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ABSTRACT 
Scientists use both conceptual and simulation models to 
make sense of the world. MILA−S is an interactive 
system for authoring conceptual models of ecological 
phenomena and spawning agent-based simulations of the 
ecological systems directly from models. We have used 
MILA−S in middle school science to foster learning about 
both ecological systems and scientific modeling. We now 
seek to use MILA−S to promote learning about ecological 
systems and scientific modeling in college-level 
introductory biology classes. Compared to middle school 
students, college-level students typically study more 
complex ecological systems. In this paper, we present 
extensions and enhancements to MILA−S in preparation 
for deployment in college.  

INTRODUCTION 
Much cognitive systems research on science education 
seeks to introduce authentic practices of real scientists 
into science classrooms (Edelson, Gordon & Pea 1999). 
Scientists in general make sense of the world through 
cycles of model construction, use, evaluation and revision 
(Clement 2008; Darden 1989; Halloun 2000; Nersessian 
1989, 2008; Schwarz et al. 2009). Further, scientists use 
many kinds of models to generate, specify, share, test and 
critique their ideas [Carruthers et al. 2002]. Two of the 
techniques scientists commonly use are construction of 
conceptual models and execution of simulation models of 
the phenomenon or system of interest (Clement 2008; 
Nersessian 2008). Conceptual models are abstract 
representations of the components, relations, and 
processes of the phenomenon (Clement 2008; Darden 
1989; Nersessian 1989, 2008; Novak 2000; White & 
Fredriksen 1990). A conceptual model specifies a 
scientist's current understanding of a phenomenon and 
evidence for the understanding, allowing externalization, 
sharing and critiquing of that understanding, as well as 
use of the model to guide further investigation Like 
conceptual models, simulation models too specify the 
scientists' current understanding of the system and guide 
further investigation. Simulation models are executable 
with specific values for the system’s input variables, 
enabling determination of the temporal evolution of the 
values of the system’s output variables (Clement 2008; de 
Jong & van Joolingen 1998; Jackson, Krajcik & Soloway 
2000; Nersessian 2008; White & Fredriksen 1990).  

MILA−S is an interactive technology for authoring 
conceptual models of ecological phenomena and 
generating simulations based on the conceptual models, 
preserving the capacity for rapid revision and knowledge 
sharing allowed by the conceptual models while 
extending them to provide the repeated testing and 
feedback of more precise simulations (Goel & Joyner 
2015; Joyner & Goel 2015; Joyner, Goel & Papin 2014). 
MILA−S uses agent-based simulations (Bonabeau 2002) 
because the paradigm of agent-based simulation is 
especially well suited for ecological systems (Grimm et 
al. 2006). MILA−S uses Component-Mechanism-
Phenomena models (Joyner, Majerich & Goel 2013; 
Joyner, Goel, & Papin 2014) for authoring the conceptual 
models of ecological phenomena and the NetLogo 
simulation engine (http://ccl.northwestern.edu/netlogo) 
for agent-based simulations of ecological systems 
[Wilensky & Resnick 1999]. MILA−S implements a 
translator that directly compiles the conceptual models 
into agent-based simulations.  

A pilot study entailed deployment of MILA−S in middle 
school science classrooms in metro Atlanta, and its use by 
about 50 students for modeling a local aquatic ecosystem. 
Preliminary results from the study indicated that the 
students used MILA–S to engage in the desired cycle of 
mode; construction, use, evaluation and revision (Joyner, 
Goel, & Papin 2014). Similar studies have also shown 
that using the MILA family of tools leads to an 
improvement in both the quality of the conceptual models 
of ecological phenomena and understanding of the 
process of scientific modeling −of ecological systems 
(Goel & Joyner 2015, Joyner & Goel 2015). 

Much cognitive systems research has explored interactive 
tools for qualitative modeling and qualitative simulation 
and their use for promoting science education (Bredeweg 
& Forbus 2003). MILA−S parallels Bredeweg et al.’s 
(2009) Garp-3 system that allows the user to create first 
qualitative models of ecological phenomena and then 
qualitatively simulate them. In contrast to Garp-3, 
MILA−S uses Component-Mechanism-Phenomena 
modeling for authoring conceptual models, the off-the-
shelf NetLogo engine for running agent-based 
simulations, and a translator between the two for directly 
spawning the simulations from the conceptual models.  



Given the success of MILA−S for fostering learning of 
ecological systems as well as scientific modeling in 
middle school science, we now seek to use MILA−S to 
promote learning about ecological systems and scientific 
modeling in college-level introductory biology classes. 
However, college-level students are cognitively more 
developed than middle school students, the ecological 
systems they study are more complex, and they have more 
prior knowledge of ecological systems and scientific 
modeling. This raises the question of how to extend and 
enhance MILA−S to match complexity of systems that 
they study? In this paper, we summarize MILA−S and its 
use for learning about ecological systems and scientific 
modeling, and then describe extensions and enhancements 
to MILA−S in preparation for its deployment in college. 

DESIGN OF MILA−S 
MILA (Modeling & Inquiry Learning Application)_ is a 
family of interactive tools for supporting student learning 
about scientific discovery. The core MILA tool enables 
middle school students to investigate and construct 
models of complex ecological phenomena. MILA–S also 
allows students to simulate their conceptual models (Goel 
& Joyner 2015; Joyner, Goel & Papin 2014).  

MILA builds on a line of exploratory learning 
environments including the Aquarium Construction 
Toolkit (ACT; Vattam et al. 2011) and the Ecological 
Modeling Toolkit (EMT; Joyner et al. 2011).  ACT and 
EMT were shown to facilitate significant improvement in 
students’ deep, expert-like understanding of complex 
ecological systems. For conceptual modeling, ACT used 
Structure-Behavior-Functions models that were initially 
developed in AI research on conceptual design of 
technical systems (Goel 2013; Goel, Rugaber & Vattam 
2009). In contrast, EMT used Component-Mechanism-
Phenomenon (or CMP) conceptual models that are 
variants of Structure-Behavior-Function models adapted 
for modeling natural systems (Joyner et al 2011). Both 
ACT and EMT used NetLogo simulations as the 
simulation models (Wilensky & Reisman 2006; Wilensky 
& Resnick 1999). Like most interactive tools for 
supporting modeling in science education (vanLehn 
2013), both ACT and EMT provided one set of tools for 
constructing and revising conceptual models and another 
tool set for generating and using simulations.  

Conceptual Models 

Components in CMP modeling can be either biotic or 
abiotic. Each component has a set of variables associated 
with it, four for biotic components, and one for abiotic 
components. Biotic components are defined by their 
population quantity, lifespan, energy level, and likelihood 
to breed; abiotic components are defined only by their 
quantity. Figure 1 illustrates a causal model constructed 
by a team of 7th grade life science students early in their 
interaction with MILA–S. In this model, there are three 
components: Sunlight, Oxygen, and "Fishies". The 
Sunlight and Oxygen are abiotic components, and they 
have only Amount as a variable that is designated on the 
node for the component. “Fishies” is a biotic component, 
and thus has Population, Age, Birth Rate, and Energy as 
variables; Population is designated on the “Fishies” node 
itself, while the notations for the other three variables 
extend downward from the main node. 

CMP modeling draws causal relations between the 
variables associated with the different components. For 
example, the presence of a chemical like ammonia in the 
ecosystem that is poisonous to fish may decrease the 
lifespan of the fish, or it may directly decrease the 
population of the fish (additional information on the 
difference between the two is provided later in this paper). 
MILA−S provides the user with a set of prototypes that 
describe causal relationships among system variables. The 
choice among the available prototypes is determined by 
the variables on either end of the relation and the type or 
direction of the relation. For example, a relation from the 
Population of a biotic component to the Amount of an 
abiotic component, such as that from Fish Population to 
Oxygen Amount, 'consumes', 'produces', or 'becomes 
upon death,' etc. Similarly, a relation from an abiotic 
Amount to a biotic Population could be 'destroys' or 
'feeds'. Similar relationship prototypes are available for 
links between two biotic and two abiotic components. In 
the model shown in Figure 1, the prototypes chosen are 
'consumes' for the relationship between Fish and Oxygen, 
and 'produces' for the relationship between Sunlight and 
Oxygen. The direction of the arrow between the variables 
of two components indicates the direction of causal 
influence. For example, the arrow from Fish to Oxygen in 

	
Figure	1:	A	conceptual	model	constructed	by	a	team	of	7th	grade	students	using	MILA–S.	

	



Figure 1 indicates that the Population of Fish influences 
the Amount of Oxygen. 

A Mechanism in CMP modeling is a causal chain of 
component variables connected by causal relations. For 
example, Figure 1 illustrates a mechanism hypothesized 
by a team of students according to which the Amount of 
Sunlight (an abiotic component) influences the Amount of 
Oxygen (another abiotic component) and the Population 
of Fish (a biotic component) also influences the Amount 
of Oxygen. 

A Phenomenon in CMP is an observation about the 
system of interest. For example, the phenomenon for the 
mechanism illustrated in Figure 1 is a change in the 
Amount of Oxygen in an aquatic ecosystem. 

A user starts the process of CMP causal modeling using 
MILA−S with the goal of constructing a causal 
explanation for explaining a given phenomenon. She then 
specifies a mechanism as the explanation for the 
phenomenon, incrementally composing the mechanism 
from the components of the system, their variables, and 
the relations between the variables. As Figure 1 
illustrates, a CMP model in MILA−S is an external visual 
representation with textual annotations.  

NetLogo Simulations 
Figure 2 illustrates the result of the NetLogo simulation 
for the conceptual model of Figure 1. Note that all three 
components of the causal model (Figure 1) are 
represented in the simulation (Figure 2): the Fish are in 
red, Sunlight hits the water at the location of the brown 
dots, and the Oxygen produced by that interaction appears 
as blue dots. 

As Figure 2 illustrates, NetLogo depicts the agents in a 
window showing their actions and behaviors. Also as 
Figure 2 illustrates, NetLogo provides graphs and 
counters for illustrating the temporal evolution of various 
variables of the simulation. Before running a simulation, 
the user sets the simulation's start condition. The input 
variables are set through the sliders and toggles on the left 
side of the simulation window illustrated in Figure 2. The 
user then clicks the Setup button to apply those changes to 
a new simulation. The user next clicks the Go button to 
start the time steps of the simulation. 

NetLogo simulations are typically designed with its own 
dedicated programming language, which allows for 
enormous flexibility, However, this flexibility of 
designing simulations makes rapid evaluation and 
revision of models difficult. First, it requires at least a 
rudimentary background in programming. Secondly, even 
if the simulation designer is relatively experienced in 
NetLogo, it can still take significant time to make non-
trivial changes to the way in which the simulation 
operates: these changes can involve writing all-new 
methods, creating new variables, or defining new agents. 
Clearly, it would be useful if the cost of generating 
NetLogo simulations could be controlled. 

MILA–S provides one technique for controlling the cost 
of generating NetLogo simulations: it automatically 
generates the simulations from user’s casual model. Note 
also that the generation of the CMP causal model 
illustrated in Figure 1 does not require any knowledge of 
programming. Instead, MILA−S provides a visual syntax 
for CMP modeling. 

	
Figure	2:	The	results	of	NetLogo	simulation	of	the	conceptual	model	illustrated	in	Figure	1.	

	



Translating Conceptual Models into Simulations 
After constructing a CMP conceptual model, a student 
first uses a template to set values of the input variables to 
the system, and then clicks a 'Run Sim' button for 
simulation generation. MILA–S iterates through some 
initial boilerplate settings, then gathers together all the 
components for initialization along with their individual 
parameters. After this, MILA–S writes the functions 
based on the relations specified in the CMP model. A key 
part of this is a set of assumptions that MILA–S makes 
about the nature of ecological systems. For example, 
MILA–S assumes that if a biotic component consumes a 
certain other component, then it must need that other 
component to survive. A model with 'Fish' that contains 
'consumes' connections to both 'Plankton' and 'Oxygen' 
would infer that fish need both Plankton and Oxygen to 
survive. MILA–S also assumes that species will continue 
to reproduce to fulfill their carrying capacity rather than 
hitting other arbitrary limitations. These assumptions do 
limit the range of simulations that MILA–S can generate, 
but they also facilitate the higher-level rapid model 
revision process that is the learning objective of this 
project. Figure 3 illustrates the general scheme for 
translating the semantics of CMP conceptual models into 
the semantics of the Netlogo agent-based simulations; 
Joyner, Goel & Papin (2014) provide a more detailed 
account of the translation scheme and process. 

USE OF MILA−S IN MIDDLE SCHOOL SCIENCE 
Prior to engagement with MILA–S, the 50 students in our 
pilot study received a two-week curriculum on modeling 
and inquiry, featuring five days of interaction with CMP 
conceptual modeling in MILA. In the first part of the 
study using MILA, students also used pre-programmed 
NetLogo simulations that did not respond to students' 
models, but nonetheless provided students experience 
with the NetLogo interface and toolkit. Thus, when given 
MILA–S, students already had significant experience with 
CMP conceptual modeling, NetLogo simulations, and the 
interface of MILA. 

Constructed Models 
During engagement with MILA, students produced 
models that can be described as retrospective and 
explanatory. Students started from an observable 
phenomenon, the aforementioned fish kill, and recounted 
a series of events that led to that result. Causal 
relationships were captured throughout the model, but 
only those that lay directly in the causal path leading to 
the observed phenomenon, and only in the specific way in 
which the chain occurred in the phenomenon. For 
example, one team modeled multiple feedback cycles to 
explain the phenomenon. In their model, a heat spike 
caused algae populations to grow out of control, then die 
off due to a lack of carbon dioxide to breathe and a lack 
of sunlight to produce energy (due to the thick algae 
clouding the lake). This led to a spike in algae-
decomposing bacteria which suddenly had an ample food 
supply, as well as a drop in the population of oxygen-
producing algae. These bacteria, then, consumed an 
enormous quantity of oxygen, causing the fish population 
to suffocate. This led to more dead matter in the lake, thus 
encouraging more bacteria reproduction, exacerbating the 
fish kill further. 

This model presented a complete explanation for why and 
how the fish kill occurred in the lake; however, the model 
only captured a retrospective view of the series of events 
applicable in this situation. Although students could use 
mental simulation to imagine the results, these models do 
not explicitly capture dynamic relationships in the system, 
and thus are of limited use describing what would have 
happened under different circumstances. For example, 
had the temperature changed more slowly and allowed the 
algae to grow steadily rather than exploding and 
plummeting in quick succession, could the lake have 
sustained the increased algae population? Would the 
increased algae population have produced sufficient 
oxygen to allow the fish population to grow and thrive as 
well? Thus, models constructed with MILA were 
explanatory and retrospective. 

With MILA–S, students constructed fundamentally 
different kinds of models that aimed not to capture the 
series of events that occurred, but rather to capture the 
dynamic relationships that gave rise to that series of 
events. Thus, the models constructed in MILA–S invoked 
a layer of abstraction and generalization away from the 
models constructed in MILA. For example, one team 
constructed an initial model that captured the three 
relationships they considered most pertinent in the 
system. These students already believed that the fish kill 
was caused by a sudden drop in oxygen, suffocating the 
fish. Thus, their first relationship was that fish consume 
oxygen. They similarly knew that oxygen is produced 
from sunlight, and thus included the relationship between 
sunlight and oxygen. These connections differed 
fundamentally from those modeled in MILA, such as 
accounting for trends in multiple directions (i.e. oxygen 

	
Figure	3:	Scheme	of	translation	of	CMP	conceptual	models	into	
NetLogo	agent-based	simulations.	

	



production varies directly, up or down, with sunlight 
presence). The model was not constructed to directly 
explain the phenomenon, but rather to provide the 
relationships necessary so that under the right conditions, 
the phenomenon may arise on its own.  

Model Construction Process 
During prior engagement with MILA, we observed 
students engage in the model construction cycle. Model 
construction occurred as students constructed their initial 
hypotheses, typically connecting only a cause to a 
phenomenon with no mechanism in between. This was 
then used to guide investigation into other sources of 
information such as observed data or other theories to 
look for corroborating observations or similar 
phenomena. The conceptual model was then evaluated 
according to how well it matched the findings; in some 
cases, the findings directly contradicted the model, while 
in other cases, the findings lent evidence or mechanism to 
the model. Finally, the conceptual models were revised in 
light of this new information (or dismissed in favor of 
stronger hypotheses, reflecting revision at a higher level) 
and the process began again. 

During engagement with MILA–S, however, we observed 
a profound variation on the model construction process. 
The four phases of model construction were still present, 
but the nature of model use and evaluation changed. 
Students started by constructing a small number of 
relationships they believe to be relevant in the system, the 
model construction phase. After some initial debugging 
and testing to become familiar with the way in which 
conceptual models and simulations fit together, students 
generated simulations and used them to test the 
implications of their conceptual models. After running the 
simulation a few times, students then evaluated how well 
the results of the simulation matched the observations 
from the phenomenon. This evaluation had two levels: 

first, did the simulation accurately predict the ultimate 
phenomenon (in this case, the fish kill)? Once this basic 
evaluation was met, an advanced evaluation followed: did 
other variables, trends, and relationships in the simulation 
match other observations from the phenomenon? For 
example, one team successfully modeled a fish kill by 
causing the quantity of food available to the fish to drop, 
but evaluated this as a poor model nonetheless because 
nothing in the system indicated a disturbance to the fish's 
food supply. Finally, equipped with the results of this 
evaluation, students revised their models to more closely 
approximate the actual system. 

Thus, students still constructed and revised conceptual 
models, but through the simulation generation framework 
of MILA–S, the model use and evaluation stages took on 
the practical rigor, repeatable testing, and numeric 
analysis facilitated by simulations. Rather than 
speculating on the extent to which their model could 
explain a phenomenon, students were able to directly test 
its predictive power. Then, when models were shown to 
lack the ability to explain the full spectrum of the 
phenomenon, students were able to quickly return and 
revise their conceptual models and iterate through the 
process again. 

Challenges 
MILA–S provided an effective framework at simulating 
the interactions between a small number of components 
and their variables. However, some of the systems that 
students were examining involved several more 
components than these, along with multiple relationships 
between their variables. Upon reaching a level of 
complexity slightly higher than shown in Figure 2, the 
NetLogo simulations generated by MILA–S stopped 
providing meaningful feedback to students. The number 
of agents would explode based on the multiple 
consumption and production relationships at play, 
slowing the simulation down and rendering the 
visualization elements indistinguishable. Repeated runs of 
the same simulation with the same initial parameters 
sometimes generated wildly varied responses as the 
number of agents and methods exacerbated the influence 
of random chance on the simulation's outcomes. 

It is likely that with proper parameters and relationships, 
MILA–S could still have generated usable simulations 
that gave meaningful feedback. The challenge was that 
most executions of the simulations gave limited or no 
feedback as to the changes that needed to be made to 
more closely replicate the phenomenon. The simulations 
contained too much noise to facilitate the process of 
model evaluation and revision. 

 

 

 

	
Figure	4:	Long-durable	stability	of	agent-based	simulations.	



FROM SCHOOL TO COLLEGE 

In preparing MILA−S for use in college-level 
introductory biology classes, three factors are especially 
noteworthy. First, compared to middle school students in 
US in the 11-14 years range, college level students 
typically are 18-22 years old and therefore are cognitively 
more developed. Second, college-level students typically 
have more prior knowledge both about the systems of 
interest and the process of scientific modeling. Third, 
compared to middle-school science, college-level biology 
classes typically entail modeling of more complex 
ecological systems, with larger numbers and variety of 
species and larger number and range of interactions 
among them. Thus, to deploy MILA−S in college, we 
need to extend and enhance its capability in several ways. 

Long-Duration Stable simulations 
While ecological phenomena do not always sum up to a 
neat mathematical equation, there are emergent behaviors 
in an ecosystem that one comes to expect. For example, 
when a simple food chain ecosystem is modeled, one 
expects the resultant simulations to show the fluctuating 
predator-prey population cycles that can be 
mathematically modeled by the Lotka-Volterra equations. 
At the time of initial experimentation, it was difficult to 
get MILA−S to produce this expected behavior when 
simulating a food chain consisting of all biotic 
populations. In order to correct this, the concept of a 
“base population” was added to the conceptual model. 
This base population was implemented in NetLogo as 
patches instead of turtles like every other component. We 
found that in order to produce the cyclic behavior of 
predator-prey relationships the organism present at the 
bottom of the food chain needed to have the ability to 
repopulate and keep its population in tact without relying 
on it interacting with other members of the population. 
Essentially, once the base population could produce 
agents without interacting with other members of its 

species the simulations immediately stabilized and could 
be created much faster and with more success than 
experimenting with the organism’s parameters. Figure 4 
illustrates the stable results of this implementation. 
 
Spatial Simulation 
In addition to simulating food chain ecology and simple 
relationships between biotic and abiotic organisms, we are 
integrating spatially explicit relationships into the 
simulation. Integrating a spatial dimension allows users to 
model where organisms are allowed to exist and how they 
interact or are affected by their habitat.  These simulations 
could be used to explore phenomena such as boundary 
effects, migration patterns, and urbanization effects. 
Figure 5 illustrates an initial expansion of the CMP 
language to include spatial regions such as meadow and 
pond, and spatial relations such as adjacency. 

More Powerful Agent-Based Simulation Engines 

As we noted above in the discussion on deploying 
MILA−S into middle school classroom, as the number of 
species and the variety of interactions among the species 
in the conceptual model increased, the NetLogo 
simulations became too slow to be useful.  This means 
that for college-level ecological systems we may need 
more powerful agent-based simulation engines. Thus, we 
are integrating another off-the shelf agent-based 
simulation engine called Repast Simphony  
(http://repast.sourceforge.net/) into MILA−S. We chose 
Repast Simphony because it is an open-source agent-
based simulation engine compatible with MILA−S, 
because it is similar to NetLogo in many respects but 
more powerful, and because it supports modeling of 
complex ecological systems. In the current version of 
MILA−S, we have partially integrated Repast Simphony 
into MILA−S; we are now testing the MILA−S’ compiler 
for translating CMP conceptual models into the 
simulator’s constructs. 

	
Figure	5:	Enhancement	of	the	CMP	conceptual	models	by	adding	spatial	relations.	

	



CONCLUSIONS 

Cognitive systems research on qualitative reasoning 
typically focuses on qualitative modeling and qualitative 
simulation. Thus, in a parallel project on evaluating 
conceptual designs early in the design process, we have 
developed a technique for qualitative simulation of 
functional models of design concepts (Wiltgen & Goel 
2016). In contrast, agent-based simulations are especially 
appropriate for modeling ecological systems. The 
question then becomes how can we use agent-based 
simulations in conjunction with qualitative modeling? 

This paper has described the design of an interactive 
system called MILA−S for generating agent-based 
simulations from qualitative conceptual models of 
ecological systems. MILA−S not only enables 
construction of causal models of components and 
mechanisms in an ecosystem, but it also takes as input the 
causal model and autonomously generates an agent-based 
simulation that shows the temporal evolution of the 
system according to the causal model. The user needs to 
simply use a visual syntax for generating causal models 
and the interactive tool automatically generates the 
corresponding simulation. Further, because the simulation 
directly corresponds to the causal model, the results of the 
simulation directly evaluate the model and point to the 
revisions needed to the model.  

Initial results from a pilot study with 50 students in a 
middle school provided preliminary evidence in favor of 
the hypothesis. Firstly, students approached the modeling 
process from a different perspective from the outset, 
striving to capture dynamic relationships among the 
components of the ecological system. These dynamic 
relationships then promoted a more abstract and general 
perspective on the system. Secondly, the process of model 
construction, use, evaluation, and revision presented itself 

naturally during this intervention, with the simulations 
playing a key role in supporting the cyclical process of 
constructing conceptual models.  

Compared to middle school students, college-level 
students typically study more complex ecological 
systems. In this paper, we present extensions and 
enhancements to MILA−S in preparation for deployment 
in college. In particular, we described three extensions to 
MILA−S. (1) The ability to generate long-duration stable 
simulations. (2) The ability to take spatial relationships 
into account in both the conceptual and simulation 
models. (3) The ability to generate simulations that can 
capture a range of interactions in a variety of species. The 
next step will be to introduce MILA−S into college-level 
biology classes. 
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