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Abstract

Patients with multiple health conditions pose
significant challenges for modern healthcare.
Understanding if and how these conditions are
linked is essential to providing effective treatment.
Physicians and researchers create explanatory models
to develop hypotheses for these connections. In
this paper, we discuss the breadth of domains these
explanations draw upon as well as the diversity of
applications of these models. Throughout the paper,
we use example explanatory models from published
literature and discuss the state-of-the-art of knowledge
representation to support clinicians.

1 Introduction

Patients with multiple health conditions, or
co-morbidities, pose significant challenges for modern
healthcare. These patients make up 71% of total
healthcare spending in America and 93% of Medicare
spending.1 To effectively treat patients with multiple
health conditions, healthcare providers must consider
if there is a causal relationship between the conditions
and, if so, what mechanism underlies this relationship.
Consider the hypotheses that obesity causes type
2 diabetes. Some treatments for type 2 diabetes
cause weight gain (e.g., thiazolidinediones) potentially
leading a vicious cycle of increasing insulin resistance
(Kenkre, Tan, and Bloom 2013). To support healthcare
providers, comorbidity researchers use electronic
medical records to identify statistical relationships
between diseases. Given a statistical relationship,
it is necessary to understand if it occurs by either
chance/sampling bias or through a causal mechanism.
Figure 1 shows some of the different ways in which
diseases may be causally connected.

Simply establishing a causal connection is
insufficient. Effective treatment requires models
of the underlying conditions and their interactions.
Consider the hypothesized relationship between obesity
and diabetes shown in Figure 2 (Liebman 2010). Under
this model, increased levels of cortisol are the result

1http://www.hhs.gov/ash/initiatives/mcc/
final-whcoa-mcc-slides-remediated.pdf

Figure 1: Possible causal relationships between diseases
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of increased 11B-reductase activity in visceral fatty
tissue. The increased cortisol is transported from the
fatty tissue to the liver through the portal vein. In
the liver, cortisol promotes insulin resistance both
directly and through the production of additional
free fatty acids. Liver insulin resistance may spread
throughout the body resulting in the patient having
type 2 diabetes. Under this model, surgical treatments
that remove visceral fat and drugs that regulate
11B-reductase activity or the level of cortisol will be
effective treatments to break the link, but treatments
that regulate the free fatty acid level in the liver will
be insufficient.

While this explanatory model is an example of
direct causation in Figure 1, when combined with
the model of diabetes medicine causing weigh gain,
the relationship is one of mutual causation. Simply
identifying relationships between diseases with arrows
and perhaps weights misses significant opportunities
to support healthcare providers. We argue that
representations of the explanatory models used by
healthcare workers would enable new tools that could
improve health outcomes.

Automatically constructing models to support these
inferences is an exciting problem. The qualitative
reasoning (QR) community’s focus on understanding
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Figure 2: Possible causal mechanism between obesity
and type 2 diabetes.
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the modeling process places it in a unique position
to address this problem. QR researchers avoid
ad hoc modeling in favor of reusable compositional
models (Falkenhainer and Forbus 1991). The explicit
representation of views enables component models
referring to different levels of abstraction to be included
in a single model. Furthermore, QR has developed
rich models of causal reasoning that capture rules of
thumb, probabilistic associations and well-understood
mathematical relationships (Forbus 1984)(Weld and
de Kleer 1989)(Kuipers 1994). While these features
are essential for formulating the explanatory models
identified in this paper, automatically creating
them will require broadening established qualitative
reasoning theories. The results of such an endeavor
would not only transform the model-based reasoning
community but also have significant impacts on medical
research and practice.

This paper analyzes explanatory models found in
literature to identify their properties and articulate
the challenges. We make no claim as to the validity
of these models, but include them to understand
how practioners reason and communicate about
comorbidities.

2 Example Comorbidity Explanations

In addition to the obesity and diabetes relationship
described in Figure 2, we present three more
explanatory models of comorbidities that will be
referenced throughout the rest of this paper.

2.1 Autism and Asthma

Autism is frequently diagnosed before asthma. This
could lead one to consider a direct causal relationship

from autism to asthma. On the contrary, one
proposed causal mechanism indicates that there might
be common cause relationship between the conditions
(Gidaya et al. 2016). In particular, Beta-2-adrenergic
receptor inhalers (B2AR) are treatments for asthma.
The use of B2AR during pregnancy has been associated
with increased risk of autism developing in the child.
Furthermore, asthma has a hereditary component
resulting in an increased likelihood of children born
to mothers using B2AR during pregnancy developing
asthma and autism.

2.2 Diabetes and Lower Leg Amputation

Given correlation between diabetes and lower leg
amputation, Mayfield et al. (Mayfield et al. 1998)
explore the likelihood of different mechanisms and how
they affect treatment decisions. Here, we discuss
a subset of the potential explanations involving the
altered biomechanics of the patient. The following
alterations in biomechanics can lead to ulcers and other
lower leg trauma for which amputation is a treatment:

• Diabetics have increased body mass putting
additional strain on the lower extremities.

• Lower leg trauma caused by limited joint mobility
resulting from bone deformities and soft tissue
damage.

– Diabetes leads to bone deformities via motor
neuropathy, the failure of neurons to communicate
with certain muscles.

– Diabetics have changes in their skin due to
glycosylation, a metabolic process affected by
diabetes, in soft tissue cells. These changes result
in less pliable skin that is more prone to breaking.

• Neuropathy, a common symptom of diabetes, may
prevent people from changing their gait as damage
accumulates. Damage may be identified by
temperature increase that would be perceptible to a
clinician.

– Peripheral vascular disease, which is frequently
associated with diabetes, may lower foot
temperature.

– Neuropathy, a symptom of diabetes, may raise foot
temperature.

2.3 Alcoholism and Cancer

Boffeta and Hashibe discuss the causal associations
between alcohol consumption and different kinds of
cancers (Boffetta and Hashibe 2006). While the
mechanism is not well understood, the authors present
two possible mechanisms acting through different
metabolic pathways: ethanol and folate. Ethanol
metabolism occurs in two steps. First, ethanol is
transformed into acetaldehyde at a rate governed by the
ADH and CYP2E1 gene families. Next, acetaldehyde
is transformed into acetate at a rate governed by
the ALDH gene. Genetic variation in ALDH gene
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Figure 3: The possible effects of alcohol on folate
metabolism.

(1)	Change	in	diet	to	
not	eat	good	things,	(2)	
impaired	intes5nal	

absorp5on	

677CÆT-variant	
reduces	the	rate	of	

this,		and	is	protec5ve	
in	light	or	non-
drinkers,	but	not	
heavy	drinkers	

family affect the rate of ethanol reactions by up to
90x. Alcoholism leads to increased alcohol consumption
which in conjunction with genetic variation can lead
to increased concentrations of acetaldehyde which is
a known carcinogen. For example, the ALDH2
gene significantly slows the production of acetate
allowing acetaldehyde to remain in the body at higher
concentrations. Furthermore, this gene has been
associated with increased risk for oral and throat
cancers likely due to high concentrations of alcohol at
those locations.

Figure 3 illustrates the possible effects of alcohol
on folate metabolism. An important function of the
folate cycle is DNA synthesis. Damaging this process
increases the risk of developing cancer. First, alcohol
reduces the amount of folate that enters the body. This
is either through the poor diet of heavy drinkers or
through alcohol affecting the intestinal absorption of
folate. Within the folate cycle, Alcohol inhibits the
expression of the MTR gene (Platek et al. 2009). The
C677T variant of the MTHFR gene reduces the rate
of 5-methylenetetrahydrofolate and appears to mediate
the risk of colon cancer for light and moderate drinkers,
but not for heavy drinkers.

3 Domains of Knowledge
From these example explanatory models, we identified
six different domains of knowledge represented: genetic
and metabolic pathways, physiology, mechanical,
spatial, disease, and drug. For each domain of the
knowledge, we present snippets from our examples and
identify existing applicable biomedical knowledge bases.

3.1 Genetic and Metabolic Pathways

Genetic and metabolic pathways describe the chemical
reactions that underlie biological phenomena.
11B-reductase from the obesity causing diabetes
mechanism is a metabolic reaction. Proteins are
the participants of metabolic reactions and genetic
variation affects the rate which these proteins are

transformed. Two different metabolic pathways,
collections of reactions, have been identified as the
possible mechanism concerning how alcoholism causes
cancer.

Biologists are encoding the knowledge necessary
to represent and reason about these pathways in
wikipathways2 and reactome (Joshi-Tope et al. 2005).
Given the ontological structure of these models
involving processes, rates, and concentrations, it is not
surprising that members of the qualitative reasoning
community have built systems to reason with this
knowledge (Bredeweg et al. 2012). There is also work
that links diseases to pathways that bioinformatics
researchers have used to explain comorbidities through
associations with the same pathways (Li and Agarwal
2009).

3.2 Physiological Models

Physiological models refer to the physical structure
of the body and their functions. For example,
physiological models are used multiple times in the
associations between alcohol and cancer. First,
when discussing the ethanol metabolic pathway, the
explanation focuses on changes in oral and throat
cancer rates due to the their roles in ingesting alcohol.
Second, when analyzing reasons for decreased folate
intake, the explanation discusses decreased intestinal
function.

The majority of physiological modeling efforts have
focused on linking genes and proteins to physiological
functions (e.g., GO MF (Ashburner et al. 2000) and
Chemical Entities of Biological Interest (Degtyarenko
et al. 2008)). There are ongoing efforts to link these
ontologies to tissue-level descriptions (De Bono et al.
2015).

3.3 Mechanical Models

Mechanical models produce inferences from the physical
connections of the body. That is, how the body
moves and how different parts respond to forces applied
to them. For example, the causal model concerning
limited joint mobility in diabetics contains both static
and dynamic models. Dynamic models include the fact
that bone deformities restrict the range of movement
of joints. Static models include the fact that changes
in skin due to glycosylation increase the likelihood of
breaking.

At this point, we are not aware of any reusable
mechanical models of the human body that are used for
healthcare. Standard practice appears to be to create
a mechanical model for a specific purpose (Fung 2013).
For reusable models, the most closely related efforts
come from safety engineering (e.g., simulation of vehicle
crashes) (Vezin and Verriest 2005).

2www.wikipathways.org
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3.4 Spatial Models

Spatial models localize phenomena and interactions.
While exact spatial locations may not be necessary,
the representation of containers and connections is
important. In diabetes model, the connection between
visceral fatty tissue and liver through the portal vein
is a central part of the explanation. Furthermore, the
concentrations of different proteins must be understood
with respect to a container.

The Open Biology Ontologies (OBO) include
relationships for containment and adjacency for all of
their ontologies (Smith et al. 2007). The Biological
Spatial Ontology offers extensions to define precise,
relative positions within an organism (Dahdul et al.
2014).

3.5 Disease Models

These models define diseases in terms of their signs,
symptoms, and transmission. Disease symptoms can
then be used to create patient specific models to identify
how diseases may relate to one another. For example,
in the obesity causes diabetes model, it is necessary
to consider that obese people have more visceral fat.
Then, the model is completed with the fact that
increased insulin resistance is the defining signature
of type 2 diabetes. Other examples of symptoms
used in our examples include the fact that alcoholism
has a symptom of increased alcohol consumption and
reduces the amount folate in the diet. Representing
disease transmission is necessary to form the causal link
between the asthmatic mother and risk of asthma in
their child.

The Disease Ontology is an ontology for describing
the classification of human diseases organized by
etiology, or causation (Kibbe et al. 2015). Alternatively,
International Statistical Classification of Diseases and
Related Health Problems (ICD-10) is used by many
electronic medical record systems and contains codes
for diseases, signs and symptoms, and abnormalities
(Organization, Organization, and others 1992).

3.6 Drug models

Drug models describe how drugs interact with the
body in multiple ways. Drug models that describe
how a drug affects metabolic pathways may be used
to design treatments. For example, a drug regulates
11B-reductase activity can be used to mitigate the
risk of diabetes resulting from obesity. At the level
of medical conditions and symptoms, drug models
describe what diseases or symptoms drugs are used for
and what their side effects are. For example, B2AR
is a drug that treats asthma and that this drug has a
side effect in pregnant women that increases the risk of
autism in their children.

The National Institute of Health keeps records of
drug interactions and side effects and makes this
data available through APIs.3 The OBO ontologies

3https://wwwcf2.nlm.nih.gov/nlm_eresources/

include multiple efforts to represent drugs and their
effects. The DRON ontology supports comparative
effectiveness researchers studying claims data.4 The
DINTO ontology categorizes drug-drug interactions
(DDIs). This includes a representation of the
possible mechanisms that can lead to them (including
both pharmacodynamic and pharmacokinetic DDI
mechanisms) (Herrero-Zazo et al. 2015).

In this section, we identified five different domains
of knowledge that appear in our example explanatory
models. In the next section, we highlight how this
knowledge enables different types of inferences for
healthcare providers.

4 Purposes of Explanatory Models
Explanatory models of comorbidities are important
because they guide treatment decisions. Simple models
of the form shown in Figure 1 in which nodes represent
conditions and arrows represent causal relationships
are insufficient for planning treatments. To illustrate,
consider the abstract case of disease A causing disease
B. If a patient has both diseases, will simply treating
disease A be sufficient? Perhaps, but without an
explanatory model to guide treatment this causal
connection is not useful. In the rest of this section,
we describe how explanatory models support model
validation, patient observation, and treatment using
examples.

4.1 Support for Model Validation

Medical researchers begin with statistical relationships
between conditions. With the introduction of electronic
medical records, bioinformatics researchers have
developed new tools to identify orders of magnitude
more potential relationships between diseases (Li and
Agarwal 2009). In the diabetes lower leg amputation
example, to validate the causal link between the
increased body mass from diabetes and lower leg
amputation, researchers conducted experiments to
measure the peak plantar pressure in diabetic people.
They found that body weight only accounts for less than
14% of the variance thus weakening the importance of
this causal connection. This model validation step is
essential in determining treatment decisions.

4.2 Support for Clinical Decisions

Healthcare providers use explanatory models to
determine patient treatment and guide the monitoring
of a single condition to ensure that it does not cause
other conditions. In the asthma-autism connection, this
involves changing the asthma medication for potential
mothers. In the diabetes-amputation connection, the
explanatory model explores if lower-leg stress can
be identified through changes in temperature. The
purpose of this statement is to support clinicians who
are monitoring diabetic patients to identify those that

eresources/search_database.cfm
4http://www.obofoundry.org/ontology/dron.html
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are at risk of developing ulcers that would lead to lower
leg amputation.

Given a comorbid patient, explanatory models
guide the treatment process. Instead of treating
each condition in isolation, it is important to
identify potential interactions between them. In the
obesity-diabetes case, it is important that the treatment
of diabetes does not lead to weight gain as that will
counteract whatever treatment is being given to obesity.

5 So What? Advanced Tools for
Clinical Support

In this work, we have identified a diverse set
of knowledge domains necessary to create useful
explanatory models of comorbidities. In Section 3,
we illustrated some of the current efforts for creating
reusable model libraries in each domain. From this
landscape, we see two exciting research questions:

1. What kinds of inferences are possible from these
explanatory models?

2. How can explanatory models be automatically
constructed?

In the previous sections, we have already discussed
aspects of the first question. A subset of the
inferences that can be drawn from these models
includes determining intervention decisions (e.g.,
not recommending B2AR inhalers for pregnant
mothers), guiding future experiment design and data
collection (e.g., determining the strength of the causal
relationship between increased body mass and lower
leg amputation), and directing healthcare monitoring
(e.g., importance of watching weight for people taking
diabetes drugs). Further research must explore the
context of these decisions and other clinical decisions
made by providers.

The second question concerns model formulation
(Falkenhainer and Rajamoney 1988)(Rickel and Porter
1997). Given a question, this process typically involves
(1) generating a model from a domain theory and
experience, (2) evaluating its utility, and (3) revising
the model based on its evaluation. Steps 2 and
3 continue until the modeler is satisfied with the
results. One area where current work falls short
for our application concerns the representation of the
evaluation criteria and how these can change during
the model revision process. Instead, current approaches
typically address prediction questions (e.g., “What
will happen to a quantity in a particular scenario?”).
The explanatory models described in this work are
often exploratory in nature (e.g., “How are these two
conditions related?”). Their construction is important
for communication between scientists, providers, their
patients, and the public.

Understanding the context and inferences that are
important to healthcare providers coupled with new
techniques of model formulation and revision could
enable new classes of clinical support tools.

6 Discussion
In this work, we argue that the simple causal network
models that are shown in Figure 1 are insufficient for
clinical support. Scientists and healthcare providers
create explanatory models that expand the thin arrows
in Figure 1 into mechanistic explanation consisting of
entities and relationships.

The qualitative reasoning (QR) community’s focus
on understanding the modeling process places it in a
unique position to bridge the gap between the causal
network models that are derivable from data and the
explanatory models used by clinicians. Compositional
modeling’s emphasis on reusable components, or
model fragments, (e.g., 11B-reductase reaction is
studied in isolation from diabetes patients) and
explicit representation of assumptions are essential
components of explanatory models. QR has developed
rich models of causal reasoning that capture world
knowledge (e.g., treatments of a pregnant mother affect
the fetus), probabilistic associations (e.g., increasing
insulin resistance increases the likelihood of a patient
exhibiting diabetes) and understood mathematical
relationships (e.g., systems biology models of chemical
reactions, such as 11B-reductase, use differential
equations).

While these features are essential for formulating
the explanatory models identified in this paper,
we also illustrate additional challenges that will
require extending current QR theories and research.
In particular, the extension of automated model
formulation and revision from prediction and system
identification tasks to the open-ended problem of
comorbidity explanation. Such advances could enable
a radical transformation of clinical support tools
signficantly improving healthcare outcomes.
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