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Abstract

Hesitant fuzzy linguistic term sets were introduced to grasp
the uncertainty existing in human reasoning. In this paper,
inspired by absolute order-of-magnitude qualitative reason-
ing techniques, an extension of the set of hesitant fuzzy lin-
guistic term sets is presented to capture differences between
non-compatible preferences. In addition, an order relation
and two closed operations over this set are also introduced to
provide a lattice structure to the extended set of hesitant fuzzy
linguistic term sets. Based on this lattice structure a distance
between hesitant fuzzy linguistic term sets is defined.

Keywords: Linguistic modeling, Group decision making,
Uncertainty and Fuzzy Reasoning, Hesitant fuzzy linguistic
term sets.

Introduction
Techniques based on order-of-magnitude qualitative reason-
ing have provided theoretical models to deal with non-
numeric variables (Agell et al. 2012; Forbus 1996; Travé-
Massuyès and Dague 2003; Travé-Massuyès et al. 2005).
One of the advantages of qualitative reasoning is its capa-
bility to tackle problems in such a way that the principle of
relevance is preserved; that is to say, each variable involved
in a real problem must be valued at the precision level re-
quired. Order-of-magnitude models are among the essen-
tial theoretical tools available for qualitative reasoning about
real systems. They aim to capture order-of-magnitude com-
monsense inferences, as used by human beings in the real
world.

In addition, different approaches involving linguistic as-
sessments have been introduced in the fuzzy sets literature
to deal with the impreciseness and uncertainty connate with
human reasoning (Espinilla, Liu, and Martı́nez 2011; Her-
rera, Herrera-Viedma, and Martı́nez 2008; Herrera-Viedma,
Herrera, and Chiclana 2002; Parreiras et al. 2010; Tang and
Zheng 2006). Additionally, different extensions of fuzzy
sets have been presented to give more realistic assessments
when uncertainty increases (Deschrijver and Kerres 2003;
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Greenfield and Chiclana 2013; Rodrı́guez, Martı́nez, and
Herrera 2012). To describe human reasoning with different
levels of precision similarly to absolute order-of-magnitude
qualitative models, Hesitant Fuzzy Linguistic Term Sets
(HFLTSs) were introduced in (Rodrı́guez, Martı́nez, and
Herrera 2012) and a lattice structure is provided to the set
of HFLTSs in (Montserrat-Adell et al. ).

In this paper, inspired by previous woks over absolute
order-of-magnitude qualitative models (Agell et al. 2012;
Prats et al. 2014), we present an extension of the set of
HFLTSs, HS , based on an equivalence relation on the usual
set of HFLTSs. This enables us to establish differences be-
tween non-compatible HFLTSs. An order relation and two
closed operation over this set are also introduced to define a
new lattice structure in HS . A distance between HFLTSs is
defined based on the lattice ofHS .

This structures may be very useful in management situa-
tions such as marketing or human resources problems, where
order-of-magnitude labels are used to assess. For instance,
a common linguistic scale in the human resources field is:
outstanding, exceeds expectations, meets expectations, be-
low expectations and unsatisfactory.

The rest of this paper is organized as follows: first, Sec-
tion 1 presents a brief review of HFLTSs and its lattice struc-
ture. The lattice of the extended set of HFLTSs is introduced
in Section 2. In Section 3, the distances between HFLTSs are
defined. Lastly, Section 4 contains the main conclusions and
lines of future research.

1 The Lattice of Hesitant Fuzzy Linguistic
Term Sets

In this section we present a brief review of some con-
cepts about HFLTSs already presented in the literature that
are used throughout this paper (Montserrat-Adell et al. ;
Rodrı́guez, Martı́nez, and Herrera 2012).

From here on, let S denote a finite total ordered set of
linguistic terms, S = {a1, . . . , an} with a1 < · · · < an.

Definition 1. (Rodrı́guez, Martı́nez, and Herrera 2012) A
hesitant fuzzy linguistic term set (HFLTS) over S is a subset
of consecutive linguistic terms of S, i.e. {x ∈ S | ai ≤ x ≤
aj}, for some i, j ∈ {1, . . . , n} with i ≤ j.



The HFLTS S is called the full HFLTS. Moreover, the
empty set {} = ∅ is also considered as a HFLTS and it is
called the empty HFLTS.

For the rest of this paper, the non-empty HFLTS, H =
{x ∈ S | ai ≤ x ≤ aj}, is denoted by [ai, aj ]. Note that, if
j = i, the HFLTS [ai, ai] is expressed as the singleton {ai}.

The set of all the possible HFLTSs over S is denoted by
HS , being H∗S = HS − {∅} the set of all the non-empty
HFLTSs. This set is provided with a lattice structure in
(Montserrat-Adell et al. ) with the two following operations:
on the one hand, the connected union of two HFLTSs, t,
which is defined as the least element of HS , based on the
subset inclusion relation ⊆, that contains both HFLTSs, and
on the other hand, the intersection of HFLTSs, ∩, which
is defined as the usual intersection of sets. Notice that the
usual union of sets cannot be considered given that it may
not result a HFLTS. In addition, the reason of including the
empty HFLTS in HS is to make the intersection of HFLTSs
a closed operation inHS .

For the sake of comprehensiveness, let us introduce the
following example that is used throughout all this paper to
depict all the concepts defined.
Example 1. Given the common set of linguistic labels, used
in performance appraisal processes for human resources,
S = {a1, a2, a3, a4, a5}, being a1 = unsatisfactory,
a2 = below expectations, a3 = meets expectations,
a4 = exceeds expectations, a5 = outstanding, possible
linguistic assessments and their corresponding HFLTSs by
means of S would be:

Assessments HFLTSs
A = ”below or meets expectations” HA = [a2, a3]

B = ”below expectations” HB = {a2}
C = ”above meets expectations” HC = [a4, a5]

D = ”below meets expectations” HD = [a1, a2]

E = ”not outstanding” HE = [a1, a4]

2 The Extended Lattice of Hesitant Fuzzy
Linguistic Term Sets

With the aim of describing differences between couples of
HFLTSs with empty intersections, an extension of the inter-
section of HFLTSs is presented in this section, resulting their
intersection if it is not empty or a new element that we will
call negative HFLTS related to the rift, or gap, between them
if their intersection is empty. In order to present said exten-
sion of the intersection between HFLTSs, we first need to
introduce the mathematical structure that allows us to define
it as a closed operation. To this end, we define the extended
set of HFLTSs in an analogous way to how integer numbers
are defined based on an equivalence relation on the natural
numbers. To do so, we first present some needed concepts:
Definition 2. Given two non-empty HFLTSs, H1, H2 ∈
H∗S , we define:
(a) The gap between H1 and H2 as:

gap(H1, H2) = (H1 tH2) ∩H1 ∩H2,

where H represents the complement of H .
(b) H1 and H2 are consecutive if and only if H1 ∩H2 = ∅

and gap(H1, H2) = ∅.
Proposition 1. Given two non-empty HFLTSs, H1, H2 ∈
H∗S , the following properties are met:

1. gap(H1, H2) = gap(H2, H1).
2. If H1 ⊆ H2, gap(H1, H2) = ∅.
3. If H1 ∩H2 6= ∅, gap(H1, H2) = ∅.
4. If H1 ∩ H2 = ∅, gap(H1, H2) 6= ∅ or H1 and H2 are

consecutive.
5. If H1 and H2 are consecutive, there exist j ∈ {2, . . . , n−

1}, i ∈ {1, . . . , j} and k ∈ {j + 1, . . . , n}, such that
H1 = [ai, aj ] and H2 = [aj+1, ak] or H2 = [ai, aj ] and
H2 = [aj+1, ak].

Proof. The proof is straightforward.

Note that neither [a1, aj ] nor [ai, an] can ever be the result
of the gap between two HFLTSs for any i and for any j.

Notation. Given two consecutive HFLTSs, H1 = [ai, aj ]
and H2 = [aj+1, ak], then {aj} and {aj+1} are named as
the linguistic terms that provide the consecutiveness of H1,
H2.

Example 2. Following Example 1, gap(HB , HC) = {a3},
while the HFLTSs HA and HC are consecutive and their
consecutiveness is given by {a3} and {a4}.
Definition 3. Given two pairs of non-empty HFLTSs,
(H1, H2) and (H3, H4), the equivalence relation ∼, is de-
fined as:

(H1, H2) ∼ (H3, H4)

m

H1 ∩H2 = H3 ∩H4 6= ∅
∨

gap(H1, H2) = gap(H3, H4) 6= ∅
∨

both pairs are consecutive and
their consecutiveness is provided

by the same linguistic terms

It can be easily seen that ∼ relates couples of non-empty
HFLTSs with the same intersection if they are compatible,
with consecutiveness provided by the same linguistic terms
if they are consecutive and with the same gap between them
in the case that they are neither compatible nor consecutive.

Example 3. Following Example 1, the pairs of HFLTSs
(HA, HB) and (HA, HD) are related according to ∼ given
that they have the same intersection, {a2}. Additionally,
(HC , HB) ∼ (HC , HD) since they have the same gap be-
tween them, {a3}.

Applying this equivalence relation over the set of all
the pairs of non-empty HFLTSs, we get the quotient set
(H∗S)2/ ∼, whose equivalence classes can be labeled as:



• [ai, aj ] for the class of all pairs of compatible non-empty
HFLTSs with intersection [ai, aj ], for all i, j = 1, . . . , n
with i ≤ j.

• −[ai, aj ] for the class of all pairs of incompatible non-
empty HFLTSs whose gap is [ai, aj ], for all i, j =
2, . . . , n− 1 with i ≤ j.

• αi for the class of all pairs of consecutive non-empty
HFLTSs whose consecutiveness is provided by {ai} and
{ai+1}, for all i = 1, . . . , n− 1.

For completeness and symmetry reasons, (H∗S)2/ ∼ is
represented as shown in Figure 1 and stated in the next defi-
nition.

Example 4. Subsequent to this labeling, and following Ex-
ample 1, the pair (HC , HB) belongs to the class −{a3} and
so does the pair (HC , HD). The pair (HC , HA) belongs
to the class α3 and the pair (HC , HE) belongs to the class
{a4}.
Definition 4. Given a set of ordered linguistic term sets S =
{a1, . . . , an}, the extended set of HFLTSs,HS , is defined as:

HS = (−H∗S) ∪ A ∪H∗S ,
where −H∗S = {−H | H ∈ H∗S} and A = {α0, . . . , αn}.

In addition, by analogy with real numbers −H∗S is called
the set of negative HFLTSs, A is called the set of zero
HFLTSs, and, from now on, H∗S is called the set positive
HFLTSs.

{a1} {a2} {an−1} {an}

−{a1} −{a2} −{an−1} −{an}

[a1, a2] [an−1, an]

−[a1, a2] −[an−1, an]

[a1, an−1] [a2, an]

[a1, an]

[a1, a3] [an−2, an]

−[a1, a3] −[an−2, an]

−[a1, an−1] −[a2, an]

−[a1, an]

{a3}

−{a3}

{an−2}

−{an−2}

· · ·

· · · · · · · · ·

· · ·

α0 α1 α2 αn−2 αn−1 αn

Figure 1: Graph of the extended set of HFLTSs.

Note that HFLTSs can be characterized by couples of
zero HFLTSs. This leads us to introduce a new notation for
HFLTSs:

Notation. Given a HFLTS, H ∈ HS , it can be expressed as
H = 〈αi, αj〉, where the first zero HFLTS identifies the bot-
tom left to top right diagonal and the second one identifies
the top left to bottom right diagonal. Thus, 〈αi, αj〉 corre-
sponds with [ai+1, aj ] if i < j, with−[ai+1, aj ] if i > j and
αi if i = j.

This notation is used in the following definition that we
present in order to latter introduce an order relation within
HS .
Definition 5. GivenH ∈ HS described by 〈αi, αj〉 the cov-
erage of H is defined as:

cov(H) = {〈αi′ , αj′〉 ∈ HS | i′ ≥ i ∧ j′ ≤ j}.
Example 5. The coverage of HA from Example 1 can be
seen in Figure 2.

{a1} {a2} {a3} {a5}

i ≥ 1

j ≤ 3

α1α0 α3 α5

HA = 〈α1, α3〉

Figure 2: Coverage of HA.

The concept of coverage of a HFLTS enables us to define
the extended inclusion relation between elements ofHS .
Definition 6. The extended inclusion relation in HS , 4, is
defined as:

∀H1, H2 ∈ HS , H1 4 H2 ⇐⇒ H1 ∈ cov(H2).

Note that, restricting to only the positive HFLTSs, the ex-
tended inclusion relation coincides with the usual subset in-
clusion relation. According to this relation in HS , we can
define the extended connected union and the extended inter-
section as closed operations within the setHS as follows:
Definition 7. Given H1, H2 ∈ HS , the extended connected
union of H1 and H2, H1 t H2, is defined as the least el-
ement that contains H1 and H2, according to the extended
inclusion relation.
Definition 8. Given H1, H2 ∈ HS , the extended intersec-
tion of H1 and H2, H1 u H2, is defined as the largest
element being contained in H1 and H2, according to the ex-
tended inclusion relation.

It is straightforward to see that the extended connected
union of two positive HFLTSs coincides with the connected
union presented in (Montserrat-Adell et al. ). This justifies
the use of the same symbol. About the extended intersection
of two positive HFLTSs, it results the usual intersection of
sets if they overlap and the gap between them if they do not
overlap. Notice that the empty HFLTS is not needed to make
the extended intersection a closed operation inHS .



Proposition 2. Given two non-empty HFLTSs, H1, H2 ∈
H∗S , if H1 4 H2, then H1 tH2 = H2 and H1 uH2 = H1.

Proof. The proof is straightforward.

Example 6. Figure 3 provides an example with the extended
connected union and the extended intersection of HB and
HC and of HA and HE from Example 1: HB t HC =
[a2, a5], HB uHC = −{a3}, HA tHE = HE and HA u
HE = HA. Note that HB ∪ HC = {a2, a4, a5} is not a
HFLTS.

{a1} {a5}

−{a1} −{a5}

HB

HC

HB tHC = [a2, a5]

HB uHC

= −{a3}

α5α0

{a1} {a5}

−{a1} −{a5}

HA = HA uHE

HE = HA tHE

α0 α5

Figure 3: t and u of HFLTSs.

Proposition 3. (HS ,t,u) is a distributive lattice.

Proof. According to their respective definitions, both oper-
ations, t and u, are trivially commutative and idempotent.

The associative property of t is met since (H1 t H2) t
H3 = H1 t (H2 tH3) given that both parts equal the least
element that contains H1, H2 and H3. About the associa-
tiveness of u, (H1 u H2) u H3 = H1 u (H2 u H3) given
that in both cases it results the largest element contained in
H1, H2 and H3.

Finally, the absorption laws are satisfied given that: on the
one hand H1 t (H1 uH2) = H1 given that H1 uH2 4 H1

and on the other hand H1 u (H1 t H2) = H1 given that
H1 4 H1 tH2.

Furthermore, the lattice (HS ,t,u) is distributive given
that none of its sublattices are isomorphic to the diamond
lattice, M3, or the pentagon lattice, N5.

3 A Distance between Hesitant Fuzzy
Linguistic Term Sets

In order to define a distance between HFLTSs, we intro-
duce a generalization of the concept of cardinal of a positive
HFLTS to all the elements of the extended set of HFLTSs.

Definition 9. Given H ∈ HS , the width of H is defined as:

W(H) =

{
card(H) if H ∈ H∗S ,
0 if H ∈ A,
−card(−H) if H ∈ (−H∗S).

Note that the width of a HFLTS could be related as well
with the height on the graph of HS , associating the zero
HFLTSs with height 0, the positive HFLTSs with positive
heights and the negative HFLTSs with negative values of
heights as shown in Figure 4.

Proposition 4. D(H1, H2) =W(H1tH2)−W(H1uH2)
provides a distance in the lattice (HS ,t,u).

Proof. D(H1, H2) defines a distance given that it is equiva-
lent to the geodesic distance in the graph HS . The geodesic
distance between H1 and H2 is the length of the shortest
path to go from H1 to H2. Due to the fact that H1 uH2 4
H1 t H2, W(H1 t H2) − W(H1 u H2) is the length of
the minimum path between H1 t H2 and H1 u H2. Thus,
we have to check that the length of the shortest path between
H1tH2 andH1uH2 coincides with the length of the short-
est path between H1 and H2.

If one of them belong to the coverage of the other one,
let us suppose that H1 4 H2, then H1 t H2 = H2 and
H1 u H2 = H1 and the foregoing assertion becomes ob-
vious. If not, H1, H1 t H2, H2 and H1 u H2 define a
parallelogram on the graph. Two consecutive sides of this
parallelogram define the shortest path between H1tH2 and
H1uH2 while two other consecutive sides of the same paral-
lelogram define the shortest path betweenH1 andH2. Thus,
the assertion becomes true as well.

Proposition 5. Given two HFLTSs, H1, H2 ∈ HS , then
0 ≤ D(H1, H2) ≤ 2n. If, in addition, H1, H2 ∈ H∗S , then
0 ≤ D(H1, H2) ≤ 2n− 2.

Proof. For the lower bound, notice that since H1 u H2 ⊆
H1 tH2, thenW(H1 uH2) ≤ W(H1 tH2), and therefore
D(H1, H2) ≥ 0.

For the upper bound, if H1, H2 ∈ HS , then, the most
distant pair is α0 and αn. Then,

W(α0 t αn)−W(α0 u αn) =

W([a1, an])−W(−[a1, an]) =

n− (−n) = 2n.

If H1, H2 ∈ H∗S , then, the most distant pair is {a1} and
{an}. Then,

W({a1} t {an})−W({a1} u {an}) =

W([a1, an])−W(−[a2, an−1]) =

n− (−(n− 2)) = 2n− 2.

Notice that for positive HFLTSs, D(H1, H2) co-
incides with the distance D2(H1, H2) introduced in
(Montserrat-Adell et al. ). Additionally, in this
case, the distance presented can also be calculated as
D([ai, aj ], [ai′ , aj′ ]) = |i− i′|+ |j − j′|.
Example 7. Figure 4 shows the width of the extended con-
nected union and the extended intersection of HB and HC

from Example 1. According to these results,D(HB , HC) =
W(HB tHC)−W(HB uHC) = 4− (−1) = 5.
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Figure 4: Distance between HFLTSs.

4 Conclusions and future research
This paper presents, inspired by previous works over abso-
lute order-of-magnitude qualitative models, an extension of
the set of Hesitant Fuzzy Linguistic Term Sets by introduc-
ing the concepts of negative and zero HFLTSs to capture
differences between pairs of non-compatible HFLTSs. This
extension enables the introduction of a new operation study-
ing the intersection and the gap between HFLTSs at the same
time. This operation is used to define a distance between
HFLTSs that allows us to analyze differences between the
assessments given by a group of decision makers.

There is, nowadays, a wide range of areas of application
for distances between linguistic assessments, from manage-
rial to medical or engineering. Future research is focused in
two main directions. First, the study of the consensus level
of the total group assessments to analyze the agreement or
disagreement within the group. And secondly, a real case
study will be performed in the marketing research area to
examine consensus and heterogeneities in consumers’ pref-
erences.
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