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Abstract. Learning by conceptual modeling is seeing uptake in sec-
ondary and higher education. However, assessment of conceptual models
is underdeveloped. This paper proposes an assessment method for con-
ceptual models. The method is based on a metric that includes 36 types
of issues that diminish model features. The approach was applied by edu-
cators and positively evaluated. It was considered useful and the derived
grades corresponded with their intuitions about the models quality.
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1 Introduction

Acquiring knowledge by constructing and using models is seeing uptake in sec-
ondary and higher education [5]. Recently, the approach is applied in a novel
way using conceptual models and accompanying tools, which allow modelers to
develop and simulate conceptual representations of dynamic systems [9, 2].

To implement modeling in classroom practice, formative and summative as-
sessment techniques [7] for evaluating learner-constructed models are indispens-
able [19]. Assessment is one of the four vital parameters for science education, to-
gether with curriculum, instruction and professional development [17]. However,
the assessment of conceptual models is underdeveloped, hampering its usage [4].
This means that there is a lack of criteria of what constitutes a good concep-
tual model. Consequently, it is difficult to give feedback to learners regarding
the models they create. The problem is even more pressing when learning is
self-regulated, and (groups of) learners develop their own unique models with
different viewpoints, conceptualisations, and levels of abstraction. Comparison
between learner-constructed models, and even comparison with a norm model,
becomes impractical and inadequate for assessment.

This paper focusses on how assessment of conceptual models can be per-
formed. The central idea is that learner-constructed conceptual models are rich
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representations, and as such provide evidence of learning. Particularly, the num-
ber of correctly modeled ingredients compared to the total number of model
ingredients (determined through a catalogue of modeling suboptimalities) can
function as a measure of the modeling competence of the learner. This evidence
can be identified, enumerated and scored by an assessment method and as such
provide the basis for feedback, both formative and summative, and for learners
and teachers. Hence, the question guiding the presented research is: What are
the main components of an assessment method which can successfully evaluate
diverse and different learner-constructed conceptual models?

2 Educational context and relevance

A scientific model is a construct that represents a system, and that consists of
a set of objects and their properties, and a number of law statements indicating
the behaviors of these objects in terms of their properties [3]. A conceptual model
is a special kind of model that represents the referents in the domain through
particular concepts as distinguished by the modeling language. For instance,
it represents an explicit conceptual account of the physical structural and the
behavioral features of the system under study, as well as the network of causal
relationships underlying the behavior of the systems [10]. Modeling competence
refers to the ability to construct and improve models [6].

Computer modeling is widely advocated as a way to offer students a deeper
understanding of (complex) systems [14]. Consequently, the need for learners to
master modeling competencies, e.g. being able to perform proper cause-effect
reasoning. However, acquiring this competence is not so easily accomplished.
Modeling is complex and both teachers and learners need to be well supported
in order to successfully engage in modeling activities [18].

Learning by modeling is a process of engaging learners in (co)constructing
models to gain understanding of systems. It is intrinsically related to the con-
structivist approach to teaching and learning, which is based on the idea that
learners, through the use of the appropriate tools, construct their knowledge
through building artifacts, here conceptual models. These artifacts encompass
evidence of knowledge and skills on behalf of the learner and as such are rich
sources of information of their modeling competence.

A model assessment instrument could thus provide valuable support for all
stakeholders. However, well-suited methods for assessing conceptual models are
sparse [13]. Some of the existing approaches use norm models [12,18]. That is,
the learner-constructed model is compared to a norm model and then scored.
However, such approaches do not provide tools that systematically address de-
viations in learner-constructed models. Deviations that sometimes are erroneous
but often also valuable variations on the norm. Moreover, in the context of self-
directed learning activities, learners vary on topics, levels of granularity, perspec-
tives and assumptions taken, etc., leading to a significant yet natural variation in
the models constructed, which makes the a priory construction of norm models
impractical (if not impossible).



Some other approaches use open-ended techniques addressing the model as a
whole and evaluate paper-based models (drawings) [1]. The open-ended methods
score the models on very general features, such as comparison and abstraction,
while drawings models are not dynamic by nature. Both are limited evaluation
procedures by design. Important details may be overlooked by the assessor and
the scoring may end up being based on irrelevant or incorrect evidence.

In summary, assessment of learner-constructed models is important, yet us-
able methods are sparse. This hampers the use of modeling as an educational
instrument. The work presented in this paper addresses the problem, particularly
concerning the assessment of conceptual models.

3 Conceptual models and assessment needs

Our research addresses science education and particularly the challenge of mak-
ing learning by modeling common practice in secondary education. We focus
on conceptual models (as opposed to numerical) because they allow learners to
directly interact with vocabulary that is necessary for the conceptual under-
standing they need to acquire. As a modeling tool we use DynaLearn [2], which
has been used successfully in different educational settings as a workbench for
learners to develop their understanding of how systems work (cf. [15]). The full
workbench provides a sequence of workspaces with increasing complexity that
facilitates a stepwise approach toward developing conceptual modeling expertise
(for details see [11], Ch. 3 & 4).

3.1 Learner-constructed models - Identifying suboptimalities

Consider the learner-constructed model shown in Fig. 1. It was created during
a course on conceptual modeling, within an environmental science bachelor, in
which learners worked through a series of modeling assignments using DynalLearn
(Learning Space 4, L.S4). For the final, inquiry-based assignment, learners were
asked to choose a system based on their interest, pose a question about that
system and develop a model that answers this question. There were no norm
models. The only constraint was that at least two processes causing change in
the system were modeled. The learners worked in pairs. Model assessment in the
context of such a self-regulated learning activity is quite a challenge.

Let us start by interpreting the domain details shown in the diagram. The
model represents a field of quinoa being irrigated using salt water. The amount
of water absorbed by the quinoa is determined by the concentration of salt in
the roots of the quinoa and the salinity of the earth near the roots of the quinoa.
As water is absorbed, the quinoa grows and the yield increases.

There are no major issues with the representation of the physical structure of
the system, although Seeds (and Saponin) can be considered superfluous. Quan-
tities, on the other hand, can be improved. Volume of Salt water is positively
influencing Soil saturation. However, causal dependencies of type I- or I+ are



used for processes, while in the model the dependency seems to be a propor-
tionality, that is P- or P+. Hence, this can be considered an incorrect causal
relation (issue #20%) in the model. However, the model makes more sense if the
volume quantity is interpreted as the irrigation process. Therefore, this issue is
considered to affect the correctness of the model.

Quantity Root zone salinity refers to a mixture of notions including an entity
and a quantity. As a result, it can be conceptually decomposed (issue #9). The
simplest solution is to rename the quantity Salinity. Similarly, Root salt concen-
tration can be conceptually decomposed (issue #9). The details in the model
representing the physical structure of the system can be augmented by explicitly
modeling the roots of the quinoa and indicating that these roots contain salt.
This salt entity should have a quantity concentration.

The quantity spaces of Root salt concentration and Root zone salinity can
be improved. There is no clear distinct behavior associated with reaching the
landmark Boundary (issue #14). Consequently, this value and the value Higher
can be removed. Secondly, the value Higher is vague (issue #15). That is, it is
context dependent (higher compared to what?). Renaming this value to whatever
happens above the value Boundary, or removing the value, would resolve it.

Causality has 2 issues. First, quantity Root zone salinity is affected by both a
positive influence (from Water uptake) and a positive proportionality (from Soil
saturation). Mixing causality types is incorrect (issue #23). Either a quantity is
affected by a process directly, or change propagates to this quantity. In this case
the proportionality should be removed. Second, when there is no more water in
the soil, there can be no more water uptake (which is modeled using a value
correspondence between the magnitudes Zero of Water update and Zero of Soil
saturation). However, for this to occur, Water uptake should decrease as Soil
saturation decreases. This can be modeled using a positive proportionality from
Soil saturation to Water uptake. This is missing in the model (issue #21).

There are 4 issues with inequalities and correspondences, all resulting in in-
consistencies (issue #24) when simulating: value correspondence from Volume of
Salt water to Soil saturation, from Volume of Salt water (derivative) to Soil sat-
uration (derivative), and the two correspondences from Water uptake to Growth.

Finally, simulation has 2 issues (Fig. 2). First, quantity Soil saturation has
no value (issue #32). Second, quantity Root salt concentration has the value
Plus and is decreasing in state 3, but never reaches Zero. This is a so-called
dead-end (issue #34), caused by an inconsistency.

4 Instrument for assessing conceptual models

Within the conceptual modeling community, there is the belief that 7(...) a
conceptual model can only be evaluated against people’s (tacit) needs, desires
and expectations. Thus the evaluation of conceptual models is by nature a social
rather than a techmical process, which is inherently subjective and difficult to

3 Our method identifies 36 issue types, each with a unique number (see Section 4).



formalise” [16]. We argue that it is possible to elevate model assessment from
being a social process to one that is largely standardized and objective.

Our approach is based on the notions of verification and wvalidation. Verifi-
cation involves determining whether a product satisfies the conditions defined
before development [21]. For a software program, knowledge base, or scientific
model, such conditions typically include adhering to the syntactical and seman-
tic requirements of the formalism used to develop the product. By contrast,
validation determines whether the product performs adequately for its intended
purpose and is satisfactory for the end user. As such, verification can be con-
sidered the assessment of internal (or internalized) quality characteristics, while
validation tests external (purpose-oriented) quality characteristics [16].

Appraising internal quality characteristics (verification) should be an objec-
tive task. For example, conceptual models that allow for inferences (e.g., sim-
ulation) have an internal logic that imposes constraints that can be checked
automatically. By contrast, validation is more subjective as a result of being
domain and goal dependent. For example, different experts may disagree on
whether a model is a correct domain representation [20] and can cite different
resources to support their case. Here, we focus particularly on verification.

We propose model features that attest to the quality of a model (Table 1).
These features are categorized into two verification categories. First, formalism
features apply only to conceptual models developed in formalisms that allow
for inferences, such as DynaLearn [2]. These features can be assessed using the
internal logic of the formalism (e.g., consistency). The second category, domain
features apply to conceptual models generally, and rely on the human interpre-
tation of the model to be assessed. For example, the model feature conformance
to ontological commitments requires that a referent in the domain is represented
using the correct model ingredient in the formalism (e.g., biomass should be
represented as a quantity). We claim both features can be checked objectively.
Algorithms can be created to automatically detect them and suggest corrections.

Next step is to determine which model characteristics can be used to actually
measure the quality of a conceptual model in terms of formalism and domain
features. Correctness, completeness, and parsimony have been proposed as such
quality characteristics (e.g. [20]). Correctness indicates that a model is free from
errors. Completeness means that everything of relevance is included in the model.
Parsimony implies that the model does not include redundancies. The following
sections identify model features that attest to these quality characteristics.

4.1 Formalism-based features

Consistency is a prerequisite for the correctness of a conceptual model, and re-
quires that ingredients in the model do not contradict each other (in terms of
the possible inferences). For example, a quantity cannot be increasing and de-
creasing at the same time. No unassigned variables is a model feature that is
important for the completeness of a model. An unassigned variable after reason-
ing (e.g., simulation) is an indicator that information in the model is missing
to allow a particular reasoning step to succeed. Reasoning relevance means that
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Fig. 1. Learner-constructed DynalLearn [2] model, using learning space 4, modeling the effects of watering quinoa using salt water.
The amount of water absorbed (Water uptake, WU) by the quinoa is determined by the concentration of salt in the roots (Root salt
concentration, RSC) of the quinoa and the salinity (Root zone salinity, RZS) of the earth near the roots of the quinoa (RSC — RZS =
WU). As water is absorbed, the quinoa grows (Water uptake I+ Growth) and the yield increases (Growth P+ Yield). Particularly
well-modeled is the so-called equilibrium seeking mechanism that determines the uptake of water, which consists of two negative feedback
loops. The water uptake (if Water uptake = Plus) decreases the salt concentration in the roots of the quinoa (I—), and increases the
salinity of the soil surrounding the roots (I+). The water uptake decreases as the salt concentration in the root decreases (P+), and the
water uptake also decreases as the salinity of the soil surrounding the roots increases (P—). Note, the layout has been changed by the
authors. The model issue numbers (verification) and the validation issues (A: correctness, C: parsimony) are indicated in dashed boxes.
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Fig. 2. The state-graph (4 connected circles) and value history (7 squares) of the quinoa
model (Fig. 1). The model issues (#32 and #34) are indicated in dashed boxes.

Table 1. Model features that attest to quality characteristics of verification categories.

Verification Quality Model
Category Characteristic Feature
Correctness Consistency
Formalism Completeness No unassigned variables
Parsimony Reasoning relevance
Conformance to ontological commitments
Correctness
Falsifiability
Domain Conceptual decomposition
tati Completeness
representation No missing representations
No repetition
Parsimony

No synonyms

each of the elements in the representation should have a function in terms of the
reasoning. If not, the ingredient is superfluous and the model not parsimonious.
For example, including a quantity without relating it to other quantities.

4.2 Domain representation-based features

Two domain features contribute to the correctness. Conformance to ontological
commitments indicates that referents in the domain are represented using the
correct model ingredients. For example, biomass being represented as an entity
is an example of a type error. Falsifiability is the property of a claim, hypothesis



or theory, to be proven false if the ’outcome’ cannot be observed in reality. A
conceptual model is falsifiable if its simulation results can be shown to be false
through comparison with observations. Using vague values, such as ’small’ or
large’, is an example of what makes a model unfalsifiable, as it becomes unclear
what observations would conflict with the model’s simulation results.

Two domain features contribute to completeness. Conceptual decomposition,
which can be called the ’single concept per model ingredient rule’, states that
model ingredients that represent aggregated concepts should be broken down
into multiple ingredients. For example, the use of quantities Water temperature
and Air temperature can be an indicator that Temperature is a missing indepen-
dent model ingredient that should have its own representation. As a guideline,
a model ingredient can be considered conceptually decomposed when the rep-
resented concept can be found in an encyclopaedia, dictionary or glossary. No
missing representations means that referents that are important in the domain
are represented.* For example, given that Mortality and Population size are
represented, there has to be a causal relation between these quantities.

Two domain features contribute to parsimony. No synonyms means that a
domain concept, such as natality, should only be represented once, and conse-
quently identified using a unique term. Hence, a model in which both Natality
and Birth rate occur breaks this rule. Thesauri can be helpful in determin-
ing whether two terms are synonyms. No repetition indicates that there are no
reoccurring arrangements of related ingredients. Such arrangements should be
represented once and reused throughout the model (only at learning space 6 [2]).

4.3 Assessment metric

We have developed a best practice for conceptual modeling in the form of a
catalogue of 36 modeling issues, checks to detect them, and modeling actions to
ameliorate them (available via ([11] Ch. 5 (p. 99) and App. A.1 (p. 201), section
3.1 gives examples). Each of the issues affects one or more of the model features
and thus the overall model quality. The issues are categorized based on whether
they affect particular model ingredients, namely (¢) Structure, (i4) Quantities,
(7i7) Quantity spaces, (iv) Causality, (v) Inequalities and correspondences, (vi)
Model fragments (only at learning space 6), and (vi¢) Simulation results. For
instance, issues #14 en #15 (see Section 3.1) both affect Quantity spaces. Next,
we have established a metric that reflects a model’s overall quality, based on the
best practice (Table 2°). The quality metric results in a score between 0 and
100, which, when interpreted as a percentage, can be converted to grades.

How particular assessment categories are weighted is subjective. To minimize
the potential for contention about the overall quality metric, we take the position
that 50% (or more) of the overall quality measure should be based on objective
criteria (hence verification). The other half of the weight is meant for model
validation and is equally distributed between how well the model functions as

4 May contribute to internal and external characteristics. Here the focus is on internal.
® Validation is not addressed in this paper. It is assessed using a rubric, see [11].



Table 2. Model assessment categories and weights.

Assessment categories Subcategories Weight
Structure 10.00%
Quantities 5.00%
Quantity spaces 5.00%
Verification: C . 1 o
Model issues (50%) ausality 0.007%
Inequalities and correspondences 5.00%
Model fragments 5.00%
Simulations 10.00%
Correctness 10.00%
Validation: adequate domain rep-
resentation for goal (25%) Completeness 10.00%
Parsimonious 5.00%
Validation: Layout of the model 5.00%
Communication (25%) Documentation 20.00%

a domain representation, and how well the model suites communication. Of
course, when deemed appropriate users can change the distribution emphasizing
different aspects of conceptual modeling for a particular assignment.

Given the proposed weights, the metric should reflect both those things that
have been done correctly and the errors that have been made, as learners need
to learn both from their errors, and be motivated by those aspects of modeling
that they have done correctly. This results in the following calculation (shown
for the Structure ingredients):

#entity + configuration definitions — #structure issues
#entity + configuration definitions

Structure score = 100 x

When applying the metric, something is counted as an issue if it requires a
single correction. As such, repeated reuse of an entity that is not conceptually
decomposed counts as a single issue. However, repeated issues of the same type
are counted as individual issues. Also, mistakes in smaller models are penalized
more heavily, compared to mistakes in larger models. This is done by basing the
scores on the ratio between the correctly modeled part and the whole model.

When all the steps needed to grade a model have been taken, the final
score can be calculated. For the model in Fig. 1, the results are as follows:
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The weight for model fragments (not available in LS4) is distributed over the
other verification subcategories (except inequalities and correspondences), hence
11 instead 10%, 6 instead of 5%, etc. The causality score is adjusted because a
causal relation was missing (issue #21, Section 3.1). Consequently, a causal re-
lation is added to the total number of Causality (10+1). Similarly, mistakes
as subtracted: Quantities 8-2 (2x issue #9), Quantity spaces 4-2 (issue #14 &
#15), Causality 11-2 (2x issue #23), Ineq. and corresp. 7-4 (4x issue #24), and
Simulation (3-2) (issue #32 & #34).

Validation is not discussed here. However, as mentioned before, correctness,
completeness, parsimony, layout and documentation are graded using a rubric.
The results are shown above, RHS. The final score is 73.3.

5 Evaluating the assessment method

A pilot study was conducted with four evaluators who used the instrument to
grade 34 models submitted by the student pairs in the course (two evaluators
graded 9 models). The pilot focussed on whether the grades derived using the
assessment method are comparable to grades that evaluators proclaim a model
deserves. To this end, before having graded any models, the evaluators were
asked to intuitively grade one set of models assigned to another evaluator®. The
instruction was to analyse each model for 5 minutes, write down the grade, and
proceed to the next model.

The agreement between the intuitive and actual grades was calculated. For
this the different evaluators are assumed equal, and therefore all assessment
method grades are considered of one evaluator (34 grades), and all intuitive
grades of another (34 4+ 10 = 44 grades) (data available via [11] Ch. 5, p. 140).
Typical statistical methods for inter-rater agreement (Cohen’s kappa and Fleiss’
kappa) cannot be used as they require a fixed number of mutually exclusive
categories. IntraClass Correlation (ICC) and the Concordance Correlation Co-
efficient (CCC) can be used. Both were calculated, and both indicate strong
agreement of about 0.89 (r/¢C = 0.887, 99%-confidence interval: 0.765 < r{¢¢

5 One evaluator coincidently graded 2 sets.



< 0.947, r¢CC = 0.885, 99%-confidence interval: 0.767 < r¢“C < 0.945). Sug-
gesting the method’s grades are acceptable.

Evaluators were able to detect model issues easily and only had difficulty in
understanding one issue (#9. Ambiguous process rate quantities). This suggests
that the assessment method is understandable and usable for evaluators. The
evaluators required about 45 minutes per model to derive grades. As the model
contributed 40% of the final grade, 45 minutes was considered reasonable.

6 Conclusion and discussion

Assessment of learner-constructed models is of great importance for effective
development of the modeling competence on behalf of learners, and enabling
learning by modeling as common practice in classrooms. Yet, ready to use as-
sessment methods are sparse. We propose an assessment instrument based on a
set of model features that attest to the quality of conceptual models. The model
features address verification, and are categorized as formalism and domain fea-
tures. The former apply only to conceptual models that allow for inferences,
while the latter apply generally. The model features are further categorized as
attesting to the quality characteristics correctness, completeness and parsimony.

A pilot study using the assessment method suggests that the derived grades
correspond to evaluators’ intuition of what a model is worth. The assessment
method proved understandable, and the time required to apply it is considered
reasonable. A listing of all the issues in a model serves as both an argument why
a particular grade was given and as valuable feedback for learners.

As ongoing research we are investigating how the presented approach can be
used as a real-time operating instrument, particularly for formative assessment,
which requires automated detection of modeling issues. When issues are detected
automatically, feedback may also be automated, but can also be left to the
teacher. Another interesting future challenge would be to extend the current
approach to the assessment of models created by domain experts, such as [8].
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