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Abstract 

In DynaLearn, semantics of the QR models ingredients is made explicit by 
representing them as terms in ontologies. That easies the task of exploring the 
knowledge contained in the models, enabling rich comparisons among them. The 
facts that the user explicitly represents in the model constitutes the asserted 
ontology. Nevertheless, logical rules can be applied to these facts in order to 
extract other knowledge (inferred facts) that was not made explicit by the modeller. 
Taxonomical reasoning techniques can make emerge these inferred facts. In the 
Semantic Technologies module in DynaLearn, the exploration of taxonomic 
structures and the application of taxonomical reasoning techniques play a major 
role.  

This document describes the task of integrating taxonomic reasoning in DynaLearn 
in order to enrich the results presented to users by discovering additional semantic 
information that is not explicit in the QR models initially. This enables: (1) a better 
identification of similar terms between models, which directly benefits feedback and 
collaborative filtering, (2) detection of inconsistencies between models, which 
enriches the information given to the user during semantic feedback, and (3) 
classification of instances during the grounding process. All these aspects are 
analysed in the document. 

As an addition, and to complete the cycle of WP4 deliverables, we annex in this 
document a description of the test plan that we created and applied regularly to the 
different components of the ST module. 
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1. Introduction 

According to the Description of Work (DoW), Task 4.4 is aimed to “integrate taxonomic reasoning in 
DynaLearn” in order to “improve the accuracy of the results presented to users, since they will allow 
relating topics that would not be considered as similar initially due to the absence of taxonomic models 
in the algorithms”.  

The Semantic Technologies (ST) module in DynaLearn enables the online storage of user QR models, 
for their later reuse as well as to serve as basis for semantic feedback generation [10,6]. In fact, at 
modelling time, comparisons with other QR models in the repository can be established in order to 
detect expert knowledge that can enrich or correct the current model. This is, precisely, the task of the 
semantic feedback component [10]. Furthermore, semantic feedback needs a previous task for 
selecting relevant expert knowledge from which the feedback will be extracted. This is the 
recommendation process [9].         

For the recommendation task in DynaLearn, Collaborative Filtering techniques are used to filter the 
information that is given back to the user when he asks for semantic-based feedback, primarily by 
selecting suitable reference models as source of that information. In general, Collaborative Filtering 
aims to provide personalized recommendations to users based on information obtained from similar 
like-minded users [1]. Such recommendation algorithms, largely discussed in [9], rely upon 
comparisons which are established between the user model and the knowledge contained in the 
semantic repository, in order to compute similarities that are used to select suitable reference models 
for generating suggestions. 

In the process of identifying relevant knowledge for feedback, the exploration of taxonomic structures 
and the application of semantic reasoning techniques play a central role. Precisely , the objective of 
this deliverable is to describe the application of taxonomic reasoning1 in different parts of the 
grounding, recommendation, and feedback process. As it is described in [9], our algorithms are not 
limited to user-based ratings, tags and keywords as other recommendation algorithms do, but also 
consider the knowledge characteristics of models created by users. This knowledge is described in 
terms of ontologies. Ontologies can express facts as logical statements and inference rules can be 
applied to enrich the asserted knowledge with new inferred one not explicitly declared in the user 
models. A very simple example is offered by transitive entailment: A subclassOf B and B subclassOf C 
⇒ A subclassOf C 

Despite the fact that the title of the document refers to collaborative filtering techniques, the application 
of semantic reasoning in DynaLearn has a larger scope and touches several components of the ST 
module:  

- Ontology mapping techniques. Ontology mapping techniques (see [6,10]) bridge across 
different knowledge models to enable the obtaining of relevant semantic feedback.  

- Semantic-based feedback. During the generation of semantic feedback, we can use the 
reference model to detect taxonomic errors in the learner model by applying semantic 
reasoning techniques. 

- Grounding. For Learning Spaces 1 to 5, hierarchy of the entities is not explicit and supertypes 
are hidden, which hampers the semantic reconciliation between models required to enable 
recommendations and feedback. There are certain cases in which the mechanisms we used 

                                                            
1 We use taxonomic reasoning and semantic reasoning in an interchangeable way along the document.  
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for multiword grounding [6] can be used to infer common types of independent instances, 
which lead to a better modelling scheme. 

The application of lightweight semantic inference in the above scenarios results is a richer 
recommendation and feedback, as much extra knowledge relevant to the user is discovered during the 
process. 

The rest of this document is organised as follows. In Section 2, inference during the ontology matching 
process is presented. Section 3 focuses on the role of taxonomic reasoning during semantic feedback. 
Section 4 describes our algorithms to classify instances during grounding. Finally, Sections 5 and 6 
close the document with the conclusions and discussion of results respectively.   
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2. Inference during ontology matching 

As it was described in Deliverable D4.1, the Semantic Techniques (ST) module in DynaLearn requires 
the intervention of a tool for ontology alignment. In fact, we need techniques to reconcile different QR 
models in order to analyse the similarities and differences between them and, based on that, provide 
useful feedback during the modelling construction. To that end, the use of well-established ontology 
matching techniques was analysed in Deliverable D4.1. As result of this study we opted to use CIDER 
CIDER  (Context and Inference baseD ontology alignER) [4] in DynaLearn. In the rest of this section 
we briefly introduce CIDER, we comment on the use of semantic reasoning during the matching 
process in CIDER, and finally explore the effect of semantic reasoning in the feedback by exploring 
some real examples. 

 

2.1. CIDER system 

CIDER [4] is designed to discover equivalence relationships between ontology terms (ingredients of 
qualitative models in the case of DynaLearn). The system performs ontology matching between two 
given ontologies, producing a set of correspondences as output. Figure 1 shows a schematic view of 
the approach. O1 and O2 represent the input ontologies. M is the matrix of resultant comparisons 
among ontology terms, and A is the extracted alignment. 

The first step is to extract the ontological context of each involved term, that is, their synonyms, textual 
descriptions, related terms in the taxonomy, etc. This process is enriched by applying lightweight 
inference mechanism, in order to add more semantic information that is not explicit in the asserted 
ontologies, as we will see later in Section 2.2. By lightweight inference we mean that the number of 
applied inference rules will not be high, because high inference levels are very time consuming, thus 
hampering scalability. One can found in transitive inference level the best balance between quality of 
results and time response in CIDER, therefore it is adopted as default mode [4]. Also CIDER behaves 
reasonably well at level of RDFS inference rules. However, in scenarios where time response is not an 
issue, or ontologies are small, higher inference levels can be applied. 

 

 

Figure 1: Scheme of CIDER 
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The next step, once the ontological context has been extracted, is to compute a semantic similarity 
measure between each pair of aligned terms. To that end, several elementary similarity measures are 
computed first. They involve lexical similarity between labels, as well as structural similarities, based 
on vector space modelling techniques [13], between the taxonomies and the relations among terms.  

In order to avoid the necessity of manual tuning when combining these measures, an artificial neural 
network (ANN) was trained to that end. ANNs constitute an adaptive type of systems composed of 
interconnected artificial neurons which change the structure based on external or internal information 
that flows through the network during a learning phase [12]. In CIDER, the above mentioned 
similarities are the input to the neural network (a multilayer perceptron) that combines them into a final 
similarity degree for each pair of terms. These similarities are organised in a matrix (M, in Figure 1) 
and, finally, an alignment (A) is extracted from it, filtering out the results below a certain threshold. 

In principle, the ANN in CIDER has been trained with a subset of the reference alignments provided in 
the benchmark track of the Ontology Alignment Evaluation Initiative2 (OAEI). Nevertheless, it can be 
trained with data from any other domain, so the system can be adapted in the future to the 
environmental (or other) domain.  

CIDER has been developed in Java (which favours its integration in DynaLearn ST component), 
extending the Alignment API [2]. The input are ontologies expressed in OWL (Web Ontology 
Language), and the output is served as a file expressed in the alignment format [2], although it can be 
easily translated to other formats as well. 

 

2.2. Inference to enhance similarity computation 

The ontological context extraction phase in the process described in Section 2.1 is aimed to retrieve 
as much different semantic information about the ontology terms as possible, to allow a precise 
comparison later. In principle, the nearest neighbouring ontological elements are extracted, however 
enriched by adding the inferred facts deduced from a reasoning service (as we will discuss later in this 
section). 

The extracted ontological elements comprise: URI, identifying label, synonym labels, and glosses 
(descriptions in natural language). Additionally, other elements that depend on the type of ontology 
term are extracted: 

• For classes: Hypernyms and hyponyms (the direct ones and the others inferred from the 
hierarchy), properties for which the term is the domain, and classes related to the explored 
term by any other property. 

• For properties: Superproperties and subproperties of the hierarchy, as well as domains and 
ranges of the explored term.  

• For individuals: Associated concepts, properties, and property values. 

The way we access and retrieve the ontological information of the ontology term depends on the 
nature of the accessed source of knowledge. When used in the context of DynaLearn, the ontologies 

                                                            
2 http://oaei.ontologymatching.org/2011/ 
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are loaded as model objects in the Jena semantic framework3, to be interrogated later by using 
SPARQL [11] and Jena Ontology API.  

As mentioned before, we apply an external reasoning service during this extraction step. To that end, 
Jena built-in reasoner4 is used, although other reasoners can be used instead. It allows us to load and 
interrogate the inferred ontology instead of the asserted one. Different levels of inference can be 
applied:  

• No inference. Only elements from the asserted ontology are extracted. 

• Transitive inference. All super/subterms reached by transitivity are added to the extracted 
ontological context. 

• RDFS inference. Apart from transitivity, other RDFS entailments are applied [7] (e.g., given p a 
property, c a class and a and b instances, c is domain of p and a related to b by p ⇒ a is an 
instance of c). 

• OWL inference. In addition to transitive and RDFS entailments, other OWL rules are 
considered (e.g., given the classes c,d,e, c = unionOf(d,e) ⇒ d and e are subclasses of c). 

Other levels are possible as, for example, the different subsets of OWL rules allowed by Jena built-in 
reasoner. CIDER applies lightweight inference because it uses low inference levels (transitive, or 
RDFS) preferentially to operate. 

Let us see a simple example to illustrate the benefits of enriching the ontological context with inferred 
facts before the similarity computation. Suppose that we have two models (learner and expert) in 
which the animal lion is semantically represented in two different ways (see Figure 2). Suppose that 
we want to discover semantic equivalences between the two models (for instance, to link the learner 
model with the expert one in order to derive semantic feedback, see [10]). Then our similarity 
computation should be able to discover that “lion” in model 1 (learner) corresponds to “Panthera leo” 
(the scientific name for lion) in model 2 (expert). 

 

Figure 2: example of models to be matched (    denotes subsumpion) 

                                                            
3 http://jena.sourceforge.net/ 

4 http://jena.sourceforge.net/inference/ 
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If the ontological contexts of “lion” (model 1) and “Panthera leo” (model 2) were extracted without 
inference, the comparisons to compute the elementary semantic similarities will take place as 
illustrated in Figure 3, where lexical information of the terms (a) is compared, as well as direct 
superterms (b) and relationships with other terms (c).  

 

Figure 3: comparisons between the asserted ontologies 

Thus, comparisons at levels a, b and c will give several similarity values, that combined by means of 
the ANN lead to a final similarity value 

 simno_inference(model1#lion, model2#PantheraLeo)  

Nevertheless, a simple inspection of the models shows that there is still semantic information in the 
models not initially considered in the comparisons but that could be reached by applying simple 
inference rules. For instance, the ancestors of “feline” in model 2 can be reached by transitivity. 
Furthermore, the fact that “lion” predates “herbivore” (not explicitly declared in model 2) can be 
reached by applying RDFS inference. 

 

Figure 4: models with new inferred facts 

Figure 4 shows the enriched ontological context of “lion” and “Panthera leo” after applying RDFS 
inference rules. Thus, comparisons between them for computing similarities are richer now and new 
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common facts can be easily detected (such as the fact that “lion” is a “carnivore” or that it “predates 
herbivore”). This is schematized in Figure 5. 

 

Figure 5: comparisons between the inferred ontologies 

Comparisons between the ontological contexts lead to a new similarity value:  

simRDFS_inference(model1#lion, model2#PantheraLeo)  

Owing to the fact that more similar facts are captured in the second case, we have in this case that  

simno_inference(model1#lion, model2#PantheraLeo) < simRDFS_inference(model1#lion, model2#PantheraLeo) 

The increment in the similarity value makes easier to identify both concepts as equivalent, thus 
increasing the possibilities of generating useful semantic feedback for that. 
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3. Inference during semantic feedback 

In this section we review the typical errors that modellers can make when representing taxonomical 
knowledge (inconsistency, incompleteness, etc.). Then, the particularities of modelling in DynaLearn 
are analysed, which prevents many of the common errors, although limiting also the expressivity of the 
resultant model. Finally, the rules that The ST component implements to detect some of these 
inconsistency errors are explained with some detail. 

In fact, after the ontology matching process, we use semantic reasoning techniques to detect 
taxonomic inconsistencies between entities of the two models. As we explained in [10], QR models are 
treated as ontologies for the generation of semantic feedback. In order to analyse the taxonomic 
correctness of the model, we follow the categories for taxonomic evaluation proposed in [3], detailed in 
the following.  

3.1. Taxonomic evaluation in ontologies 

When representing taxonomic knowledge, there are different types of errors a modeller can make. 
These errors can be classified in three groups: inconsistency, incompleteness, and redundancy [3]. 
Figure 6 shows this classification. 

 

Figure 6: Classification of errors when modelling taxonomies 
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3.1.1. Inconsistency  

Within the inconsistency errors we find three subcategories: circulatory errors, semantic inconsistency 
errors, and partition errors. 

Circulatory errors: They occur when a class is defined as subclass or superclass of itself. This can 
occur at any level of the hierarchy and with distance 0 (i.e. subclass of itself), 1 (subclass of its 
superclass) or n. E.g., lion isA feline and feline isA lion. 

Semantic inconsistency errors: They occur when the modeller makes an incorrect semantic 
classification and represents a concept as subclass of a concept that it is not really its superclass. 
E.g., whale isA fish. 

Partition errors: Concept classifications can be categorized in three groups: disjoint (disjoint 
decompositions), complete (exhaustive decompositions), and disjoint and complete (partitions). In the 
context of DynaLearn, the taxonomies of QR models can be seen as partitions since the classes are 
all of them disjoint (the classes do not share common instances). The types of partition errors related 
to the disjoint decompositions are the following: 

• Common classes in disjoint decompositions and partitions. These happen when a class C is 
simultaneously subclass of A and B, being A and B defined as disjoint. 

• Common instances in disjoint decompositions and partitions. These occur when an instance 
belongs simultaneously to classes A and B, being A and B defined as disjoint. 

3.1.2. Incompleteness 

Incompleteness on taxonomies occurs when the superclasses of a particular class are imprecise or 
over-specified, and when explicit information about hierarchical relations is missing. These common 
omissions can be classified as: 

Incomplete concept classification: This happens when the classification of concepts is incomplete 
and does not cover properly the corresponding domain. 

Partition errors: These occur when the definition of disjoint and exhaustive knowledge between 
classes is omitted. For instance, the modeller omits to define that the subclasses of a given class are 
disjoint; or the modeller misses the completeness constraint between the subclasses and their 
superclass.  

3.1.3. Redundancy 

Opposite to incompleteness, there exist redundancy errors. These occur when there is more than one 
explicit definition of any hierarchical relation (subclass-of, instance-of, etc.) or when there are two 
classes or instances with the same formal definition. 

 

3.2. Taxonomic evaluation in DynaLearn 

The discussion introduced in Section 3.1 is general for any ontology. Most of the above errors can be 
automatically detected, in principle, with the intervention of a semantic reasoner (e.g., by classifying 
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the instances in the taxonomy, membership of an instance to various disjoint classes could be 
detected). Other modelling errors, such as incomplete concept classification, cannot be easily 
captured by a semantic reasoner and would require expert validation.  

Nevertheless, taxonomies in QR models have certain particularities “by construction” that somehow 
limits the potential of automatic taxonomical validation. The main particularities are:  

• All the decompositions in the DynaLearn taxonomies are disjoint. 

• Only entities can have an associated hierarchy. 

• Multiple inheritances are not allowed. 

• Instances cannot be assigned to more than one class. 

• Exhaustive decompositions cannot be specified. 

• Semantic expressivity is limited. For instance it is no possible to express cardinality 
restrictions, property restrictions, enumerated classes, Boolean combinations (union, 
complement, and intersection), etc. 

These features are caused by the inherent nature of QR models and the strict controls that the user 
interface establishes during the creation of the model. 

In such scenario, we posed ourselves the following question: Can semantic reasoning be useful for 
detecting modelling errors in QR models? In fact, the above mentioned particularities prevent the user 
to make most of the errors summarized in Figure 6, at the cost of limiting the semantic expressivity of 
the model. Therefore, only the following two errors might happen within the scope of a single QR 
model: incomplete concept classification and inconsistency semantic errors. Only the latter could be 
detected by semantic reasoners, although with a limited capability due to the lack of class restrictions 
in the QR models.  

Given that situation, is it still possible to detect taxonomical errors in QR models? And if so, how can 
we do that? The answer comes from considering not only one model (the one under construction) but 
considering also the knowledge contained in another reference models. Precisely, comparison with 
other models is part of the semantic feedback process (see Deliverable D4.2), so the evaluation of 
taxonomical errors can be performed during that step. 

During the generation of semantic feedback, and as result of the ontology matching process, we 
obtain a list of equivalent terms. Two terms identified as equivalent exhibit some commonalities, like 
their labels or the resources they are grounded to. In the case of entities at learning space six, they 
should share not only the terminology but also their hierarchical relations. When the ontological 
contexts of the matched terms are considered together, it is possible to detect inconsistencies and 
incompleteness that could not be detected in isolation: 

1. Inconsistency -> circularity errors 

2. Inconsistency -> partition errors -> common classes and common instances in disjoint 
decompositions  

3. Inconsistency -> semantic errors 

4. Incompleteness -> incomplete concept classification 

5. Incompleteness -> partition errors ->  disjoint knowledge omission 
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Notice that completeness (exhaustive decompositions) cannot be modelled in DynaLearn, thus being 
this feature irrelevant from the perspective of giving semantic feedback to users. Also redundancy will 
not happen due to the constraints imposed by the interface during modelling. 

 

3.2.1. Inconsistency errors 

When two models created separately are put in relation by means of the ontology matching 
techniques, certain semantic inconsistencies can arise. That is the case of circularity errors can 
emerge (e.g., modelA: animal isA livingThing; model B: livingThing isA Animal), as well as partition 
errors and semantic errors. In order to detect these problems in the learner model, we need to obtain 
the equivalent classes of the reference model and integrate them into the learner model. Only then we 
are able to detect the semantic inconsistencies. 

As an example, Figure 7 shows the entity hierarchy of a learner model and Figure 8 the entity 
hierarchy of a reference model: 

 

Figure 7: Entity hierarchy of a learner model 

 

 

 

Figure 8: Entity hierarchy of a reference model 

 

In this example, we can see that the learner model represents the entity Whale as subclass of the 
entity Fish. However, in the reference model another entity Whale is defined as subclass of the entity 
Mammal. On the other hand, the entities Fish and Mammal are disjoint classes, since all classes in 
these QR models are disjoint by definition. Then, if the entity Whale of the learner model has been 
identified as equivalent to the entity Whale of the reference model, we are in front of an inconsistent 
situation, since the same class cannot be subclass of two disjoint classes. 

 

Algorithm 

For each pair of entities found equivalent during the ontology matching process:  

1. Get the super class of the term in the reference model (refSuperclass). 
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2. Get the super class of the term in the learner model (learnerSuperclass). 

3. If both super classes exist, check if the pair of super classes belongs to the list of mappings.  

i. If the super classes are not equivalent, report the inconsistency. 

4. Get the subclass of the term in the reference model (refSubclass). 

5. Get the subclass of the term in the learner model (learnerSubclass). 

6. If both subclasses exist, check if the pair of subclasses belongs to the list of mappings.  

i. If the subclasses are not equivalent, report the inconsistency. 

 

3.2.2. Incomplete concept classification 

Also incompleteness issues can emerge when putting together the learner and reference models. In 
this case, we need to detect the missing concepts in the hierarchy of the learner model. That is, to find 
the entities not modelled by the learner but necessary according to the reference model. This process 
is a particular case for the technique to detect missing terms and that we detailed in Deliverable D4.2. 
In this case we want to detect the missing entities and, when possible, to find the equivalent position in 
the learner hierarchy where this missing entity should be added. 
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4. Inference during instance grounding 

In the modelling environment of the DynaLearn software, models can be developed in 6 different 
learning spaces.  Each of these learning spaces is progressively richer in the set of model ingredients 
that can be used. As such, students can be introduced more gradually to QR concepts. By default, in 
learning spaces 1 through 5, the software allows model ingredients to be added to the model using a 
single manipulation. Both of these features are meant to make the software easier to use [8]. For 
learning space 6, on the contrary, richer modelling techniques are available, enabling the user to 
explicitly state which concepts are entities and which others are individuals of those entities. Along the 
remainder of this section we assume that the user operates in learning space 1 to 5.   

One consequence of making possible to add model ingredients in a single manipulation is that 
learners are not explicitly modelling domain concepts. That is, modellers are not explicitly defining the 
model ingredient definitions representing the vocabulary that is used to compose the rest of the model. 
These model ingredient definitions (which we will call domain concepts) can be considered to be the 
classes in an ontology.  

In DynaLearn, a learner can create the entity “Water left” to represent the water that is left in a water 
body in a single manipulation (Figure 9). However, to make it possible to explicitly model domain 
concepts, the setting “Show types” (which is off by default) can be turned on. When adding a model 
ingredient, the modeller can indicate both a name for the associated concept (or select a previously 
defined concept name) and an instance name. 

 

 

Figure 9: An example model on LS2 created with “Show types” turned off. 

When learners will be confronted with the DynaLearn software for the first time, typically, the domain 
concept names will not be explicitly modelled by students (Show types will be in its default off setting). 
As such, the models will have an appearance similar to the model shown in Figure 9.  

4.1. Identical data structure for “Show types” options 

After creating an initial model with “Show types” off, a teacher might decide to encourage the learners 
to model the domain concepts explicitly. The data structure of the models in DynaLearn have been 
developed in such a way that by simply turning “Show types” on, the learner can make the domain 
concepts explicit by adapting the model he was working on. There is no need to start from scratch. 
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The dialogs that are used to add model ingredients are automatically changes so that the domain 
concept names can be added. Furthermore, the visualisation of the model is adapted so that the 
domain concepts are visible (Figure 10). 

 

Figure 10: The same model showing the inferred types when “Show types” is turned on. 

Technically, the data structure allows such altering of the “Show types” option, by “inferring” the 
domain concept from the instance name, which is reflected in the software through a model ingredient 
definition. For example, once the entity “Water left” is added to the model, in the data structure the 
entity definition “Water left” is automatically created, and the instance “Water left” is made a member 
of this definition. As such, when the “Show types” option is set to “on” for the model in Figure 9, the 
visualisation will show Figure 10. The learner is then free to adapt the domain concepts that have 
been inferred from the instances.  

4.2. Problem: “Show types” off issues for grounding and feedback 

The interface decision to, by default, not model domain concepts has some consequences on some of 
the interactions in DynaLearn. It is plausible that learners will never make the step to make the domain 
concepts explicit. That is, they will keep “Show types” off, and in the model data structure the domain 
concepts will have been inferred from the names given to the model ingredients. As a result, the 
domain concepts in these models will be suboptimal. 

Models of this type will cause problems particularly for the grounding and semantic feedback 
functionalities. The grounding functionality attempts to find concepts in DBPedia that match the 
domain concepts in the QR model [5,6]. There are three issues that make grounding with “Show 
types” off unusable in its previous incarnation. Firstly, learners modelling with “Show types” off, do not 
encounter domain concepts in the software during modelling. As such, when they enter the grounding 
screen, they will encounter the domain concept versions of their instances. If the grounding dialog 
suggests a domain concept to be renamed, the domain concept will be renamed, but not the instance. 
This breaks the design choice to keep the domain concepts hidden, and will potentially lead to 
confusion. 

Secondly, when a model contains two instances of the same domain concept (e.g. “container left” and 
“container right”), they cannot be correctly grounded (to the DBPedia concept “container”). The reason 
is that DynaLearn prevents different domain concepts to be grounded to the same domain concept (as 
it would mean that the two domain concepts are equivalent). With “Show types” on, the modeller is 
encouraged to merge the two domain concepts. However, with “Show types” off, the modeller is not 
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confronted with domain concepts at all. As such, he does not have the ability to merge the two 
concepts. 

Thirdly and finally, the grounding functionality was not designed to find concepts based on specific 
examples of such concepts (e.g. the concept “Water” for the water that is left in the water body). As 
such, the correct results for the grounding can potentially not be found.  

The semantic feedback [10,9], which generates suggestions on how to change a particular model 
based on a large repository of models, is affected due to the models not adequately being grounded. 
An important step in generating the feedback is determining which models in the repository are 
relevant to generate the feedback from. In order to do this, models are selected that have groundings 
in common with the learner model. Consequently, the models developed with “Show types” off and 
which are not or badly grounded, result in poor semantic feedback being generated, as concepts in 
different models could be wrongly considered equivalent by the ontology matching tool.  

For the reasons mentioned above, we advised against using the grounding and semantic feedback 
functionalities with “Show types” off. However, from the teachers in DynaLearn there is a strong desire 
to use the grounding and feedback with “Show types” off, as most of them are running evaluations with 
beginning students. Moreover, the grounding and semantic feedback could have bigger impact on the 
education if they can also be used with “Show types” off. 

4.3. Allowing grounding of instances 

Our solution to the issues with grounding and semantic feedback that were discussed in the previous 
section is to allow instances to be grounded individually. This decision has wide-ranging 
consequences as will be discussed in the following sections. Most notable to the modellers is the 
changed grounding dialog that is shown when “Show types” is turned off. This grounding dialog for 
instances is almost equivalent to the grounding dialog for domain concepts. The main difference is that 
the list on the left hand side of the screen shows the instances of particular domain concepts instead 
of the domain concepts themselves (Figure 11).
 



Project No. 231526  

Page 20 / 45 

DynaLearn D4.4 

 

Figure 11: The grounding dialog adapted for instances. 

In order to solve the issue of finding domain concepts when grounding using instance names the multi-
word grounding functionality is used. By grounding subsets of the words used to describe the 
instance, the results returned when grounding instances is improved [6]. Since most of this 
functionality was already in place, it could be easily utilized for instance grounding. 

4.4. Solution: Deriving domain concepts from DBPedia concepts 

The main difficulties of grounding instances, namely grounding multiple instances of the same domain 
concept and not confronting modellers with domain concepts (with “Show types” off) are resolved by 
deriving domain concepts from the DBPedia concepts that the instances are grounded to. The 
example that inspires this idea is simple. Suppose we have both “Container left” and “Container right” 
in a model. If a modeller grounds “Container left” to the DBPedia concept “Container”, we can use this 
DBPedia label to improve the label of the domain concept in DynaLearn by renaming “Container left” 
to “Container”. The instance name is preserved as “Container left”. As such, the modeller is unaware 
that this improvement of the domain concepts has occurred, as is the goal with “Show types” turned 
off. 

When “Container right” is also grounded to DBPedia “Container”, a clash occurs. DynaLearn does not 
allow multiple domain concepts to be grounded to the same concept, as it has a unique name 
assumption (things with different names refer to different concepts). To resolve this issue, “Container 
right” is made an instance of “Container” (formally “Container left”), and “Container right” is deleted. As 
a result, the model is correctly grounded, and both instances are part of the same domain concept. 
Moreover, the learner is kept unaware of that these changes have occurred and is kept unaware of 
domain concepts (as is the design choice with “Show types off”). As a result of the correct grounding, 
the semantic feedback can be correctly used. 

The procedure described above should give a good indication of the form of the solution. However, a 
complete solution is not as simple as the example suggests. For example, when the grounding of one 
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of the instances for which the domain concepts were merged is deleted (e.g. for “Container right”), the 
original domain concept has to be restored. A more complex example is when a grounded instance 
with a merged domain concept is grounded to another grounded instance, e.g. “Water right” which is 
grounded to DBPedia “Water” is grounded to DBPedia “Water right” (the legislation governing water 
bodies). First, the domain concept of water has to be unmerged, which is equivalent to deleting the 
grounding for “Water right”. Secondly, the instance “Water right” has to be made an instance of the 
already existing definition of “Water right” and its original definition has to be deleted. At the same 
time, name clashes for domain concepts have to be prevented.  

The complete procedure to allow instance grounding to infer the correct domain concepts (including 
making sure the instances belong to the correct domain concept) is shown in Figure 12 and Figure 13 
(note that the domain concepts are called “instance definition” in the images). This procedure uses the 
grounding process to improve the domain concepts using the labels in DBPedia. As a result, the 
instances are members of the correct domain concept and the domain concepts are named correctly. 
Finally, in addition to making the grounding work with “Show types” off, it also makes the use of the 
semantic feedback functionality possible with this setting. 

 

Figure 12: Flow diagram showing the procedure followed when grounding instances. 

 

 

Figure 13: Flow diagram showing the procedure when deleting groundings of instances. 
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5. Conclusion 

This deliverable describes the progress on Task 4.4 “Integrate taxonomic reasoning” aimed at 
improving the quality of the semantic information presented to users, since taxonomic reasoning “will 
allow relating topics that would not be considered as similar initially”.  

First, we have discussed the opportunities of discovering better mappings between models during 
ontology matching by applying lightweight reasoning techniques. Second, a discussion of the typical 
modelling error when representing taxonomical knowledge has been presented, and how they are 
influenced by the particularities of DynaLearn. As a consequence of this analysis, different rules to 
detect inconsistencies during semantic feedback have been presented. Finally, we have analysed how 
the simplified way in which DynaLearn deals with individuals in learning spaces 1 to 5 leads to a 
suboptimal way of naming domain concepts. We have presented a solution to this issue that takes 
advantage of the grounding process to infer better concept names.  
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6. Discussion 

Although taxonomical reasoning was initially planned in the project in the context of collaborative 
filtering, we have discovered several other aspects in our algorithms that may benefit of that, namely: 
ontology matching, semantic feedback generation, and grounding, thus resulting in a better semantic 
feedback and recommendation as we have discussed in this deliverable.  

Nevertheless, some of the ideas contained in this document still need to be further tested and 
evaluated. In fact, we plan to perform more tests during the remainder of the project in parallel with the 
evaluations carried out for WP7. That will allow us to further test our hypothesis and figure out new 
ways of enriching our techniques in the future.  
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Appendix A: Semantic Technologies Testing Plan 

A1. Overview 

This section describes the testing plan executed on a weekly basis by the UPM team as part of the 
DynaLearn Testing Procedures. The Scope section describes the major functionalities included in the 
test plan, the Testing Process section explains the initial conditions, the process steps that are 
automatically executed and the final results. At the end of this Appendix the complete test cases list is 
presented. 

A2. Scope 

The following table lists the major functionalities that are included in the test process. They are 
represented as test suites that contain several test cases covering and ensuring the proper operation 
of the application. The complete list of test cases is described in “Test Cases Definition” section. 

Test Suite Description 

CUS001: Log in to repository Validates the authentication service to the semantic 
repository. 

CUS002: Open model Validates the correct reception of a model from the 
repository. 

CUS003: Storage model Validates the correct saving process of models in the 
semantic repository. 

CUS004: Ground model Validates the grounding of entire modules functionality. 
Models in English, Spanish, Portuguese and German are 
tested. 

CUS005: Ground term Validates the grounding of term functionality. Single and 
Compound words are used in the test as well as different 
languages: English, Spanish, Portuguese and German. 

CUS007: List models Validates the list models functionality. 

CUS008: Query models Validates the model filtering by using a term. 

CUS009: Update model Validates the replacing of an existing model into repository 

CUS010: Open HGP model Validates the correct reception of an available model in 
repository in HGP binary format. 

CUS011: Get Feedback Validates the feedback functionality service. 

A3. Testing Process 

The following initial conditions are required before executing the test: 
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• Accounts: To execute the test plan the following valid users and passwords are required. 
 demo-student@dynalearn.eu 
 demo-teacher@dynalearn.eu 
 upm-domex@example.com  

• Test Server: Testing will be done on testing web service 
http://elnath.dia.fi.upm.es:8020/SemanticTechnology/services/WSServerSecured?wsdl  

• Models: The following are the HGP models used in this test plan 
 CommunicatingVessels_testing.hgp 
 GroundingInSpanish.hgp 
 GroundingInPortuguese.hgp 
 GoungdingInGerman.hgp 
 Example_RefModel.hgp 

The test is automatically executed by using ANT, SoapUI and a script that exports the models into 
OWL. Find below the flow chart describing the automatic process performed during the test execution: 

 

Figure 14: Flowchart of the testing process 

The testing results and reports are automatically generated too, these include test suite results, failed 
test case reports, and a complete process report in HTML format; the following screenshots provides a 
better idea of the final report: 

 

mailto:demo-student@dynalearn.eu
mailto:demo-teacher@dynalearn.eu
mailto:upm-domex@example.com
http://elnath.dia.fi.upm.es:8020/SemanticTechnology/services/WSServerSecured?wsdl
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Figure 15: Global view of the test report 

 

Figure 16: Test suite details 

A failure happens when one of the test case assertions fails. That is, the program does something 
wrong and the test case notices and reports the fact. An error occurs when some other unexpected 
Exception is triggered (e.g., a NullPointerException or an ArrayIndexOutOfBoundsException). 

A4. Test Cases Definition 

Each Test Suite is tested in different ways. For doing this, there are some test cases associated to 
each test suite. This section specifies each automatic test case defined to ensure the availability of the 
ST in DynaLearn project. 
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In order to understand the specifications below, the fields are defined in the next list: 

• Description: Brief description of the test case. 
• Role: Role of the user who is calling the service for testing. 
• Use case: The test suite to which a test case is related. 
• Scenario: A test case could have one of two possible values in this field (correct and incorrect) 

whenever the input is a right or wrong value. In both cases the system must work. 
• Term type: During grounding, the term to ground could be single o multi word. 
• Grounding type: During grounding, the term can be grounded to DBpedia (or any other 

background ontology) or grounded to an anchor term. 
• Ingredient: It refers to the ingredient to be grounded in the QR model, for example: entity, 

agent, configuration, etc. 
• Language: The language of the involved term or model. 
• Input: Web method calling parameter. 
• Web method: Web method to call. 

 

TEST CASE: TC0001 

TEST CASE: TC0002 

TEST CASE: TC0003 

TEST CASE: TC0004 

Description: A simple correct login test by using teacher role 

Role: teacher Use case: CUS001_Log_in_to_repository 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input: demo-teacher@dynalearn.eu, te@cher 

Web method:  

Description: A simple incorrect login test by using teacher role 

Role: teacher Use case: CUS001_Log_in_to_repository 

Scenario:  incorrect Term type:  
Grounding type:  Ingredient:  
Language:  Input: demo-teacher@dynalearn.eu, xxxxx 

Web method:  

Description: A simple correct login test by using learner role 

Role: learner Use case: CUS001_Log_in_to_repository 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input: demo-student@dynalearn.eu,student 

Web method:  

Description: A simple incorrect login test by using learner role 

Role: learner Use case: CUS001_Log_in_to_repository 
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TEST CASE: TC0005 

TEST CASE: TC0006 

TEST CASE: TC0007 

TEST CASE: TC0008 

TEST CASE: TC0009 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language:  Input: demo-student@dynalearn.eu, xxxx 

Web method:  

Description: A simple correct login test by using domain expert role 

Role: domain expert Use case: CUS001_Log_in_to_repository 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input: upm-domex@example.com, UPMDOMEX 

Web method:  

Description: A simple incorrect login test by using domain expert role 

Role: domain expert Use case: CUS001_Log_in_to_repository 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language:  Input: upm-domex@example.com, xxxx 

Web method:  

Description: Grounding of a correct single word english term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: dbpedia Ingredient: Entity 

Language: english Input: Labour 

Web method: groundTerm 

Description: Grounding of a correct single word english term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: dbpedia Ingredient: Agent 

Language: english Input: Biochemistry 

Web method: groundTerm 

Description: Grounding of a correct single word english term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: dbpedia Ingredient: Quantity 
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TEST CASE: TC0010 

TEST CASE: TC0011 

TEST CASE: TC0012 

TEST CASE: TC0013 

TEST CASE: TC0014 

Language: english Input: Leakage 

Web method: groundTerm 

Description: Grounding of a correct single word english term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: dbpedia Ingredient: Configuration 

Language: english Input: Ecosystem 

Web method: groundTerm 

Description: Grounding of a correct single word english term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: dbpedia Ingredient: Attribute 

Language: english Input: Dead 

Web method: groundTerm 

Description: Grounding of a correct multi word english term. It also includes a test of 
suggested terms. 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: multi word 

Grounding type: dbpedia Ingredient: Entity 

Language: english Input: Heat_transfer 

Web method: groundTerm 

Description: Grounding of a incorrect single word english term 

Role:  Use case: CUS005_Ground_term 

Scenario:  incorrect Term type: single word 

Grounding type: dbpedia Ingredient: XXX 

Language: english Input: Renewable_resources 

Web method: groundTerm 

Description: Grounding of a incorrect single word english term 

Role:  Use case: CUS005_Ground_term 

Scenario:  incorrect Term type: single word 

Grounding type: dbpedia Ingredient: Entity 

Language: english Input: IndustrialxxXXxx 
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TEST CASE: TC0015 

TEST CASE: TC0016 

TEST CASE: TC0017 

TEST CASE: TC0018 

TEST CASE: TC0019 

Web method: groundTerm 

Description : Grounding of a incorrect multi word english term 

Role:  Use case: CUS005_Ground_term 

Scenario:  incorrect Term type: multi word 

Grounding type: dbpedia Ingredient: Entity 

Language: english Input: Energy_pyramidxx 

Web method: groundTerm 

Description : Grounding of a correct multi word english term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: multi word 

Grounding type: anchor term Ingredient:  

Language: english Input: Climate_regulation 

Web method: createAnchorTerm 

Description : Grounding of a correct single word english term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: anchor term Ingredient:  

Language: english Input: Allelopathy 

Web method: createAnchorTerm 

Description : Grounding of a incorrect single word english term 

Role:  Use case: CUS005_Ground_term 

Scenario:  incorrect Term type: single word 

Grounding type: anchor term Ingredient:  

Language: english Input: Industrialxx 

Web method: createAnchorTerm 

Description : Grounding of a incorrect multi word english term 

Role:  Use case: CUS005_Ground_term 

Scenario:  incorrect Term type: multi word 

Grounding type: anchor term Ingredient:  

Language: english Input: Energy_pyramidxx 

Web method: createAnchorTerm 
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TEST CASE: TC0020 

TEST CASE: TC0021 

TEST CASE: TC0022 

TEST CASE: TC0023 

TEST CASE: TC0024 

TEST CASE: TC0025 

Description : Grounding of a correct single word portuguese term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: dbpedia Ingredient: Entity 

Language: portuguese Input: água 

Web method: groundTerm 

Description : Grounding of a incorrect single word portuguese term 

Role:  Use case: CUS005_Ground_term 

Scenario:  incorrect Term type: single word 

Grounding type: dbpedia Ingredient: Entity 

Language: portuguese Input: Renewable_resources 

Web method: groundTerm 

Description : Grounding of a correct multi word portuguese term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: multi word 

Grounding type: dbpedia Ingredient: Entity 

Language: portuguese Input: Fluxo german calor 

Web method: groundTerm 

Description : Grounding of a correct single word portuguese term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: anchor term Ingredient:  

Language: portuguese Input: Desmatamento 

Web method: createAnchorTerm 

Description : Grounding of a correct multi word portuguese term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: multi word 

Grounding type: anchor term Ingredient:  

Language: portuguese Input: Contaminantes do solo 

Web method: createAnchorTerm 

Description : Grounding of a correct single word spanish term 
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TEST CASE: TC0026 

TEST CASE: TC0027 

TEST CASE: TC0028 

TEST CASE: TC0029 

 
TEST CASE: TC0030 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: dbpedia Ingredient: Entity 

Language: spanish Input: café 

Web method: groundTerm 

Description : Grounding of a incorrect single word spanish term 

Role:  Use case: CUS005_Ground_term 

Scenario:  incorrect Term type: single word 

Grounding type: dbpedia Ingredient: Entity 

Language: spanish Input: Renewable_resources 

Web method: groundTerm 

Description : Grounding of a correct multi word spanish term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: multi word 

Grounding type: dbpedia Ingredient: Entity 

Language: spanish Input: Flujo german calor 

Web method: groundTerm 

Description : Grounding of a correct single word spanish term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: anchor term Ingredient:  

Language: spanish Input: Deforestación 

Web method: createAnchorTerm 

Description : Grounding of a correct multi word spanish term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: multi word 

Grounding type: anchor term Ingredient:  

Language: spanish Input: Contaminantes del suelo 

Web method: createAnchorTerm 

Description : Grounding of a correct single word german term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 
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TEST CASE: TC0031 

 
TEST CASE: TC0032 

 
TEST CASE: TC0033 

 
TEST CASE: TC0034 

 
TEST CASE: TC0040 

Grounding type: dbpedia Ingredient: Entity 

Language: german Input: Wasser 

Web method: groundTerm 

Description : Grounding of a incorrect single word german term 

Role:  Use case: CUS005_Ground_term 

Scenario:  incorrect Term type: single word 

Grounding type: dbpedia Ingredient: Entity 

Language: german Input: Renewable_resources 

Web method: groundTerm 

Description : Grounding of a correct multi word german term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: multi word 

Grounding type: dbpedia Ingredient: Entity 

Language: german Input: Wärmeleitfähigkeit 

Web method: groundTerm 

Description : Grounding of a correct single word german term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: anchor term Ingredient:  

Language: german Input: Entwaldung 

Web method: createAnchorTerm 

Description : Grounding of a correct multi word german term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: multi word 

Grounding type: anchor term Ingredient:  

Language: german Input: Weißes Haus 

Web method: createAnchorTerm 

Description : Grounding of a correct single word dutch term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: dbpedia Ingredient: Entity 

Language: dutch Input: Vuur 

Web method: groundTerm 
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TEST CASE: TC0041 

 
TEST CASE: TC0042 

 
TEST CASE: TC0043 

 
TEST CASE: TC0044 

 
TEST CASE: TC0045 

 
TEST CASE: TC0046 

Description : Grounding of a incorrect single word dutch term 

Role:  Use case: CUS005_Ground_term 

Scenario:  incorrect Term type: single word 

Grounding type: dbpedia Ingredient: Entity 

Language: dutch Input: Renewable_resources 

Web method: groundTerm 

Description : Grounding of a correct multi word dutch term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: multi word 

Grounding type: dbpedia Ingredient: Entity 

Language: dutch Input: Warmteoverdracht 

Web method: groundTerm 

Description : Grounding of a correct single word dutch term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: single word 

Grounding type: anchor term Ingredient:  

Language: dutch Input: Acteur 

Web method: createAnchorTerm 

Description : Grounding of a correct multi word dutch term 

Role:  Use case: CUS005_Ground_term 

Scenario:  correct Term type: multi word 

Grounding type: anchor term Ingredient:  

Language: dutch Input: Atmosferisch perspectief 

Web method: createAnchorTerm 

Description : Grounding of an entire english model 

Role:  Use case: CUS004_Ground_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: english Input: CommunicatingVessels_testing.owl 

Web method: groundModel 

Description : Grounding of an entire portuguese model 

Role:  Use case: CUS004_Ground_model 
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TEST CASE: TC0047 

 
TEST CASE: TC0048 

 
TEST CASE: TC0050 

 
TEST CASE: TC0051 

 
TEST CASE: TC0053 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: portuguese Input: GroundingInPortuguese.owl 

Web method: groundModel 

Description : Grounding of an entire spanish model 

Role:  Use case: CUS004_Ground_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: spanish Input: GroundingInSpanish.owl 

Web method: groundModel 

Description : Grounding of an entire german model 

Role:  Use case: CUS004_Ground_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: german Input: GoungdingInGerman.owl 

Web method: groundModel 

Description : Grounding of an entire dutch model 

Role:  Use case: CUS004_Ground_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: dutch Input: GroundingInDutch.owl 

Web method: groundModel 

Description : Store of an entire english model into repository 

Role: teacher Use case: CUS003_Save_model_to_repository 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: english Input: CommunicatingVessels_testing.owl 

Web method: storeModel 

Description : Store of an entire portuguese model into repository 

Role: learner Use case: CUS003_Save_model_to_repository 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: portuguese Input: GroundingInPortuguese.owl 
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TEST CASE: TC0055 

 
TEST CASE: TC0052 

 
TEST CASE: TC0056 

 
TEST CASE: TC0057 

 
TEST CASE: TC0058 

 
TEST CASE: TC0059 

Web method: storeModel 

Description : Store of an entire spanish model into repository 

Role: domain expert Use case: CUS003_Save_model_to_repository 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: spanish Input: GroundingInSpanish.owl 

Web method: storeModel 

Description : Store of an entire german model into repository 

Role: teacher Use case: CUS003_Save_model_to_repository 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: german Input: GoungdingInGerman.owl 

Web method: storeModel 

Description : Store of an entire dutch model into repository 

Role: domain expert Use case: CUS003_Save_model_to_repository 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: dutch Input: GroundingInDutch.owl 

Web method: storeModel 

Description : correct retrieval of a model from repository 

Role: teacher Use case: CUS002_Open_model_from_repository 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input: CommunicatingVessels_testing.owl 

Web method: retrieveModel 

Description : correct retrieval of a model from repository 

Role: teacher Use case: CUS002_Open_model_from_repository 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input: GroundingInPortuguese.owl 

Web method: retrieveModel 

Description : correct retrieval of a model from repository 
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TEST CASE: TC0060 

 
TEST CASE: TC0061 

 
TEST CASE: TC0062 

 
TEST CASE: TC0069 

 
TEST CASE: TC0070 

Role: learner Use case: CUS002_Open_model_from_repository 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input: GroundingInSpanish.owl 

Web method: retrieveModel 

Description : incorrect retrieval of a model from repository 

Role: learner Use case: CUS002_Open_model_from_repository 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language:  Input: xxCommunicatingVessels_testing 

Web method: retrieveModel 

Description : incorrect retrieval of a model from repository 

Role: domain expert Use case: CUS002_Open_model_from_repository 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language:  Input: xxCommunicatingVessels_testing 

Web method: retrieveModel 

Description : incorrect retrieval of a model from repository 

Role: domain expert Use case: CUS002_Open_model_from_repository 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language:  Input: xxCommunicatingVessels_testing 

Web method: retrieveModel 

Description : list models using teacher role 

Role: teacher Use case: CUS007_list_models 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input:  

Web method: listModels 

Description : list models using learner role 

Role: learner Use case: CUS007_list_models 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  
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TEST CASE: TC0071 

 
TEST CASE: TC0172 

 
TEST CASE: TC0072 

 
TEST CASE: TC0073 

 
TEST CASE: TC0074 

 
TEST CASE: TC0075 

Language:  Input:  

Web method: listModels 

Description : list models using domain expert role 

Role: domain expert Use case: CUS007_list_models 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input:  

Web method: listModels 

Description : list models using teacher role and selecting models related to a course 

Role: teacher Use case: CUS007_list_models 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input: uva-crse 

Web method: listModels 

Description : correct query english model 

Role: teacher Use case: CUS008_query_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: english Input: Container 

Web method: queryModels 

Description : incorrect query english model 

Role: teacher Use case: CUS008_query_model 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language: english Input: Containerxxx 

Web method: queryModels 

Description : correct query english model 

Role: learner Use case: CUS008_query_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: english Input: Container 

Web method: queryModels 
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TEST CASE: TC0076 

 
TEST CASE: TC0077 

 
TEST CASE: TC0178 

 
TEST CASE: TC0179 

 
TEST CASE: TC0180 

Description : incorrect query english model 

Role: learner Use case: CUS008_query_model 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language: english Input: Containerxxx 

Web method: queryModels 

Description : correct query english model 

Role: domain expert Use case: CUS008_query_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: english Input: Container 

Web method: queryModels 

Description : incorrect query english model 

Role: domain expert Use case: CUS008_query_model 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language: english Input: Containerxxx 

Web method: queryModels 

Description : correct query portuguese model 

Role: teacher Use case: CUS008_query_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: portuguese Input: adulto 

Web method: queryModels 

Description : incorrect query portuguese model 

Role: teacher Use case: CUS008_query_model 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language: portuguese Input: Containerxxx 

Web method: queryModels 

Description : correct query spanish model 

Role: teacher Use case: CUS008_query_model 

Scenario:  correct Term type:  
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TEST CASE: TC0181 

 
TEST CASE: TC0182 

 
TEST CASE: TC0183 

 
TEST CASE: TC0078 

 
TEST CASE: TC0079 

Grounding type:  Ingredient:  

Language: spanish Input: Cerveza 

Web method: queryModels 

Description : incorrect query spanish model 

Role: teacher Use case: CUS008_query_model 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language: spanish Input: Containerxxx 

Web method: queryModels 

Description : correct query german model 

Role: teacher Use case: CUS008_query_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: german Input: akne 

Web method: queryModels 

Description : incorrect query german model 

Role: teacher Use case: CUS008_query_model 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language: german Input: Containerxxx 

Web method: queryModels 

Description : Update of an entire english model into repository 

Role: teacher Use case: CUS009_update_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: english Input: CommunicatingVessels_testing.owl 

Web method: storeModel 

Description : Update of an entire portuguese model into repository 

Role: learner Use case: CUS009_update_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: portuguese Input: GroundingInPortuguese.owl 

Web method: storeModel 
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TEST CASE: TC0080 

 
TEST CASE: TC0081 

 
TEST CASE: TC0083 

 
TEST CASE: TC0084 

 
TEST CASE: TC0085 

 
TEST CASE: TC0086 

Description : Update of an entire spanish model into repository 

Role: domain expert Use case: CUS009_update_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: spanish Input: GroundingInSpanish.owl 

Web method: storeModel 

Description : Update of an entire german model into repository 

Role: teacher Use case: CUS009_update_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: german Input: GoungdingInGerman.owl 

Web method: storeModel 

Description : Update of an entire dutch model into repository 

Role: domain expert Use case: CUS009_update_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language: dutch Input: GroundingInDutch.owl 

Web method: storeModel 

Description : correct retrieval of a binary hgp model from repository 

Role: teacher Use case: CUS010_retrieve_hgp_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input: CommunicatingVessels_testing.owl 

Web method: retrieveModel 

Description : correct retrieval of a binary hgp model from repository 

Role: learner Use case: CUS010_retrieve_hgp_model 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input: GroundingInPortuguese.owl 

Web method: retrieveModel 

Description : correct retrieval of a binary hgp model from repository 

Role: domain expert Use case: CUS010_retrieve_hgp_model 
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TEST CASE: TC0087 

 
TEST CASE: TC0088 

 
TEST CASE: TC0089 

 
TEST CASE: TC0201 

 
TEST CASE: TC0202 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input: GroundingInSpanish.owl 

Web method: retrieveModel 

Description : incorrect retrieval of a binary hgp model from repository 

Role: teacher Use case: CUS010_retrieve_hgp_model 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language:  Input: xxCommunicatingVessels_testing 

Web method: retrieveModel 

Description : incorrect retrieval of a binary hgp model from repository 

Role: learner Use case: CUS010_retrieve_hgp_model 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language:  Input: xxCommunicatingVessels_testing 

Web method: retrieveModel 

Description : incorrect retrieval of a binary hgp model from repository 

Role: domain expert Use case: CUS010_retrieve_hgp_model 

Scenario:  incorrect Term type:  

Grounding type:  Ingredient:  

Language:  Input: xxCommunicatingVessels_testing 

Web method: retrieveModel 

Description : list courses using teacher role 

Role: teacher Use case: CUS011_list_courses 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input:  

Web method: listCourses 

Description : list courses using learner role 

Role: learner Use case: CUS011_list_courses 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input:  
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TEST CASE: TC0203 

 
 

Web method: listCourses 

Description : list courses using domain expert role 

Role: domain expert Use case: CUS011_list_courses 

Scenario:  correct Term type:  

Grounding type:  Ingredient:  

Language:  Input:  

Web method: listCourses 
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