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Abstract

The capability of determining the right physical action to
achieve a given task is essential for AI that interacts with
the physical world. The great difficulty in developing this
capability has two main causes: (1) the world is continuous
and therefore the action space is infinite, (2) due to noisy
perception, we do not know the exact physical properties of
our environment and therefore cannot precisely simulate the
consequences of a physical action.
In this paper we define a realistic physical action selection
problem that has many features common to these kind of
problems, the minigolf hole-in-one problem: given a two-
dimensional minigolf-like obstacle course, a ball and a hole,
determine a single shot that hits the ball into the hole. We
assume gravity as well as noisy perception of the environment.
We present a method that solves this problem similar to how
humans are approaching these problems, by using qualitative
reasoning and mental simulation, combined with sampling
of actions in the real environment and adjusting the internal
knowledge based on observing the actual outcome of sampled
actions. We evaluate our method using difficult minigolf levels
that require the ball to bounce at several objects in order to hit
the hole and compare with existing methods.

1 Introduction
One of the grand visions of Artificial Intelligence is to build
robots with similar everyday capabilities as humans, who
can live among us and assist us with many of our daily tasks.
There is a multitude of applications such as caring for the
sick, the young or the elderly or household robots that can
relief us from many of our daily chores.

In order to progress towards more capable and more
human-like robots, we need to develop methods and tech-
nology that allow robots to successfully interact with their
environment. It requires AI or robots to perceive their en-
vironment using their available sensors and to select and to
perform physical actions or a sequence of physical actions
that achieves a given task. Dealing with physical actions is
very hard for a number of reasons:
1. Since the available information about the environment is

based on perception, it will most likely be incomplete and
imprecise
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2. Since the world is continuous, there are typically infinitely
many different actions available, each of which could have
a different outcome. For example, the exact angle or force
that is used to interact with another object determines its
behavior.

3. The outcome of a physical action might be unknown before
executing it or before accurately simulating it.

Accurately predicting the outcome of physical actions is es-
sential for selecting the right action, but there are potentially
infinitely many possible physical actions to consider.

When we humans are faced with a “physical action se-
lection problem”, i.e., a problem that requires selecting a
physical action 1 that achieves the desired goal (out of an infi-
nite number of possible actions), we are very good at coming
up with a qualitative solution and with a qualitative predic-
tion of the consequences of an action. A qualitative solution
means that we can describe the physical action in words as
well as what we expect will happen as a consequence of ex-
ecuting the physical action. Based on these predictions we
can describe a physical action or action sequence that could
potentially achieve the goal. Whether it does achieve the goal
or not, we can only find out once we execute the action.

Physical action selection problems can come in many vari-
ants and it is not possible to formalize all of them as a single
meaningful problem that covers all cases. We have there-
fore selected one particular physical action selection problem
that is an actual real-world problem and that covers many
common aspects of physical action selection problems. We
call our problem the “Hole-in-One” problem in reference
to the problem in mini golf of identifying and executing a
shot that sinks the ball with this single shot: Given a static
environment of physical objects C (the mini golf “obstacle
course”), an object B (the “ball”) at start location S, and a
target location H (the “hole”), all of which we define more
precisely in section 3. Identify the force vector P (the “putt”)
that, when applied to B at location S, results in B reaching
the target H. The idea is that in order to achieve this, the
ball needs to bounce at several objects that are part of C
in order to reach H with only one shot. But which objects
have to be hit and in which order needs to be determined.

1An action has several parameters e.g. the exact angle and force
of a putt. Actions are different if their parameters have different
values
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Figure 1: (a) A real-world mini golf course (b) Illustration
of the problem domain in this paper. The goal region H is
the green region. The trajectory of B given by an identified
solution is shown as the sequence of red dots.

This is a major difference to papers in the literature who
study physical action selection of robots, some of which even
study minigolf (Zickler and Veloso 2009). Variants of the
hole-in-one problem occur frequently, not just in mini golf,
in Pachinko, in pool billiard, curling or in a multitude of
physics-based video games such as Angry Birds, but also in
many everyday situations. These variants can be in 2D or in
3D environments and involve gravity or not.

What these problems have in common is that there are
infinitely many possible force vectors. Once a force vector is
given and the physical setting, that is the physical properties
of all objects and the environment is exactly known, it is
possible to compute the exact trajectory of the ball and to see
if that force vector solves the problem. However, the task
we need to solve is the inverse problem and therefore much
harder. We have to identify a force vector out of infinitely
many possibilities that solves the problem. While a geometri-
cal or analytical solution of these problems is typically not
possible if the obstacle “course” is non-trivial, humans are
very successful in solving these kind of problems. We also
very much enjoy solving these problems, which is demon-
strated by the fact that they often occur in a game-like setting.
These problems become even harder to solve when we con-
sider that we usually do not know the exact physical setting.
We often only know what we can see and our perception is
thus the limiting factor in what we know about the physical
setting. Because of the uncertainty about the physical envi-
ronment, every potential solution to the problem needs to be
executed in the actual environment before we can be sure that
it is a solution. If it is no solution, we need to find ways of
adjusting it so that it will eventually lead to a solution.

In this paper we propose to solve this problem similar to
how humans are believed to be doing it: by a combination
of qualitative reasoning and mental simulation as well as
through a repeated process of limited sampling in the actual
environment, observation of the consequences and adjusting
our mental simulation. The method can solve even very
complicate instances of the hole-in-one problem, which we
demonstrate in Section 5.

2 Background
There are two key research streams in reasoning about phys-
ical systems, namely qualitative physical reasoning (Davis
2008) and simulation-based reasoning (Battaglia et al. 2013).
One goal of qualitative physics is to formalise the common-
sense knowledge (Kuipers 1989) about real-world physics
and solve physical reasoning problem within the framework.
The main advantage of qualitative physical reasoning is that
it can rapidly draw useful conclusions from incomplete in-
formation (Davis et al. 2013). However, these approaches
are often specific to a narrow domain and there have been
very few implementations of these theories. The most rel-
evant work in this field is (Forbus 1981) which proposed a
framework for reasoning about the motion of a 2D ball by
qualitative simulation. The rules used for state transitions
are based on qualitative process theory (Forbus 1984). While
most of the previous work focuses on representing physical
systems and describing (or predicting) consequences of ac-
tions, our method is solving a considerably harder problem
as it has to find applicable actions from the infinite action
space.

Simulation-based reasoning was inspired by findings in
cognitive psychology that mental simulation may play a pivot
role in intuitive physical reasoning (Craik 1967). Mental
simulation is viewed as a probabilistic simulation in which
inferences can be drawn over the principles of classical me-
chanics. The prediction power drops off drastically when
the model is inaccurate or the observation is radically incom-
plete. (Davis and Marcus 2015) discussed the limitations of
the simulation-based reasoning methods. (Smith et al. 2013)
analysed how humans make physical predictions about the
destination of a moving object in the simulated environment
where a ball is moving on a bumper table.

In robotics, there has been extensive research on motion
planning (Kumar and Chakravorty 2012) or manipulation
planning (Dogar 2013) For example, (Westphal et al. 2011)
uses qualitative reasoning for generating manipulation plans.
It models the spatial layout of objects using a spatial con-
straint network. The plan is found when there is a consistent
constraint network under the goal constraints. (Kunze and
Beetz 2015) combines a qualitative reasoning method and
physics simulations to envision possible effects of actions
when making a pancake. The actions and plans of making
a pancake seem hard-coded. Our problem is different from
most manipulation or motion planning problems where robots
can actively adjust their motion path while executing it. In
our case, we need to identify a single impulse that solves the
given task and no further adjustments are possible. Our task
is not easier compared with those complex robotic tasks. For
example, a recent paper (Wolter and Kirsch 2015) developed
a framework aiming at combining learning and planing and
employing qualitative reasoning and linear temporal logic.
They used their framework to solve a “ball throwing” prob-
lem which is a simplified version of our problem. Their
problem is to throw an object to hit a fixed goal location.
Their approach does not plan the path, instead, it only looks
at the final result (e.g., is the ball left or right of the goal) and
adjusts the initial action accordingly. There has been some
work on teaching robots to play mini golf. (Khansari-Zadeh



et al. 2012) proposed mathematical models for learning con-
trol parameters of hitting motions while they do not focus on
solving the planning problem. (Zickler and Veloso 2009) pro-
posed a framework for physics-based planning that integrates
high level behavior planning and lower level motion planning.
The method uses random-based sampling to find solutions.
In the evaluation, we will show a comparison between our
method and a random-based sampling method.

3 Modeling the Physical Environment
In this paper, we choose the following idealisation of the
physical environment, which is often used in physics puzzle
games such as mini golf:
• The environment is a restricted 2D plane.
• Objects are 2D rigid bodies with polygonal or circular

shape.
• There may be a uniform downward gravitational force.
• Object movements and interactions obey Newtonian

physics.
• Physics parameters of objects and the environment remain

constant.
We call this environment PHYS2D. An instance of

PHYS2D, or a scenario is a tuple 〈E,O,P,T〉, where E is
the restricted plane where the objects are located, O a finite
set of static rigid objects O, each of which has a shape, a
location, an angle and a type, P is a set of physics parameters
that hold in the environment, such as gravity, and T is a set
of object types and their respective physics properties such
as mass and friction, or whether the object can move after
being hit or remains static. We assume that all objects are
initially static and stable under gravity.

Given such a scenario we can now apply physical actions
to it and define physical reasoning problems and tasks. A
physical action (short: action) can be applied to an object
O by exerting an impulse at a certain position p of the ex-
terior boundary of O (denoted as ∂O). An impulse is de-
fined as a pair (θ, µ) where θ ∈ [0, 2π) is the direction and
µ ∈ [0, µmax] the magnitude of the impact. µmax is the max-
imal magnitude allowed in the environment, both θ and µ
are continuous, therefore the number of possible actions is
infinite. An action, i.e., a triple 〈p, θ, µ〉 applied to O can
bring O into motion and, as an effect, can cause a chain of
new actions on other objects. We call the initial action a
direct action and the resulting new actions indirect actions.

While there are many possible problems that can be de-
fined in this environment, the problem we want to solve is
to identify a single action applied to a specified start object,
such that the action results in a specified goal region to be
hit by at least one of the objects. This problem is quite gen-
eral in the sense that it can be applied to various physical
games, such as computational pool (Archibald et al. 2010),
Angry Birds (Renz 2015) and digital curling (Yamamoto et
al. 2015). These games can have several objects that could be
used as start objects or have several goal regions (e.g. holes
in pool or pigs in Angry Birds) that the agent has to reach or
destroy.In this paper we assume there is only one start object
and one goal region. Despite this restriction, the problem
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Figure 2: (a) Scenario MINI7 (b) Triangulation of Mini7

is very challenging as there are many ways to use the chain
of indirect actions on intermediate objects to reach the goal
region after acting upon the start objects (see Example 2).
Furthermore there are infinitely many possible actions, each
of which might have a different outcome that needs to be
determined in advance. We call this physical action selection
problem the Hole-in-One problem.

Definition 1. (Hole-in-One)
Instance: An instance of the physical action selection

problem Hole-in-One is a tuple 〈E,O,P,T, B,H〉, where
we use a scenario of PHYS2D and determine a ball B ∈ O
as the start object and H as the target hole, a polygon in E
with a given location.

Solution: A solution is an action or putt P = 〈p, θ, µ〉 ∈
E × [0, 2π) × [0, µmax] applied to object B such that B is
delivered to the hole H as a consequence of the putt. To sim-
plify the problem, we fix p to be the centroid of B. Formally,
the problem can be described as finding a putt P such that
the forward model f w.r.t. scenario 〈E,O,P,T〉 induces a
continuous function R : [0, 1] → E, called the route R of
ball B given P , such that R(1) ∈ H .

As the forward model f is not explicitly given and the
search space is infinite, it is difficult to devise a systematic
method for Hole-in-One and to analyze its complexity.

Example 2. In Figure 2a the start object B is the red object.
The goal region H is the green region. Here, the solution
is to make the start object bounce several times to reach the
region. Since the action space to hit B is infinite, intelligent
search is required to solve the problem.

What we have described is the actual physical environment
we are dealing with. Solving physical action selection prob-
lems in this continuous environment is hard, but the problems
we are facing are even harder as we do not have complete
information about this environment. We only know what we
can perceive and perception is typically noisy. The method
we develop in this paper aims at solving these physical action
selection problems under noisy perception, which requires an
extended approach compared to having perfect information.

4 A Method for Identifying Physical Actions
The Hole-in-One problem distinguishes itself from common
AI planning problems in that its search space is infinite and
in particular the action space is continuous: Infinitely many



different actions can allow an object to take infinitely many
different paths. We propose the following method to solve
this problem:

• As input scenario, we take the information about the physi-
cal environment that we obtained through potentially noisy
perception.

• We first partition the free space of the given scenario into
finitely many triangular zones (Figure. 2b).

• We defined qualitative rules that describe the physics that
govern the transition of moving objects between the tri-
angular zones. We use these rules to generate sequences
of qualitative transitions between zones that coincide with
potential real paths a moving object can take to achieve
the goal. We call such a sequence a qualitative path.

• Once all qualitative paths are determined, we rank them by
their likelihood of being realized, before we try to realize
them (see Section 4).

• We now use a physics simulator based on our perceived
input scenario (that is the simulator does not know the
real environment, denoted as SimI ) to search for actions
that realize the qualitative paths in their ranked order, i.e.,
actions that allow objects to follow the qualitative paths.

• The solutions we obtain here are not necessarily solutions
in the real environment. Therefore, whenever we obtain a
solution in SimI , we immediately apply the solution to the
real environment. If it does not lead to a real solution, we
adjust the object information in SimI according to the ob-
servation made in the real environment before we continue
with the previous step. We will not adjust the triangulation
or the qualitative paths when we adjust objects in SimI .
We now describe these points in more detail.

Qualitative Rules for State Transitions
Given a instance, we triangulate the free zone (i.e., the space
not occupied with objects) of the scene using constrained
Delaunay triangulation (Shewchuk 1996) where the object
boundaries and the boundaries of E are part of the trian-
gulation. We then generate qualitative paths based on the
triangulation, that are sequences of qualitative states Q that
represent how objects can move through the triangulation.

Definition 3. The qualitative state 〈4, e,Θ, mt〉 of the ball
B is defined by

• 4: the triangular zone where the ball is located;
• e: the edge of4 the ball crossed to enter4;
• Θ: possible direction range when entering4 via e;
• mt: the motion type of the ball. We distinguish three types

of motions: FLY, BOUNCE, and SLIDE.

We obtain a qualitative path by expanding a qualitative state
Qi subsequently to a set of its next possible states Qi. Qual-
itative paths form a tree of states with branching factor at
most 6, two outgoing edges with three possible motion types.

The procedure for expanding a qualitative state Q1 =
〈41, e1,Θ1, mt1〉 to a state Q2 = 〈42, e2,Θ2, mt2〉 ∈ Q1

is as follows:

1. For each edge e2 of triangle41 with e2 6= e1 we determine
whether the current direction range Θ1 allows the ball to
move from e1 to e2.

2. If possible, we choose a motion type mt2 for the next state
according to a set of physical rules (see below).

3. We also set the zone of he next state to42 and set e2 and
determine Θ2 according to our rules.

In the following, we describe the rules that govern state
transitions between different motion types. Note that we
always write “ball” to denote the moving object, as that is the
moving object we use in the Hole-in-One problem. But the
rules equally apply to other moving objects, not just to balls.
Rule 1 (FLY→ FLY): This rule is triggered when the current
motion type is FLY and e2 is an edge between41 and42, as
the ball can keep flying after it entered42 through e2. Since
the ball has entered 41 through e1, the range of directions
that the ball can fly from e1 to e2 is limited. Let v be the ver-
tex of triangle41 that is shared by e1 and e2, and let v1 and
v2 be the remaining other vertices of e1 and e2, respectively.
To compute Θ2, we set first ΘRan as the range between the
direction from v1 to v and the direction from v to v2. Then
we can ensure that only free flying point-like objects with
direction θ ∈ ΘRan can fly from e1 to e2. To compute Θ2 we
also take the effect of gravity into consideration and apply
gravity to the current direction Θ1, obtaining a new range
ΘGra. Then the method computes Θ2 by intersecting ΘGra

with ΘRan. The next state 〈42, e2,Θ2, FLY〉 will be created
if Θ2 = ΘGra ∩ΘRan 6= ∅. •

The following two rules are triggered when mt1 = FLY
and e2 is a surface of an object. In this case the ball flying
to e2 can bounce. We assume it will be bounced back in the
reflection direction range with respect to the outward normal
of the surface. To this end, we determine Θ2 in the same way
as described in the (FLY→ FLY) rule.
Rule 2 (FLY → BOUNCE → FLY): This rule will always be
applied when Θ2 6= ∅. The method computes the range Θ↑
of bouncing directions using Θ2 and the normal vector of the
surface. and adds 〈41, e2,Θ↑, FLY〉 to Q1. •
Rule 3 (FLY→ BOUNCE→ SLIDE): In addition, there is the
possibility that the ball slides on e2 when the gravity force
is towards the e2, which assures that the ball can receive
support from the surface, which we call the SLIDE condition.
If the condition hold, we add 〈42, e2,Θ2, SLIDE〉 to Q1. •

The following three rules are triggered when mt1 = SLIDE.
We assume that once the ball enters into the SLIDE motion,
it will keep sliding until it hits a “wall” or until the surface
cannot support it anymore. Let e1 be the surface on which the
ball is sliding, and e2 be the surface connected to e1 through
their common vertex.
Rule 4 (SLIDE → SLIDE): We add state
〈42, e2,Θ2, SLIDE〉 to Q1, where Θ2 is the direction
from the common vertex to the other vertex of e2. 42 is the
triangular zone to which e2 belongs. •
Rule 5 (SLIDE→ BOUNCE→ SLIDE): This rule applies if e2
forms a “wall” in front of the current direction. Specifically,
when Θ2 as defined in Rule 3 is between the surface e1 and



the surface normal, then the ball will bounce back and slide
on e1 in the opposite direction. •
Rule 6 (SLIDE → FLY): If e2 can neither give any support
to the ball nor allow the bounce, the ball will start to fly
from the end of e1. Hence, we modify the current state by
changing the motion type from SLIDE to FLY and apply the
FLY→ FLY rule to infer the next states. •

So far we have only considered changes to the state of a
moving ball, but whenever a moving ball bounces off another
object, the other object can start moving too (provided it is
a movable object). While this is not allowed in the Hole-in-
One problem where all objects remain static, we still add
this possibility for the sake of generality. This is covered by
the following rules.
Rule 7 (Hitting Movable Objects): For each edge e that be-
longs to a movable object we generate a state 〈4, e,Θ, FLY〉
where4 is the triangle in the free space that also has e as its
edge. This triangle is uniquely determined, as edge e repre-
sents a surface of an object that is shared by only one triangle
in the free space. Θ will be the same direction range as the
direction range Θ1 of the object that hit the movable object.
Should the SLIDE condition (see Rule. 3) apply, we will
also add a state with motion type SLIDE. We then continue
expanding each of the generated qualitative states using the
other applicable rules. •

Note that once an object starts moving, we would have to
adjust the triangulation as the free space changes. However,
in this paper we do not explicitly handle more complicated
cases where moving objects repeatedly interact. Instead, we
assume here that these cases are covered by the simulator
when trying to realize paths and leave more detailed rules
capturing this to future work should it be necessary.

Generating Qualitative Paths
To derive qualitative paths from the ball B to hole H ,
we starts with all possible initial states. An initial state
〈4ini, eini,Θini, mtini〉 of B is given as follows:
• 4ini: the triangular zone containing the centroid of B;
• eini: the surface on which B is located;
• Θini: possible direction range to reach the next edge.
• mtini: there will be at most four different initial states as
B can SLIDE on eini in two different directions or FLY to
each of the other edges of4ini.

We expand each initial state by successively applying all
applicable rules to determine possible successor states.
We stop expanding a state when it reaches the goal state
〈4H , eH ,ΘH , mtH〉 where eH is a surface of4H that con-
tains hole H . A qualitative path is a sequence of states from
an initial state to a goal state where the successor state of
each state is obtained by using our qualitative rules. We
record which rule is applied at which state in order to rank
qualitative paths.

Any qualitative path that does not lead to the goal state
will be deleted. We use the following rules to ensure that,
Rule 8 (Do not move through a smaller edge): Whenever an
object O is required to pass through an edge e that is smaller

than O itself, we remove any qualitative path that does not
include a bounce transition at e. •
Rule 9 (Limit the number of states): If a state is exactly the
same as a previous state (including the same direction range
Θ), we delete that qualitative path as it may generate infinite
cycles. If a qualitative path reaches a preset maximum of
states without reaching the goal state, we also delete it. •

Ranking Qualitative Paths

Before trying to physically realize the different qualitative
paths, we will rank them according to the likelihood of lead-
ing to a solution. The idea is to take into account the mag-
nitude of an impulse required to realize a qualitative path.
If a qualitative path is too long or involves many bounces,
which reduces the speed of the moving object, then the path
will be less likely to be realized. Therefore, we assume that
two factors play a role in ranking qualitative paths: the actual
length of a path and the number of bounces along the path.

Let be0, be1, . . . ben be the sequence of edges, where be0
is the initial edge from which B is launched, be1, . . . , ben−1
are all surfaces where bouncing takes place, and ben is the
entering edge of the goal state. Then the cost of a qualitative
path is given by

n−1∑
i=0

d(bei, bei+1) · (1 + γ)i, (1)

where d(bei, bei+1) is the Euclidean distance between two
edges and (1 + γ) with γ ∈ (0, 1) is a penalty term. The
penalty term penalizes the part of a qualitative path that
happens after each bouncing. Therefore, given two paths of
similar lengths, a path with less bounces will be preferred to
a path with more bounces. γ can be set to a smaller value
when the ball does not lose much kinetic energy after each
bouncing, and vice versa.

Realizing Qualitative Paths

In this section we describe how to use these qualitative so-
lutions to reduce the search space of finding a real solution.
Recall that a solution is a physical action, i.e., an impulse
imp := 〈θ, µ〉, on the centroid of ball B that delivers it to
hole H . The idea is as follows: for each qualitative path, we
sample possible actions using SimI within a range Θimp of
directions that can potentially realize the path. We cluster
qualitative paths that share similar direction ranges Θimp and
sample only within these shared ranges. (We mainly focus
on the direction parameter θ, as it has a larger effect on the
solution. For the magnitude µ of the impulse, we always
sample within its full range.) We also rank clusters by their
average costs based on the cost function (1). If we do not find
any action that can realize any qualitative path after going
through all the clusters, we discard less promising clusters
and restart sampling. A cluster is identified as less promising
when none of the sampled actions has achieved the different
bounces required to follow a qualitative path.
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Figure 3: Mini golf scenarios usually require several bounces.
(a) Scenario MINI6 and (b) Scenario MINI2 with identified
solutions

Testing Potential Solutions in the Real
Environment
The visual input to the internal simulation can be noisy with
imperfect perception. Therefore, applying an action in the
real environment may have a different outcome from that pre-
dicted by SimI . To deal with this, we progressively adjust
the internal simulation whenever a proposed action does not
lead to a solution in the real environment. This is done to min-
imize the difference between the outcomes. The outcome of
an action is represented by the sequence of triangular zones of
the qualitative path generated by that action. This qualitative
representation is less sensitive to visual noise compared with
using trajectory points which are highly affected by noise.
We use the Levenshtein distance (Levenshtein 1966) to quan-
tify the similarities between two sequences. Once our method
found an action that solves the problem in the internal simu-
lation, it will execute the action in the real environment and
observes the trajectory of the moving object. It then obtains
the sequence of triangular zones from the observed trajectory
and compares the sequence with its counterpart in the internal
simulation. If the edit distance between them is greater than
a threshold ε, the method will adjust the spatial configuration
of relevant objects to minimize the distance. The relevant
objects are the objects with which the moving object collided
in the both internal simulation and real environment.

5 Evaluation
We simulated the real environment using the Box2D
(www.box2d.org) physics engine. The method also uses
Box2D for its internal simulator SimI with an incomplete
knowledge of the real environment. We generated scenar-
ios that allow us to evaluate different aspects of our pro-
posed method. A scenario contains a set of movable and
immovable objects. Objects have three physical properties,
namely, density, friction, restitution. The goal region H is
specified as rectangular region that is initially away from
any movable object. An action is performed by exerting an
impulse (µ, θ), µ ∈ Iµ, θ ∈ Iθ on the centroid of B with
Iµ = (0, 5000] and Iθ = [0, 2π). A problem is solved when
H is contacted by B.

We first tested if our method can find different qualitative
paths. In Figure. 4a, one possible solution is to let B hit

(a) (b)

Figure 4: (a) Scenario S1 (b) An identified solution to S1

(a) (b)

Figure 5: (a) Groups of qualitative paths detected in S2 (b)
An identified solution to S2

the platform and fall to the green goal region. To realize
this path, one has to know how an object files under gravity.
To test the effectiveness of our clustering and ranking strat-
egy, we designed some scenarios that have many qualitative
paths that may lead to solve the problem. For example, in
S2 (Figure 5a), our method detected 595 qualitative paths
and divided them into 14 groups by their Θimp. The figure
illustrates four interesting groups of qualitative paths. Each
colored arrow represents a group of qualitative paths, and
shows the rough direction B takes. The four groups of paths
were ranked in descending order of average costs as: black,
green, red, blue. The blue group is ranked last because it
takes several long distance bounces. The black group is
ranked first because it suggests to hit the goal region via a
direct trajectory. However, the black group was identified as
an un-realizable group after a few sampled actions in the real
environment. We further created several mini-golf scenarios.
The scenario designs are inspired by the game levels of a
popular video game of mini-golf2. Unlike S1 and S2, there is
no gravity in these mini-golf scenarios. The scenarios usually
require more than 5 bounces to solve (e.g. see Figure. 3).

Dealing with Noisy Information To test the effectiveness
of our method with imperfect perception, we perturb the
visual input of a scenario by rotating each object at an angle θ
in radians. The angle is sampled from a zero mean Gaussian
with a variance σ ∈ {0.1, 0.2, 0.3}. The method uses the
perturbed visual input for its internal simulation and keeps
adjusting the angle of objects using the method described in
Section 4. Figure 7 shows a perturbed mini-golf scenario in
Figure 2a with σ = 0.3. It is clear to see that even a small
rotation will substantially distort the scenario.

We use each designed scenario as a template to automat-

2http://www.eivaagames.com/games/mini-golf-game-3d/
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Figure 6: Perturbed scenario MINI7 with σ = 0.3 and its
corresponding triangulation

ically generate scenarios for testing. Given a template sce-
nario, we randomly vary the spatial configuration of the ob-
jects. In the end, we obtained 72 levels. The proposed method
uses penalty term γ = 0.7. At each round, the method sam-
ples 200 impulses with θ ∈ Θimp, µ ∈ [0, 5000] for each
group of the identified qualitative paths.

We compare our method M1 with a solver M2 which uses
a goal-oriented sampling strategy. The sampling strategy of
M2 is similar to the one used in (Wolter and Kirsch 2015)
that adjusts actions according to the distance between the
final position of the ball and the target destination. Specifi-
cally, M2 evaluates an action using the minimum distance D
between the trajectory of any movable object and the goal re-
gion. The goal is to find an action with D = 0, which solves
the problem. M2 obtained trajectory points directly from the
actual environment (simulator), which are noise-free. Given
a problem,M2 performs several rounds of searching. At each
round, M2 makes several random trial actions in the actual
environment and selects the action that yields the minimum
D1. It then performs a local search around the action, and
picks the sample with the minimum D2 < D1 and repeat
the procedure until it finds a solution or reaches a cut-off
threshold. The evaluation result is summarized in Table 1. To
give an indication of how much our method can reduce the
sampling space, we show the proportion (AR) of the direc-
tion range of all qualitative paths to the entire range [0, 2π).
The actual solution space can be even smaller.

Summary of the Evaluation Our method outperformsM2

in all the scenarios. M2 is less efficient because there could
be many local optima in a problem. By contrast, our method
tries to realize each group of qualitative paths, which helps
to avoid these local optima. Consequently, it can detect more
different types of solutions (if there are any). It can still
effectively find solutions when the solutions are far apart and
potentially disconnected in the solution space. Qualitative
reasoning and triangulation can be achieved efficiently; it
takes on average 4 seconds to generate qualitative paths based
on a triangulation with around 60 zones. The reason why
no solution was found for all the ten MINI5T levels is that
the solution space of MINI5 is very small (see Figure 7a);
Varying positions of any object (especially the middle black
square) will eliminate these solutions.

Table 1: Results on the generated scenarios with imperfect
perception. SN: The number of actions made in the actual
environment until the first solution is found. *MINI1T: the
scenarios created based on MINI1. The average of AR and
respective SN are shown for those entries.

Scenarios AR SN(M1) SN(M2)
σ = 0.1 σ = 0.2 σ = 0.3

S1 0.05 421 621 829 4229
S2 0.05 375 837 837 >10000
MINI1 0.07 320 223 407 8529
MINI1T 0.05 371 332 319 426
MINI2 0.03 216 230 288 1736
MINI2T 0.04 32 23 36 280
MINI3 0.03 7 34 34 370
MINI3T 0.02 3 12 7 223
MINI4 0.02 133 509 967 987
MINI4T 0.04 42 93 172 254
MINI5 0.04 28 56 31 537
MINI5T N/A >10000 >10000 >10000 >10000
MINI6 0.04 68 199 208 2932
MINI6T 0.04 32 239 757 529
MINI7 0.05 41 77 236 3208
MINI7T 0.03 75 236 852 706

(a) (b)

Figure 7: (a) An identified solution to MINI5 (b) A randomly
generated scenario based on MINI5 using σ = 0.3

As the noise level increases, our method can still detect and
realize qualitative paths that lead to the goal. Such qualitative
paths have similar bounce sequences as their counterparts de-
rived from perfect triangulation. However, it takes on average
longer to detect a solution than with accurate perception. Be-
cause as the noise increases, accuracy of the triangulation is
getting worse and we generate more unrealisable qualitative
paths. There will be triangular zones where there is supposed
to be a surface while actually not or vice versa. These infor-
mation can only be potentially adjusted after making several
trial shots in the actual environment. Inaccurate perception
also affects the ranking of qualitative paths.

6 Discussion
The Hole-in-One problem is just one example of a physical
action selection problem, where a physical action has to be
determined that achieves a given goal in a physical environ-
ment. The difficulty of these problems lies in the fact that
the action space is infinite Another source of difficulty is that
the sequence of interactions with other objects as well as the
required number of interactions is unknown. The problem
becomes even harder when the exact physical properties of



objects and their locations are not exactly known.
Despite having considered only one example problem, the

method we developed to solve the Hole-in-One problem for
2D environments, under gravity and noisy perception is more
general. Other physical action problems in 2D environments
with different optimization criteria can be solved in a simi-
lar way, by triangulating the free space and by determining
qualitative paths between the triangles that obey the general
physics rules we defined. Our approach of sampling pro-
posed solutions in the real environment and adjusting our
internal knowledge through observations can be used for
other physical action problems.

While some of the techniques we use are not new, clearly
we have not invented triangulation and also sampling based
adjustment has been done before, what is novel in our work
is that we can solve arbitrary instances of a complex physical
action selection problem without hardcoding or predefining
actions or action sequences. We only define standard physics
rules that determine what changes can happen to an object
when it interacts with other objects or moves through empty
space. We can do this under gravity and under noisy percep-
tion, and we do it in a similar way to how humans supposedly
solve these kind of problems (Trial and error). One possible
extension of our work is to consider 3D environments, where
we could partition the free space into zones similar to how we
do it in 2D. Another possible extension is to lift the restriction
that all objects other than the ball are static.

7 Conclusion
We studied a realistic problem that contains some of the es-
sential components AI needs to successfully interact with the
real world: being able to predict the consequences of physical
actions and to select a physical action out of an infinite num-
ber of actions that achieves a specified goal. This problem
becomes even harder with noisy perception. The proposed
method involves a combination of qualitative reasoning and
internal simulation together with testing proposed actions in
the real environment and, if necessary, adjusting our internal
knowledge based on the new observations. While it is not
our intention to build a robot that becomes the new minigolf
world champion, we have seen in our experiments that our
approach is able to identify some remarkable shots involving
several bounces before achieving a hole in one. We are rather
interested in coming closer to being able to solve physical
action selection problems in general, particularly in noisy
environments. A solution to this problem will have a major
impact on AI and we believe that our approach forms a good
starting point to achieving that. As a side note, we just read
about golf playing robot LDRIC that managed to score a hole
in one. But of course (still somehow surprisingly) a hole
in one in golf seems to be easier to achieve than a hole in
one in a difficult minigolf level that involves several physical
interactions with other objects.
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