robot while pursuing a
moving target.

It is possible to introduce more than one target and let the
planner choose the closest one. We set up an additional sce-
nario with one stationary and one moving target that we were

able to move interactively. The behavior of the robot was as
expected. Initially, the robot went for the stationary target,
which was being positioned closer to it. Before hitting it, we
moved the secondary target closer and distracted the robot
away from its primary target. As soon as we moved our tar-
get out of reach, the robot headed back to its primary goal.
To achieve such behavior, we had to separately describe dy-
namics of both targets, as shown in Listing 2, although both
descriptions are identical.

Listing 2 Pursuing two objects
Input values:
x0, y0, theta - robot configuration
x1, y1 - target 1 position
x2, y2 - target 2 position

phi1 in S[-180, 180); # phi1 is circular
phi2 in S[-180, 180); # phi2 is circular

Egocentric values of target 1
D1 = sqrt((x1 - x0)ˆ2 + (y1 - y0)ˆ2);
phi1 = atan2(y1 - y0, x1 - x0) - theta;

Egocentric values of target 2
D2 = sqrt((x2 - x0)ˆ2 + (y2 - y0)ˆ2);
phi2 = atan2(y2 - y0, x2 - x0) - theta;

Qualitative model 1
abs(phi1) <= 90; => D1’ = M-(v);
abs(phi1) > 90; => D1’ = M+(v);
phi1’ = M-(w);

Qualitative model 2
abs(phi2) <= 90; => D2’ = M-(v);
abs(phi2) > 90; => D2’ = M+(v);
phi2’ = M-(w);

action(v, w);
goal(D1 -> 0, phi1 -> 0);
goal(D2 -> 0, phi2 -> 0);

Avoiding obstacles
The general idea to implementing obstacle avoidance is
to introduce additional constraint to the pursuing scenario,
making the configuration space non-convex. The tendency
to avoid an obstacle is therefore the tendency to avoid vio-
lating constraint D > 0, where D is the distance from the
border of the obstacle. This represents an implicit goal and
we found it very efficient to construct the qualitative model
of avoidance as shown in Fig. 5. We identify three qualita-
tive states:
• The obstacle is front left (0 ≤ ϕ < 90). The robot can

increase Ḋ by decreasing v and increasing angular speed
towards CW.

• The obstacle is front right (−90 < ϕ < 0). The robot can
increase Ḋ by decreasing v and increasing angular speed
towards CCW.

• The obstacle is behind (ϕ ≥ 90 ∨ ϕ ≤ −90). The robot
can increase Ḋ by increasing v.

0◦

90◦ −90◦

180◦

Ḋ = M−−(v, ω) Ḋ = M−+(v, ω)

Ḋ = M+(v)

Figure 5: The qualitative model of avoidance with three
qualitative states.

Figure 6: Trajectory made by the robot avoiding an obstacle
while pursuing a stationary target (left) and chasing a mov-
ing target around the obstacle (right).

Listing 3 Avoiding an obstacle
Input values:
x0, y0, theta - robot configuration
x1, y1 - goal position
x2, y2 - obstacle position
r - obstacle radius

phi1 in S[-180, 180); # phi1 is circular
phi2 in S[-180, 180); # phi2 is circular
D2 > 0; # obstacle constraint

Egocentric values of goal
D1 = sqrt((x1 - x0)ˆ2 + (y1 - y0)ˆ2);
phi1 = atan2(y1 - y0, x1 - x0) - theta;

Egocentric values of obstacle
D2 = sqrt((x2 - x0)ˆ2 + (y2 - y0)ˆ2) - r;
phi2 = atan2(y2 - y0, x2 - x0) - theta;

Qualitative model to pursue
abs(phi1) <= 90; => D1’ = M-(v);
abs(phi1) > 90; => D1’ = M+(v);
phi1’ = M+-(w);

Qualitative model to avoid
phi2 in I[0, 90); => D2’ = M--(v, w);
phi2 in I(-90, 0); => D2’ = M-+(v, w);
phi2 in I[90, 180) or
phi2 in I[-180, -90]; => D2’ = M+(v);
phi2’ = M-(w);

action(v, w);
goal(D1 -> 0, phi1 -> 0);

Domain description shown in Listing 3 is very similar
to description of the two-target pursuing domain, replac-
ing the second qualitative model of pursuing with the model
of avoidance, and the second explicit goal with constraint
D2 > 0. Trajectories made by two different scenarios are
shown in Fig. 6. The first setting involved a stationary target,
placed straight ahead of the robot but behind an obstacle.
Because ϕ = 0◦ falls into the first qualitative state, the robot
chose to avoid the obstacle by its right side. The second set-

ting involved a moving target, circling with approximately
the same speed as the robot, about one third of the circle in
front. The robot made a circular trajectory trying to catch
the target.

Pushing objects
Using our new planner and domain description language we
were able to reproduce experiments described in (Šoberl,
Žabkar, and Bratko 2015). This way we showed that this
planner is at least as powerful, but more universal than our
previous planning methods. We used the same qualitative
model of pushing, which was learned by autonomous robotic
experimentation. Domain attributes (depicted in Fig. 7) are
the following: position of the object (x, y), orientation of the
object β, goal position (xg, yg), goal orientation γ, orienta-
tion of the robot θ, the point of contact τ ∈ [−1, 1] and the
angle of pushing ϕ ∈ [−30◦, 30◦]. The egocentric approach
is used, making the above values relative to the robot’s posi-
tion and orientation.

(x, y)

β

1
0

-1
τ

(xg, yg)

γ

x

y

(0, 0)
ϕ

θ

Figure 7: Attributes of the pushing domain.

Qualitative relations derived in the original work are the fol-
lowing:

ẏ =M+(v)

ẋ =M−−(τ, ω)

β̇ =M+−−(τ, ϕ, ω)

ϕ̇ =M+(ω)

τ̇ =M−−(ω, ϕ)

θ̇ =M+(ω)

(6)

An example trajectory is shown in Fig. 8. A rectangular
box is placed 1× 1 meter from its goal location and rotated
by 180◦. The goal is to match the position and orientation

of the box with that of the goal. It can be seen from the form
of the trajectory that the robot is trying to satisfy both goal
conditions simultaneously, until none of the possible actions
works in favor of the goal directions. We make the planner
discard non-positive actions by adding the constraint:
score = action(v, w);
score > 0;

We can see the trajectory being composed of 4 smooth
curves. Their joints are the points where no action was
scored above 0, and therefore the no solution message was
received, meaning that the robot had to reposition in order
to continue towards the goal. We used a separate solution
to reposition the robot to an exact initial position, however,
our planner did make the decision about which initial po-
sition is best. Whenever such a decision had to be made,
we computed attribute values for all possible initial states
and sent each initial state to the planner. For each setting
we then obtained the best possible action together with its
score. The state permitting the highest evaluated action was
then selected as the next initial state.

Figure 8: Trajectory made by a rectangular box being
pushed to a goal configuration.

Conclusion
We have shown that qualitative models in the form of qual-
itative monotonic constraints contain enough information to
allow simple motion planning without the need for addi-
tional numerical learning. We introduced a new qualita-
tive planning method that can handle basic motion planning
problems and proposed a new domain description language
that allows concise non-algorithmic description of robotic
domains using qualitative relations and additional numerical
constraints. We demonstrated the intuitiveness of qualitative
modeling in robotic planning and its ability to produce de-
sired results without the need of doing any precise numerical
measurements or modeling to describe the domain. We be-
lieve this way the robot exhibits similar behavior to a living
being making fast instinctive decisions as it moves through
an unfamiliar terrain in pursuit of some goal. However, at
this point of research, our planning method is still somewhat
shortsighted and unable to learn from its past mistakes or
successes. In a few occasions we managed to bring the robot
to a dead loop, alternating between two qualitative states as
it was trying to reach two equally distant goals, oblivious of
its past states and decisions. Only the fact of slight random-
ness due to certain sensory noise and communication delays

eventually brought the robot out of a self-made trap. How-
ever, such situations were rare and we had to make extra
effort to invoke them.

The final form of the language is still under our consider-
ation and we shortly plan to add some extra elements. In our
first experiment we had to duplicate the model of pursuing to
introduce the second target. This problem could be tackled
by introducing vector-like structures, combining attributes
of the same type that belong to different objects, e.g. D =
[D1, D2, . . .] to combine distances to multiple objects.
A single qualitative or numerical constraint would then hold
for all attributes within that vector, e.g. stating only D =
M-(v) instead of a separate statement for each object.

References
Bratko, I., and Šuc, D. 2003. Learning qualitative models.
AI magazine 24(4):107–119.
Bratko, I. 2011. Autonomous discovery of abstract concepts
by a robot. In Proc. ICANNGA, volume 1, 1–11. Springer
Lecture Notes.
Ferguson, D.; Kalra, N.; and Stentz, A. 2006. Replanning
with RRTs. In Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, 1243–
1248.
Fraichard, T.; Hassoun, M.; and Laugier, C. 1991. Re-
active motion planning in a dynamic world. In Advanced
Robotics, 1991. ’Robots in Unstructured Environments’, 91
ICAR., Fifth International Conference on, 1029–1032 vol.2.
Kavraki, L.; Svestka, P.; Latombe, J.-C.; and Overmars, M.
1996. Probabilistic roadmaps for path planning in high-
dimensional configuration spaces. Robotics and Automa-
tion, IEEE Transactions on 12(4):566–580.
LaValle, S. M. 2006. Planning Algorithms. Cambridge:
Cambridge University Press.
Leven, P., and Hutchinson, S. 2002. A Framework for Real-
time Path Planning in Changing Environments. The Inter-
national Journal of Robotics Research 21(12):999–1030.
Šoberl, D.; Žabkar, J.; and Bratko, I. 2015. Qualitative
planning of object pushing by a robot. In Lecture Notes
in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics),
volume 9384, 410–419. Springer Verlag.
Troha, M., and Bratko, I. 2011. Qualitative Learning of
Object Pushing by a Robot. In 25th International Workshop
on Qualitative Reasoning, 175–180.
Wiley, T.; Sammut, C.; and Bratko, I. 2014. Qualitative
Planning with Quantitative Constraints for Online Learning
of Robotic Behaviours. In 28th AAAI Conference on Artifi-
cial Intelligence, 2578–2584.
Žabkar, J.; Bratko, I.; and Demšar, J. 2007. Learning qual-
itative models through partial derivatives by Padé. In Pro-
ceedings of the 21st Annual Workshop on Qualitative Rea-
soning, 193–202.

