

mDelivery date:

Submission date:

Leading beneficiary:

Status:

Dissemination level:

Authors:

2011/07/31 (Extension date: 2011/10/31)
2011/11/02
Universidad Politécnica de Madrid
Version 1.2 (final)
PU (public)
Jorge Gracia, Esther Lozano, Jochem Liem, Diego Collarana,
Oscar Corcho, Asunción Gómez-Pérez, and Boris Villazón

Delivery date:
Submission date:
Leading beneficiary:
Status:
Dissemination level:
Authors:

D4.4

Taxonomy-based collaborative filtering
algorithms

Deliverable number:

Deliverable title:

Project number:
Project acronym:
Project title:

Starting date:
Duration:
Call identifier:
Funding scheme:

231526
DynaLearn
DynaLearn - Engaging and
informed tools for learning
conceptual system knowledge
February 1st, 2009
36 Months
FP7-ICT-2007-3
Collaborative project (STREP)

Project No. 231526

Page 2 / 45

DynaLearn D4.4

Abstract

In DynaLearn, semantics of the QR models ingredients is made explicit by
representing them as terms in ontologies. That easies the task of exploring the
knowledge contained in the models, enabling rich comparisons among them. The
facts that the user explicitly represents in the model constitutes the asserted
ontology. Nevertheless, logical rules can be applied to these facts in order to
extract other knowledge (inferred facts) that was not made explicit by the modeller.
Taxonomical reasoning techniques can make emerge these inferred facts. In the
Semantic Technologies module in DynaLearn, the exploration of taxonomic
structures and the application of taxonomical reasoning techniques play a major
role.

This document describes the task of integrating taxonomic reasoning in DynaLearn
in order to enrich the results presented to users by discovering additional semantic
information that is not explicit in the QR models initially. This enables: (1) a better
identification of similar terms between models, which directly benefits feedback and
collaborative filtering, (2) detection of inconsistencies between models, which
enriches the information given to the user during semantic feedback, and (3)
classification of instances during the grounding process. All these aspects are
analysed in the document.

As an addition, and to complete the cycle of WP4 deliverables, we annex in this
document a description of the test plan that we created and applied regularly to the
different components of the ST module.

Internal review

• René Bühling, Multimedia Concepts and Applications, University of Augsburg (UAU),
Germany.

• Petya Borisova, Institute of Biodiversity and Ecosystem Research at the
Bulgarian Academy of Sciences (IBER)

Acknowledgements

We thank our internal reviewers for their careful review and useful comments.

Project No. 231526

Page 3 / 45

DynaLearn D4.4

Document History

Version Modification(s) Date Author(s)
0.1 Initial draft 2011-07-07 Jorge Gracia

0.2 Instance grounding & deriving domain
concepts 2011-09-26 Jochem Liem

0.3 Reasoning during semantic feedback
(draft) 2011-10-13 Esther Lozano

0.4 Taxonomic evaluation 2011-10-17 Esther Lozano
0.5 Inference during ontology matching 2011-10-18 Jorge Gracia
0.6 Taxonomic evaluation revised 2011-10-19 Jorge Gracia
0.7 Sections 1, 2, and 4 revised 2011-10-20 Jochem Liem
0.8 Annex A added 2011-10-20 Diego Collarana
0.9 Version for internal review 2011-10-20 Jorge Gracia
1.0 Section 3 revised 2011-10-21 Jochem Liem
1.1 Annex A revised 2011-10-31 Diego Collarana

1.2 Version corrected after internal review
(final) 2011-10-31 Jorge Gracia

Project No. 231526

Page 4 / 45

DynaLearn D4.4

Contents

1. Introduction ___ 5

2. Inference during ontology matching ___ 7

2.1. CIDER system __ 7

2.2. Inference to enhance similarity computation _____________________________________ 8

3. Inference during semantic feedback ___ 12

3.1. Taxonomic evaluation in ontologies __ 12

3.1.1. Inconsistency __ 13

3.1.2. Incompleteness ___ 13

3.1.3. Redundancy ___ 13

3.2. Taxonomic evaluation in DynaLearn __ 13

3.2.1. Inconsistency errors ___ 15

3.2.2. Incomplete concept classification _______________________________________ 16

4. Inference during instance grounding ___ 17

4.1. Identical data structure for ‘Show types’ options _________________________________ 17

4.2. Problem: ‘Show types’ off issues for grounding and feedback ______________________ 18

4.3. Allowing grounding of instances ___ 19

4.4. Solution: Deriving domain concepts from DBPedia concepts _______________________ 20

5. Conclusion ___ 22

6. Discussion ___ 23

References ___ 24

Appendix A: Semantic Technologies Testing Plan _______________________________________ 25

Project No. 231526

Page 5 / 45

DynaLearn D4.4

1. Introduction

According to the Description of Work (DoW), Task 4.4 is aimed to “integrate taxonomic reasoning in
DynaLearn” in order to “improve the accuracy of the results presented to users, since they will allow
relating topics that would not be considered as similar initially due to the absence of taxonomic models
in the algorithms”.

The Semantic Technologies (ST) module in DynaLearn enables the online storage of user QR models,
for their later reuse as well as to serve as basis for semantic feedback generation [10,6]. In fact, at
modelling time, comparisons with other QR models in the repository can be established in order to
detect expert knowledge that can enrich or correct the current model. This is, precisely, the task of the
semantic feedback component [10]. Furthermore, semantic feedback needs a previous task for
selecting relevant expert knowledge from which the feedback will be extracted. This is the
recommendation process [9].

For the recommendation task in DynaLearn, Collaborative Filtering techniques are used to filter the
information that is given back to the user when he asks for semantic-based feedback, primarily by
selecting suitable reference models as source of that information. In general, Collaborative Filtering
aims to provide personalized recommendations to users based on information obtained from similar
like-minded users [1]. Such recommendation algorithms, largely discussed in [9], rely upon
comparisons which are established between the user model and the knowledge contained in the
semantic repository, in order to compute similarities that are used to select suitable reference models
for generating suggestions.

In the process of identifying relevant knowledge for feedback, the exploration of taxonomic structures
and the application of semantic reasoning techniques play a central role. Precisely , the objective of
this deliverable is to describe the application of taxonomic reasoning1 in different parts of the
grounding, recommendation, and feedback process. As it is described in [9], our algorithms are not
limited to user-based ratings, tags and keywords as other recommendation algorithms do, but also
consider the knowledge characteristics of models created by users. This knowledge is described in
terms of ontologies. Ontologies can express facts as logical statements and inference rules can be
applied to enrich the asserted knowledge with new inferred one not explicitly declared in the user
models. A very simple example is offered by transitive entailment: A subclassOf B and B subclassOf C
⇒ A subclassOf C

Despite the fact that the title of the document refers to collaborative filtering techniques, the application
of semantic reasoning in DynaLearn has a larger scope and touches several components of the ST
module:

- Ontology mapping techniques. Ontology mapping techniques (see [6,10]) bridge across
different knowledge models to enable the obtaining of relevant semantic feedback.

- Semantic-based feedback. During the generation of semantic feedback, we can use the
reference model to detect taxonomic errors in the learner model by applying semantic
reasoning techniques.

- Grounding. For Learning Spaces 1 to 5, hierarchy of the entities is not explicit and supertypes
are hidden, which hampers the semantic reconciliation between models required to enable
recommendations and feedback. There are certain cases in which the mechanisms we used

1 We use taxonomic reasoning and semantic reasoning in an interchangeable way along the document.

Project No. 231526

Page 6 / 45

DynaLearn D4.4

for multiword grounding [6] can be used to infer common types of independent instances,
which lead to a better modelling scheme.

The application of lightweight semantic inference in the above scenarios results is a richer
recommendation and feedback, as much extra knowledge relevant to the user is discovered during the
process.

The rest of this document is organised as follows. In Section 2, inference during the ontology matching
process is presented. Section 3 focuses on the role of taxonomic reasoning during semantic feedback.
Section 4 describes our algorithms to classify instances during grounding. Finally, Sections 5 and 6
close the document with the conclusions and discussion of results respectively.

Project No. 231526

Page 7 / 45

DynaLearn D4.4

2. Inference during ontology matching

As it was described in Deliverable D4.1, the Semantic Techniques (ST) module in DynaLearn requires
the intervention of a tool for ontology alignment. In fact, we need techniques to reconcile different QR
models in order to analyse the similarities and differences between them and, based on that, provide
useful feedback during the modelling construction. To that end, the use of well-established ontology
matching techniques was analysed in Deliverable D4.1. As result of this study we opted to use CIDER
CIDER (Context and Inference baseD ontology alignER) [4] in DynaLearn. In the rest of this section
we briefly introduce CIDER, we comment on the use of semantic reasoning during the matching
process in CIDER, and finally explore the effect of semantic reasoning in the feedback by exploring
some real examples.

2.1. CIDER system

CIDER [4] is designed to discover equivalence relationships between ontology terms (ingredients of
qualitative models in the case of DynaLearn). The system performs ontology matching between two
given ontologies, producing a set of correspondences as output. Figure 1 shows a schematic view of
the approach. O1 and O2 represent the input ontologies. M is the matrix of resultant comparisons
among ontology terms, and A is the extracted alignment.

The first step is to extract the ontological context of each involved term, that is, their synonyms, textual
descriptions, related terms in the taxonomy, etc. This process is enriched by applying lightweight
inference mechanism, in order to add more semantic information that is not explicit in the asserted
ontologies, as we will see later in Section 2.2. By lightweight inference we mean that the number of
applied inference rules will not be high, because high inference levels are very time consuming, thus
hampering scalability. One can found in transitive inference level the best balance between quality of
results and time response in CIDER, therefore it is adopted as default mode [4]. Also CIDER behaves
reasonably well at level of RDFS inference rules. However, in scenarios where time response is not an
issue, or ontologies are small, higher inference levels can be applied.

Figure 1: Scheme of CIDER

Project No. 231526

Page 8 / 45

DynaLearn D4.4

The next step, once the ontological context has been extracted, is to compute a semantic similarity
measure between each pair of aligned terms. To that end, several elementary similarity measures are
computed first. They involve lexical similarity between labels, as well as structural similarities, based
on vector space modelling techniques [13], between the taxonomies and the relations among terms.

In order to avoid the necessity of manual tuning when combining these measures, an artificial neural
network (ANN) was trained to that end. ANNs constitute an adaptive type of systems composed of
interconnected artificial neurons which change the structure based on external or internal information
that flows through the network during a learning phase [12]. In CIDER, the above mentioned
similarities are the input to the neural network (a multilayer perceptron) that combines them into a final
similarity degree for each pair of terms. These similarities are organised in a matrix (M, in Figure 1)
and, finally, an alignment (A) is extracted from it, filtering out the results below a certain threshold.

In principle, the ANN in CIDER has been trained with a subset of the reference alignments provided in
the benchmark track of the Ontology Alignment Evaluation Initiative2 (OAEI). Nevertheless, it can be
trained with data from any other domain, so the system can be adapted in the future to the
environmental (or other) domain.

CIDER has been developed in Java (which favours its integration in DynaLearn ST component),
extending the Alignment API [2]. The input are ontologies expressed in OWL (Web Ontology
Language), and the output is served as a file expressed in the alignment format [2], although it can be
easily translated to other formats as well.

2.2. Inference to enhance similarity computation

The ontological context extraction phase in the process described in Section 2.1 is aimed to retrieve
as much different semantic information about the ontology terms as possible, to allow a precise
comparison later. In principle, the nearest neighbouring ontological elements are extracted, however
enriched by adding the inferred facts deduced from a reasoning service (as we will discuss later in this
section).

The extracted ontological elements comprise: URI, identifying label, synonym labels, and glosses
(descriptions in natural language). Additionally, other elements that depend on the type of ontology
term are extracted:

• For classes: Hypernyms and hyponyms (the direct ones and the others inferred from the
hierarchy), properties for which the term is the domain, and classes related to the explored
term by any other property.

• For properties: Superproperties and subproperties of the hierarchy, as well as domains and
ranges of the explored term.

• For individuals: Associated concepts, properties, and property values.

The way we access and retrieve the ontological information of the ontology term depends on the
nature of the accessed source of knowledge. When used in the context of DynaLearn, the ontologies

2 http://oaei.ontologymatching.org/2011/

Project No. 231526

Page 9 / 45

DynaLearn D4.4

are loaded as model objects in the Jena semantic framework3, to be interrogated later by using
SPARQL [11] and Jena Ontology API.

As mentioned before, we apply an external reasoning service during this extraction step. To that end,
Jena built-in reasoner4 is used, although other reasoners can be used instead. It allows us to load and
interrogate the inferred ontology instead of the asserted one. Different levels of inference can be
applied:

• No inference. Only elements from the asserted ontology are extracted.

• Transitive inference. All super/subterms reached by transitivity are added to the extracted
ontological context.

• RDFS inference. Apart from transitivity, other RDFS entailments are applied [7] (e.g., given p a
property, c a class and a and b instances, c is domain of p and a related to b by p ⇒ a is an
instance of c).

• OWL inference. In addition to transitive and RDFS entailments, other OWL rules are
considered (e.g., given the classes c,d,e, c = unionOf(d,e) ⇒ d and e are subclasses of c).

Other levels are possible as, for example, the different subsets of OWL rules allowed by Jena built-in
reasoner. CIDER applies lightweight inference because it uses low inference levels (transitive, or
RDFS) preferentially to operate.

Let us see a simple example to illustrate the benefits of enriching the ontological context with inferred
facts before the similarity computation. Suppose that we have two models (learner and expert) in
which the animal lion is semantically represented in two different ways (see Figure 2). Suppose that
we want to discover semantic equivalences between the two models (for instance, to link the learner
model with the expert one in order to derive semantic feedback, see [10]). Then our similarity
computation should be able to discover that “lion” in model 1 (learner) corresponds to “Panthera leo”
(the scientific name for lion) in model 2 (expert).

Figure 2: example of models to be matched (denotes subsumpion)

3 http://jena.sourceforge.net/

4 http://jena.sourceforge.net/inference/

Project No. 231526

Page 10 / 45

DynaLearn D4.4

If the ontological contexts of “lion” (model 1) and “Panthera leo” (model 2) were extracted without
inference, the comparisons to compute the elementary semantic similarities will take place as
illustrated in Figure 3, where lexical information of the terms (a) is compared, as well as direct
superterms (b) and relationships with other terms (c).

Figure 3: comparisons between the asserted ontologies

Thus, comparisons at levels a, b and c will give several similarity values, that combined by means of
the ANN lead to a final similarity value

 simno_inference(model1#lion, model2#PantheraLeo)

Nevertheless, a simple inspection of the models shows that there is still semantic information in the
models not initially considered in the comparisons but that could be reached by applying simple
inference rules. For instance, the ancestors of “feline” in model 2 can be reached by transitivity.
Furthermore, the fact that “lion” predates “herbivore” (not explicitly declared in model 2) can be
reached by applying RDFS inference.

Figure 4: models with new inferred facts

Figure 4 shows the enriched ontological context of “lion” and “Panthera leo” after applying RDFS
inference rules. Thus, comparisons between them for computing similarities are richer now and new

Project No. 231526

Page 11 / 45

DynaLearn D4.4

common facts can be easily detected (such as the fact that “lion” is a “carnivore” or that it “predates
herbivore”). This is schematized in Figure 5.

Figure 5: comparisons between the inferred ontologies

Comparisons between the ontological contexts lead to a new similarity value:

simRDFS_inference(model1#lion, model2#PantheraLeo)

Owing to the fact that more similar facts are captured in the second case, we have in this case that

simno_inference(model1#lion, model2#PantheraLeo) < simRDFS_inference(model1#lion, model2#PantheraLeo)

The increment in the similarity value makes easier to identify both concepts as equivalent, thus
increasing the possibilities of generating useful semantic feedback for that.

Project No. 231526

Page 12 / 45

DynaLearn D4.4

3. Inference during semantic feedback

In this section we review the typical errors that modellers can make when representing taxonomical
knowledge (inconsistency, incompleteness, etc.). Then, the particularities of modelling in DynaLearn
are analysed, which prevents many of the common errors, although limiting also the expressivity of the
resultant model. Finally, the rules that The ST component implements to detect some of these
inconsistency errors are explained with some detail.

In fact, after the ontology matching process, we use semantic reasoning techniques to detect
taxonomic inconsistencies between entities of the two models. As we explained in [10], QR models are
treated as ontologies for the generation of semantic feedback. In order to analyse the taxonomic
correctness of the model, we follow the categories for taxonomic evaluation proposed in [3], detailed in
the following.

3.1. Taxonomic evaluation in ontologies

When representing taxonomic knowledge, there are different types of errors a modeller can make.
These errors can be classified in three groups: inconsistency, incompleteness, and redundancy [3].
Figure 6 shows this classification.

Figure 6: Classification of errors when modelling taxonomies

Project No. 231526

Page 13 / 45

DynaLearn D4.4

3.1.1. Inconsistency

Within the inconsistency errors we find three subcategories: circulatory errors, semantic inconsistency
errors, and partition errors.

Circulatory errors: They occur when a class is defined as subclass or superclass of itself. This can
occur at any level of the hierarchy and with distance 0 (i.e. subclass of itself), 1 (subclass of its
superclass) or n. E.g., lion isA feline and feline isA lion.

Semantic inconsistency errors: They occur when the modeller makes an incorrect semantic
classification and represents a concept as subclass of a concept that it is not really its superclass.
E.g., whale isA fish.

Partition errors: Concept classifications can be categorized in three groups: disjoint (disjoint
decompositions), complete (exhaustive decompositions), and disjoint and complete (partitions). In the
context of DynaLearn, the taxonomies of QR models can be seen as partitions since the classes are
all of them disjoint (the classes do not share common instances). The types of partition errors related
to the disjoint decompositions are the following:

• Common classes in disjoint decompositions and partitions. These happen when a class C is
simultaneously subclass of A and B, being A and B defined as disjoint.

• Common instances in disjoint decompositions and partitions. These occur when an instance
belongs simultaneously to classes A and B, being A and B defined as disjoint.

3.1.2. Incompleteness

Incompleteness on taxonomies occurs when the superclasses of a particular class are imprecise or
over-specified, and when explicit information about hierarchical relations is missing. These common
omissions can be classified as:

Incomplete concept classification: This happens when the classification of concepts is incomplete
and does not cover properly the corresponding domain.

Partition errors: These occur when the definition of disjoint and exhaustive knowledge between
classes is omitted. For instance, the modeller omits to define that the subclasses of a given class are
disjoint; or the modeller misses the completeness constraint between the subclasses and their
superclass.

3.1.3. Redundancy

Opposite to incompleteness, there exist redundancy errors. These occur when there is more than one
explicit definition of any hierarchical relation (subclass-of, instance-of, etc.) or when there are two
classes or instances with the same formal definition.

3.2. Taxonomic evaluation in DynaLearn

The discussion introduced in Section 3.1 is general for any ontology. Most of the above errors can be
automatically detected, in principle, with the intervention of a semantic reasoner (e.g., by classifying

Project No. 231526

Page 14 / 45

DynaLearn D4.4

the instances in the taxonomy, membership of an instance to various disjoint classes could be
detected). Other modelling errors, such as incomplete concept classification, cannot be easily
captured by a semantic reasoner and would require expert validation.

Nevertheless, taxonomies in QR models have certain particularities “by construction” that somehow
limits the potential of automatic taxonomical validation. The main particularities are:

• All the decompositions in the DynaLearn taxonomies are disjoint.

• Only entities can have an associated hierarchy.

• Multiple inheritances are not allowed.

• Instances cannot be assigned to more than one class.

• Exhaustive decompositions cannot be specified.

• Semantic expressivity is limited. For instance it is no possible to express cardinality
restrictions, property restrictions, enumerated classes, Boolean combinations (union,
complement, and intersection), etc.

These features are caused by the inherent nature of QR models and the strict controls that the user
interface establishes during the creation of the model.

In such scenario, we posed ourselves the following question: Can semantic reasoning be useful for
detecting modelling errors in QR models? In fact, the above mentioned particularities prevent the user
to make most of the errors summarized in Figure 6, at the cost of limiting the semantic expressivity of
the model. Therefore, only the following two errors might happen within the scope of a single QR
model: incomplete concept classification and inconsistency semantic errors. Only the latter could be
detected by semantic reasoners, although with a limited capability due to the lack of class restrictions
in the QR models.

Given that situation, is it still possible to detect taxonomical errors in QR models? And if so, how can
we do that? The answer comes from considering not only one model (the one under construction) but
considering also the knowledge contained in another reference models. Precisely, comparison with
other models is part of the semantic feedback process (see Deliverable D4.2), so the evaluation of
taxonomical errors can be performed during that step.

During the generation of semantic feedback, and as result of the ontology matching process, we
obtain a list of equivalent terms. Two terms identified as equivalent exhibit some commonalities, like
their labels or the resources they are grounded to. In the case of entities at learning space six, they
should share not only the terminology but also their hierarchical relations. When the ontological
contexts of the matched terms are considered together, it is possible to detect inconsistencies and
incompleteness that could not be detected in isolation:

1. Inconsistency -> circularity errors

2. Inconsistency -> partition errors -> common classes and common instances in disjoint
decompositions

3. Inconsistency -> semantic errors

4. Incompleteness -> incomplete concept classification

5. Incompleteness -> partition errors -> disjoint knowledge omission

Project No. 231526

Page 15 / 45

DynaLearn D4.4

Notice that completeness (exhaustive decompositions) cannot be modelled in DynaLearn, thus being
this feature irrelevant from the perspective of giving semantic feedback to users. Also redundancy will
not happen due to the constraints imposed by the interface during modelling.

3.2.1. Inconsistency errors

When two models created separately are put in relation by means of the ontology matching
techniques, certain semantic inconsistencies can arise. That is the case of circularity errors can
emerge (e.g., modelA: animal isA livingThing; model B: livingThing isA Animal), as well as partition
errors and semantic errors. In order to detect these problems in the learner model, we need to obtain
the equivalent classes of the reference model and integrate them into the learner model. Only then we
are able to detect the semantic inconsistencies.

As an example, Figure 7 shows the entity hierarchy of a learner model and Figure 8 the entity
hierarchy of a reference model:

Figure 7: Entity hierarchy of a learner model

Figure 8: Entity hierarchy of a reference model

In this example, we can see that the learner model represents the entity Whale as subclass of the
entity Fish. However, in the reference model another entity Whale is defined as subclass of the entity
Mammal. On the other hand, the entities Fish and Mammal are disjoint classes, since all classes in
these QR models are disjoint by definition. Then, if the entity Whale of the learner model has been
identified as equivalent to the entity Whale of the reference model, we are in front of an inconsistent
situation, since the same class cannot be subclass of two disjoint classes.

Algorithm

For each pair of entities found equivalent during the ontology matching process:

1. Get the super class of the term in the reference model (refSuperclass).

Project No. 231526

Page 16 / 45

DynaLearn D4.4

2. Get the super class of the term in the learner model (learnerSuperclass).

3. If both super classes exist, check if the pair of super classes belongs to the list of mappings.

i. If the super classes are not equivalent, report the inconsistency.

4. Get the subclass of the term in the reference model (refSubclass).

5. Get the subclass of the term in the learner model (learnerSubclass).

6. If both subclasses exist, check if the pair of subclasses belongs to the list of mappings.

i. If the subclasses are not equivalent, report the inconsistency.

3.2.2. Incomplete concept classification

Also incompleteness issues can emerge when putting together the learner and reference models. In
this case, we need to detect the missing concepts in the hierarchy of the learner model. That is, to find
the entities not modelled by the learner but necessary according to the reference model. This process
is a particular case for the technique to detect missing terms and that we detailed in Deliverable D4.2.
In this case we want to detect the missing entities and, when possible, to find the equivalent position in
the learner hierarchy where this missing entity should be added.

Project No. 231526

Page 17 / 45

DynaLearn D4.4

4. Inference during instance grounding

In the modelling environment of the DynaLearn software, models can be developed in 6 different
learning spaces. Each of these learning spaces is progressively richer in the set of model ingredients
that can be used. As such, students can be introduced more gradually to QR concepts. By default, in
learning spaces 1 through 5, the software allows model ingredients to be added to the model using a
single manipulation. Both of these features are meant to make the software easier to use [8]. For
learning space 6, on the contrary, richer modelling techniques are available, enabling the user to
explicitly state which concepts are entities and which others are individuals of those entities. Along the
remainder of this section we assume that the user operates in learning space 1 to 5.

One consequence of making possible to add model ingredients in a single manipulation is that
learners are not explicitly modelling domain concepts. That is, modellers are not explicitly defining the
model ingredient definitions representing the vocabulary that is used to compose the rest of the model.
These model ingredient definitions (which we will call domain concepts) can be considered to be the
classes in an ontology.

In DynaLearn, a learner can create the entity “Water left” to represent the water that is left in a water
body in a single manipulation (Figure 9). However, to make it possible to explicitly model domain
concepts, the setting “Show types” (which is off by default) can be turned on. When adding a model
ingredient, the modeller can indicate both a name for the associated concept (or select a previously
defined concept name) and an instance name.

Figure 9: An example model on LS2 created with “Show types” turned off.

When learners will be confronted with the DynaLearn software for the first time, typically, the domain
concept names will not be explicitly modelled by students (Show types will be in its default off setting).
As such, the models will have an appearance similar to the model shown in Figure 9.

4.1. Identical data structure for “Show types” options

After creating an initial model with “Show types” off, a teacher might decide to encourage the learners
to model the domain concepts explicitly. The data structure of the models in DynaLearn have been
developed in such a way that by simply turning “Show types” on, the learner can make the domain
concepts explicit by adapting the model he was working on. There is no need to start from scratch.

Project No. 231526

Page 18 / 45

DynaLearn D4.4

The dialogs that are used to add model ingredients are automatically changes so that the domain
concept names can be added. Furthermore, the visualisation of the model is adapted so that the
domain concepts are visible (Figure 10).

Figure 10: The same model showing the inferred types when “Show types” is turned on.

Technically, the data structure allows such altering of the “Show types” option, by “inferring” the
domain concept from the instance name, which is reflected in the software through a model ingredient
definition. For example, once the entity “Water left” is added to the model, in the data structure the
entity definition “Water left” is automatically created, and the instance “Water left” is made a member
of this definition. As such, when the “Show types” option is set to “on” for the model in Figure 9, the
visualisation will show Figure 10. The learner is then free to adapt the domain concepts that have
been inferred from the instances.

4.2. Problem: “Show types” off issues for grounding and feedback

The interface decision to, by default, not model domain concepts has some consequences on some of
the interactions in DynaLearn. It is plausible that learners will never make the step to make the domain
concepts explicit. That is, they will keep “Show types” off, and in the model data structure the domain
concepts will have been inferred from the names given to the model ingredients. As a result, the
domain concepts in these models will be suboptimal.

Models of this type will cause problems particularly for the grounding and semantic feedback
functionalities. The grounding functionality attempts to find concepts in DBPedia that match the
domain concepts in the QR model [5,6]. There are three issues that make grounding with “Show
types” off unusable in its previous incarnation. Firstly, learners modelling with “Show types” off, do not
encounter domain concepts in the software during modelling. As such, when they enter the grounding
screen, they will encounter the domain concept versions of their instances. If the grounding dialog
suggests a domain concept to be renamed, the domain concept will be renamed, but not the instance.
This breaks the design choice to keep the domain concepts hidden, and will potentially lead to
confusion.

Secondly, when a model contains two instances of the same domain concept (e.g. “container left” and
“container right”), they cannot be correctly grounded (to the DBPedia concept “container”). The reason
is that DynaLearn prevents different domain concepts to be grounded to the same domain concept (as
it would mean that the two domain concepts are equivalent). With “Show types” on, the modeller is
encouraged to merge the two domain concepts. However, with “Show types” off, the modeller is not

Project No. 231526

Page 19 / 45

DynaLearn D4.4

confronted with domain concepts at all. As such, he does not have the ability to merge the two
concepts.

Thirdly and finally, the grounding functionality was not designed to find concepts based on specific
examples of such concepts (e.g. the concept “Water” for the water that is left in the water body). As
such, the correct results for the grounding can potentially not be found.

The semantic feedback [10,9], which generates suggestions on how to change a particular model
based on a large repository of models, is affected due to the models not adequately being grounded.
An important step in generating the feedback is determining which models in the repository are
relevant to generate the feedback from. In order to do this, models are selected that have groundings
in common with the learner model. Consequently, the models developed with “Show types” off and
which are not or badly grounded, result in poor semantic feedback being generated, as concepts in
different models could be wrongly considered equivalent by the ontology matching tool.

For the reasons mentioned above, we advised against using the grounding and semantic feedback
functionalities with “Show types” off. However, from the teachers in DynaLearn there is a strong desire
to use the grounding and feedback with “Show types” off, as most of them are running evaluations with
beginning students. Moreover, the grounding and semantic feedback could have bigger impact on the
education if they can also be used with “Show types” off.

4.3. Allowing grounding of instances

Our solution to the issues with grounding and semantic feedback that were discussed in the previous
section is to allow instances to be grounded individually. This decision has wide-ranging
consequences as will be discussed in the following sections. Most notable to the modellers is the
changed grounding dialog that is shown when “Show types” is turned off. This grounding dialog for
instances is almost equivalent to the grounding dialog for domain concepts. The main difference is that
the list on the left hand side of the screen shows the instances of particular domain concepts instead
of the domain concepts themselves (Figure 11).

Project No. 231526

Page 20 / 45

DynaLearn D4.4

Figure 11: The grounding dialog adapted for instances.

In order to solve the issue of finding domain concepts when grounding using instance names the multi-
word grounding functionality is used. By grounding subsets of the words used to describe the
instance, the results returned when grounding instances is improved [6]. Since most of this
functionality was already in place, it could be easily utilized for instance grounding.

4.4. Solution: Deriving domain concepts from DBPedia concepts

The main difficulties of grounding instances, namely grounding multiple instances of the same domain
concept and not confronting modellers with domain concepts (with “Show types” off) are resolved by
deriving domain concepts from the DBPedia concepts that the instances are grounded to. The
example that inspires this idea is simple. Suppose we have both “Container left” and “Container right”
in a model. If a modeller grounds “Container left” to the DBPedia concept “Container”, we can use this
DBPedia label to improve the label of the domain concept in DynaLearn by renaming “Container left”
to “Container”. The instance name is preserved as “Container left”. As such, the modeller is unaware
that this improvement of the domain concepts has occurred, as is the goal with “Show types” turned
off.

When “Container right” is also grounded to DBPedia “Container”, a clash occurs. DynaLearn does not
allow multiple domain concepts to be grounded to the same concept, as it has a unique name
assumption (things with different names refer to different concepts). To resolve this issue, “Container
right” is made an instance of “Container” (formally “Container left”), and “Container right” is deleted. As
a result, the model is correctly grounded, and both instances are part of the same domain concept.
Moreover, the learner is kept unaware of that these changes have occurred and is kept unaware of
domain concepts (as is the design choice with “Show types off”). As a result of the correct grounding,
the semantic feedback can be correctly used.

The procedure described above should give a good indication of the form of the solution. However, a
complete solution is not as simple as the example suggests. For example, when the grounding of one

Project No. 231526

Page 21 / 45

DynaLearn D4.4

of the instances for which the domain concepts were merged is deleted (e.g. for “Container right”), the
original domain concept has to be restored. A more complex example is when a grounded instance
with a merged domain concept is grounded to another grounded instance, e.g. “Water right” which is
grounded to DBPedia “Water” is grounded to DBPedia “Water right” (the legislation governing water
bodies). First, the domain concept of water has to be unmerged, which is equivalent to deleting the
grounding for “Water right”. Secondly, the instance “Water right” has to be made an instance of the
already existing definition of “Water right” and its original definition has to be deleted. At the same
time, name clashes for domain concepts have to be prevented.

The complete procedure to allow instance grounding to infer the correct domain concepts (including
making sure the instances belong to the correct domain concept) is shown in Figure 12 and Figure 13
(note that the domain concepts are called “instance definition” in the images). This procedure uses the
grounding process to improve the domain concepts using the labels in DBPedia. As a result, the
instances are members of the correct domain concept and the domain concepts are named correctly.
Finally, in addition to making the grounding work with “Show types” off, it also makes the use of the
semantic feedback functionality possible with this setting.

Figure 12: Flow diagram showing the procedure followed when grounding instances.

Figure 13: Flow diagram showing the procedure when deleting groundings of instances.

Project No. 231526

Page 22 / 45

DynaLearn D4.4

5. Conclusion

This deliverable describes the progress on Task 4.4 “Integrate taxonomic reasoning” aimed at
improving the quality of the semantic information presented to users, since taxonomic reasoning “will
allow relating topics that would not be considered as similar initially”.

First, we have discussed the opportunities of discovering better mappings between models during
ontology matching by applying lightweight reasoning techniques. Second, a discussion of the typical
modelling error when representing taxonomical knowledge has been presented, and how they are
influenced by the particularities of DynaLearn. As a consequence of this analysis, different rules to
detect inconsistencies during semantic feedback have been presented. Finally, we have analysed how
the simplified way in which DynaLearn deals with individuals in learning spaces 1 to 5 leads to a
suboptimal way of naming domain concepts. We have presented a solution to this issue that takes
advantage of the grounding process to infer better concept names.

Project No. 231526

Page 23 / 45

DynaLearn D4.4

6. Discussion

Although taxonomical reasoning was initially planned in the project in the context of collaborative
filtering, we have discovered several other aspects in our algorithms that may benefit of that, namely:
ontology matching, semantic feedback generation, and grounding, thus resulting in a better semantic
feedback and recommendation as we have discussed in this deliverable.

Nevertheless, some of the ideas contained in this document still need to be further tested and
evaluated. In fact, we plan to perform more tests during the remainder of the project in parallel with the
evaluations carried out for WP7. That will allow us to further test our hypothesis and figure out new
ways of enriching our techniques in the future.

Project No. 231526

Page 24 / 45

DynaLearn D4.4

References

1. D. Billsus, C.A. Brunk, C. Evans, B. Gladish, and M. Pazzani (2002). “Adaptive interfaces for
ubiquitous web access”, Communications of the ACM, 45(5): 34-38.

2. J. Euzenat, “An API for ontology alignment” in 3rd International Semantic Web Conference
(ISWC'04), Hiroshima (Japan). Springer, November 2004.

3. A. Gómez-Pérez. “Evaluation of Ontologies”, International Journal of Intelligent Systems
16(3):391-409.

4. J. Gracia, J. Bernad and E. Mena, “Ontology matching with CIDER: Evaluation report for OAEI
2011”, in Proc. of 6rd Ontology Matching Workshop (OM'11), at ISWC'11, Bonn, Germany, CEUR-
WS, October 2011.

5. J. Gracia, J. Liem, E. Lozano, O. Corcho, M. Trna, A. Gómez-Pérez, and B. Bredeweg, "Semantic
techniques for enabling knowledge reuse in conceptual modelling," in Proc. of 9th International
Semantic Web Conference (ISWC2010), Shanghai(China), ser. LNCS, vol. 6497. Springer, Nov.
2010, pp. 82-97.

6. J. Gracia, M. Trna, E. Lozano, T.T. Nguyen, A. Gómez-Pérez, C. Montaña, and J. Liem,
“Semantic repository and ontology mapping”. DynaLearn, EC FP7 STREP project 231526,
Deliverable D4.1. 2010.

7. P. Hayes, "RDF semantics," W3C, Tech. Rep., Feb. 2004. Available: http://www.w3.org/TR/rdf-mt/

8. J. Liem, W. Beek, and B. Bredeweg. “Differentiating Qualitative Representations into Learning
Spaces”. 24th International Workshop on Qualitative Reasoning (QR’10), Portland, Oregon, USA,
pages 37-46, August 2010.

9. E. Lozano et al. “Model-based and memory-based collaborative filtering algorithms for complex
knowledge models”. DynaLearn, EC FP7 STREP project 231526, Deliverable D4.3. 2011

10. E. Lozano, J. Gracia, A. Gómez-Pérez, J. Liem, C. van Weelden, and B. Bredeweg. “Ontology-
based feedback on model quality.” DynaLearn, EC FP7 STREP project 231526, Deliverable D4.2.
2010

11. E. Prud'hommeaux and A. Seaborne, "SPARQL query language for RDF," W3C
Recommendation, Tech. Rep., Jan. 2008. Available at: http://www.w3.org/TR/rdf-sparql-query/

12. M. Smith. “Neural Networks for Statistical Modeling,” John Wiley & Sons, Inc., New York, NY,
USA, 1993.

13. V. Raghavan and S. Wong. “A critical analysis of vector space model for information retrieval”. In
Journal of the American society for information science 37, 1986.

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/TR/rdf-sparql-query/

Project No. 231526

Page 25 / 45

DynaLearn D4.4

Appendix A: Semantic Technologies Testing Plan

A1. Overview

This section describes the testing plan executed on a weekly basis by the UPM team as part of the
DynaLearn Testing Procedures. The Scope section describes the major functionalities included in the
test plan, the Testing Process section explains the initial conditions, the process steps that are
automatically executed and the final results. At the end of this Appendix the complete test cases list is
presented.

A2. Scope

The following table lists the major functionalities that are included in the test process. They are
represented as test suites that contain several test cases covering and ensuring the proper operation
of the application. The complete list of test cases is described in “Test Cases Definition” section.

Test Suite Description

CUS001: Log in to repository Validates the authentication service to the semantic
repository.

CUS002: Open model Validates the correct reception of a model from the
repository.

CUS003: Storage model Validates the correct saving process of models in the
semantic repository.

CUS004: Ground model Validates the grounding of entire modules functionality.
Models in English, Spanish, Portuguese and German are
tested.

CUS005: Ground term Validates the grounding of term functionality. Single and
Compound words are used in the test as well as different
languages: English, Spanish, Portuguese and German.

CUS007: List models Validates the list models functionality.

CUS008: Query models Validates the model filtering by using a term.

CUS009: Update model Validates the replacing of an existing model into repository

CUS010: Open HGP model Validates the correct reception of an available model in
repository in HGP binary format.

CUS011: Get Feedback Validates the feedback functionality service.

A3. Testing Process

The following initial conditions are required before executing the test:

Project No. 231526

Page 26 / 45

DynaLearn D4.4

• Accounts: To execute the test plan the following valid users and passwords are required.
 demo-student@dynalearn.eu
 demo-teacher@dynalearn.eu
 upm-domex@example.com

• Test Server: Testing will be done on testing web service
http://elnath.dia.fi.upm.es:8020/SemanticTechnology/services/WSServerSecured?wsdl

• Models: The following are the HGP models used in this test plan
 CommunicatingVessels_testing.hgp
 GroundingInSpanish.hgp
 GroundingInPortuguese.hgp
 GoungdingInGerman.hgp
 Example_RefModel.hgp

The test is automatically executed by using ANT, SoapUI and a script that exports the models into
OWL. Find below the flow chart describing the automatic process performed during the test execution:

Figure 14: Flowchart of the testing process

The testing results and reports are automatically generated too, these include test suite results, failed
test case reports, and a complete process report in HTML format; the following screenshots provides a
better idea of the final report:

mailto:demo-student@dynalearn.eu
mailto:demo-teacher@dynalearn.eu
mailto:upm-domex@example.com
http://elnath.dia.fi.upm.es:8020/SemanticTechnology/services/WSServerSecured?wsdl

Project No. 231526

Page 27 / 45

DynaLearn D4.4

Figure 15: Global view of the test report

Figure 16: Test suite details

A failure happens when one of the test case assertions fails. That is, the program does something
wrong and the test case notices and reports the fact. An error occurs when some other unexpected
Exception is triggered (e.g., a NullPointerException or an ArrayIndexOutOfBoundsException).

A4. Test Cases Definition

Each Test Suite is tested in different ways. For doing this, there are some test cases associated to
each test suite. This section specifies each automatic test case defined to ensure the availability of the
ST in DynaLearn project.

Project No. 231526

Page 28 / 45

DynaLearn D4.4

In order to understand the specifications below, the fields are defined in the next list:

• Description: Brief description of the test case.
• Role: Role of the user who is calling the service for testing.
• Use case: The test suite to which a test case is related.
• Scenario: A test case could have one of two possible values in this field (correct and incorrect)

whenever the input is a right or wrong value. In both cases the system must work.
• Term type: During grounding, the term to ground could be single o multi word.
• Grounding type: During grounding, the term can be grounded to DBpedia (or any other

background ontology) or grounded to an anchor term.
• Ingredient: It refers to the ingredient to be grounded in the QR model, for example: entity,

agent, configuration, etc.
• Language: The language of the involved term or model.
• Input: Web method calling parameter.
• Web method: Web method to call.

TEST CASE: TC0001

TEST CASE: TC0002

TEST CASE: TC0003

TEST CASE: TC0004

Description: A simple correct login test by using teacher role

Role: teacher Use case: CUS001_Log_in_to_repository

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input: demo-teacher@dynalearn.eu, te@cher

Web method:

Description: A simple incorrect login test by using teacher role

Role: teacher Use case: CUS001_Log_in_to_repository

Scenario: incorrect Term type:
Grounding type: Ingredient:
Language: Input: demo-teacher@dynalearn.eu, xxxxx

Web method:

Description: A simple correct login test by using learner role

Role: learner Use case: CUS001_Log_in_to_repository

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input: demo-student@dynalearn.eu,student

Web method:

Description: A simple incorrect login test by using learner role

Role: learner Use case: CUS001_Log_in_to_repository

Project No. 231526

Page 29 / 45

DynaLearn D4.4

TEST CASE: TC0005

TEST CASE: TC0006

TEST CASE: TC0007

TEST CASE: TC0008

TEST CASE: TC0009

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: Input: demo-student@dynalearn.eu, xxxx

Web method:

Description: A simple correct login test by using domain expert role

Role: domain expert Use case: CUS001_Log_in_to_repository

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input: upm-domex@example.com, UPMDOMEX

Web method:

Description: A simple incorrect login test by using domain expert role

Role: domain expert Use case: CUS001_Log_in_to_repository

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: Input: upm-domex@example.com, xxxx

Web method:

Description: Grounding of a correct single word english term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: dbpedia Ingredient: Entity

Language: english Input: Labour

Web method: groundTerm

Description: Grounding of a correct single word english term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: dbpedia Ingredient: Agent

Language: english Input: Biochemistry

Web method: groundTerm

Description: Grounding of a correct single word english term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: dbpedia Ingredient: Quantity

Project No. 231526

Page 30 / 45

DynaLearn D4.4

TEST CASE: TC0010

TEST CASE: TC0011

TEST CASE: TC0012

TEST CASE: TC0013

TEST CASE: TC0014

Language: english Input: Leakage

Web method: groundTerm

Description: Grounding of a correct single word english term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: dbpedia Ingredient: Configuration

Language: english Input: Ecosystem

Web method: groundTerm

Description: Grounding of a correct single word english term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: dbpedia Ingredient: Attribute

Language: english Input: Dead

Web method: groundTerm

Description: Grounding of a correct multi word english term. It also includes a test of
suggested terms.

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: multi word

Grounding type: dbpedia Ingredient: Entity

Language: english Input: Heat_transfer

Web method: groundTerm

Description: Grounding of a incorrect single word english term

Role: Use case: CUS005_Ground_term

Scenario: incorrect Term type: single word

Grounding type: dbpedia Ingredient: XXX

Language: english Input: Renewable_resources

Web method: groundTerm

Description: Grounding of a incorrect single word english term

Role: Use case: CUS005_Ground_term

Scenario: incorrect Term type: single word

Grounding type: dbpedia Ingredient: Entity

Language: english Input: IndustrialxxXXxx

Project No. 231526

Page 31 / 45

DynaLearn D4.4

TEST CASE: TC0015

TEST CASE: TC0016

TEST CASE: TC0017

TEST CASE: TC0018

TEST CASE: TC0019

Web method: groundTerm

Description : Grounding of a incorrect multi word english term

Role: Use case: CUS005_Ground_term

Scenario: incorrect Term type: multi word

Grounding type: dbpedia Ingredient: Entity

Language: english Input: Energy_pyramidxx

Web method: groundTerm

Description : Grounding of a correct multi word english term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: multi word

Grounding type: anchor term Ingredient:

Language: english Input: Climate_regulation

Web method: createAnchorTerm

Description : Grounding of a correct single word english term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: anchor term Ingredient:

Language: english Input: Allelopathy

Web method: createAnchorTerm

Description : Grounding of a incorrect single word english term

Role: Use case: CUS005_Ground_term

Scenario: incorrect Term type: single word

Grounding type: anchor term Ingredient:

Language: english Input: Industrialxx

Web method: createAnchorTerm

Description : Grounding of a incorrect multi word english term

Role: Use case: CUS005_Ground_term

Scenario: incorrect Term type: multi word

Grounding type: anchor term Ingredient:

Language: english Input: Energy_pyramidxx

Web method: createAnchorTerm

Project No. 231526

Page 32 / 45

DynaLearn D4.4

TEST CASE: TC0020

TEST CASE: TC0021

TEST CASE: TC0022

TEST CASE: TC0023

TEST CASE: TC0024

TEST CASE: TC0025

Description : Grounding of a correct single word portuguese term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: dbpedia Ingredient: Entity

Language: portuguese Input: água

Web method: groundTerm

Description : Grounding of a incorrect single word portuguese term

Role: Use case: CUS005_Ground_term

Scenario: incorrect Term type: single word

Grounding type: dbpedia Ingredient: Entity

Language: portuguese Input: Renewable_resources

Web method: groundTerm

Description : Grounding of a correct multi word portuguese term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: multi word

Grounding type: dbpedia Ingredient: Entity

Language: portuguese Input: Fluxo german calor

Web method: groundTerm

Description : Grounding of a correct single word portuguese term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: anchor term Ingredient:

Language: portuguese Input: Desmatamento

Web method: createAnchorTerm

Description : Grounding of a correct multi word portuguese term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: multi word

Grounding type: anchor term Ingredient:

Language: portuguese Input: Contaminantes do solo

Web method: createAnchorTerm

Description : Grounding of a correct single word spanish term

Project No. 231526

Page 33 / 45

DynaLearn D4.4

TEST CASE: TC0026

TEST CASE: TC0027

TEST CASE: TC0028

TEST CASE: TC0029

TEST CASE: TC0030

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: dbpedia Ingredient: Entity

Language: spanish Input: café

Web method: groundTerm

Description : Grounding of a incorrect single word spanish term

Role: Use case: CUS005_Ground_term

Scenario: incorrect Term type: single word

Grounding type: dbpedia Ingredient: Entity

Language: spanish Input: Renewable_resources

Web method: groundTerm

Description : Grounding of a correct multi word spanish term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: multi word

Grounding type: dbpedia Ingredient: Entity

Language: spanish Input: Flujo german calor

Web method: groundTerm

Description : Grounding of a correct single word spanish term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: anchor term Ingredient:

Language: spanish Input: Deforestación

Web method: createAnchorTerm

Description : Grounding of a correct multi word spanish term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: multi word

Grounding type: anchor term Ingredient:

Language: spanish Input: Contaminantes del suelo

Web method: createAnchorTerm

Description : Grounding of a correct single word german term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Project No. 231526

Page 34 / 45

DynaLearn D4.4

TEST CASE: TC0031

TEST CASE: TC0032

TEST CASE: TC0033

TEST CASE: TC0034

TEST CASE: TC0040

Grounding type: dbpedia Ingredient: Entity

Language: german Input: Wasser

Web method: groundTerm

Description : Grounding of a incorrect single word german term

Role: Use case: CUS005_Ground_term

Scenario: incorrect Term type: single word

Grounding type: dbpedia Ingredient: Entity

Language: german Input: Renewable_resources

Web method: groundTerm

Description : Grounding of a correct multi word german term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: multi word

Grounding type: dbpedia Ingredient: Entity

Language: german Input: Wärmeleitfähigkeit

Web method: groundTerm

Description : Grounding of a correct single word german term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: anchor term Ingredient:

Language: german Input: Entwaldung

Web method: createAnchorTerm

Description : Grounding of a correct multi word german term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: multi word

Grounding type: anchor term Ingredient:

Language: german Input: Weißes Haus

Web method: createAnchorTerm

Description : Grounding of a correct single word dutch term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: dbpedia Ingredient: Entity

Language: dutch Input: Vuur

Web method: groundTerm

Project No. 231526

Page 35 / 45

DynaLearn D4.4

TEST CASE: TC0041

TEST CASE: TC0042

TEST CASE: TC0043

TEST CASE: TC0044

TEST CASE: TC0045

TEST CASE: TC0046

Description : Grounding of a incorrect single word dutch term

Role: Use case: CUS005_Ground_term

Scenario: incorrect Term type: single word

Grounding type: dbpedia Ingredient: Entity

Language: dutch Input: Renewable_resources

Web method: groundTerm

Description : Grounding of a correct multi word dutch term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: multi word

Grounding type: dbpedia Ingredient: Entity

Language: dutch Input: Warmteoverdracht

Web method: groundTerm

Description : Grounding of a correct single word dutch term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: single word

Grounding type: anchor term Ingredient:

Language: dutch Input: Acteur

Web method: createAnchorTerm

Description : Grounding of a correct multi word dutch term

Role: Use case: CUS005_Ground_term

Scenario: correct Term type: multi word

Grounding type: anchor term Ingredient:

Language: dutch Input: Atmosferisch perspectief

Web method: createAnchorTerm

Description : Grounding of an entire english model

Role: Use case: CUS004_Ground_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: english Input: CommunicatingVessels_testing.owl

Web method: groundModel

Description : Grounding of an entire portuguese model

Role: Use case: CUS004_Ground_model

Project No. 231526

Page 36 / 45

DynaLearn D4.4

TEST CASE: TC0047

TEST CASE: TC0048

TEST CASE: TC0050

TEST CASE: TC0051

TEST CASE: TC0053

Scenario: correct Term type:

Grounding type: Ingredient:

Language: portuguese Input: GroundingInPortuguese.owl

Web method: groundModel

Description : Grounding of an entire spanish model

Role: Use case: CUS004_Ground_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: spanish Input: GroundingInSpanish.owl

Web method: groundModel

Description : Grounding of an entire german model

Role: Use case: CUS004_Ground_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: german Input: GoungdingInGerman.owl

Web method: groundModel

Description : Grounding of an entire dutch model

Role: Use case: CUS004_Ground_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: dutch Input: GroundingInDutch.owl

Web method: groundModel

Description : Store of an entire english model into repository

Role: teacher Use case: CUS003_Save_model_to_repository

Scenario: correct Term type:

Grounding type: Ingredient:

Language: english Input: CommunicatingVessels_testing.owl

Web method: storeModel

Description : Store of an entire portuguese model into repository

Role: learner Use case: CUS003_Save_model_to_repository

Scenario: correct Term type:

Grounding type: Ingredient:

Language: portuguese Input: GroundingInPortuguese.owl

Project No. 231526

Page 37 / 45

DynaLearn D4.4

TEST CASE: TC0055

TEST CASE: TC0052

TEST CASE: TC0056

TEST CASE: TC0057

TEST CASE: TC0058

TEST CASE: TC0059

Web method: storeModel

Description : Store of an entire spanish model into repository

Role: domain expert Use case: CUS003_Save_model_to_repository

Scenario: correct Term type:

Grounding type: Ingredient:

Language: spanish Input: GroundingInSpanish.owl

Web method: storeModel

Description : Store of an entire german model into repository

Role: teacher Use case: CUS003_Save_model_to_repository

Scenario: correct Term type:

Grounding type: Ingredient:

Language: german Input: GoungdingInGerman.owl

Web method: storeModel

Description : Store of an entire dutch model into repository

Role: domain expert Use case: CUS003_Save_model_to_repository

Scenario: correct Term type:

Grounding type: Ingredient:

Language: dutch Input: GroundingInDutch.owl

Web method: storeModel

Description : correct retrieval of a model from repository

Role: teacher Use case: CUS002_Open_model_from_repository

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input: CommunicatingVessels_testing.owl

Web method: retrieveModel

Description : correct retrieval of a model from repository

Role: teacher Use case: CUS002_Open_model_from_repository

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input: GroundingInPortuguese.owl

Web method: retrieveModel

Description : correct retrieval of a model from repository

Project No. 231526

Page 38 / 45

DynaLearn D4.4

TEST CASE: TC0060

TEST CASE: TC0061

TEST CASE: TC0062

TEST CASE: TC0069

TEST CASE: TC0070

Role: learner Use case: CUS002_Open_model_from_repository

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input: GroundingInSpanish.owl

Web method: retrieveModel

Description : incorrect retrieval of a model from repository

Role: learner Use case: CUS002_Open_model_from_repository

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: Input: xxCommunicatingVessels_testing

Web method: retrieveModel

Description : incorrect retrieval of a model from repository

Role: domain expert Use case: CUS002_Open_model_from_repository

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: Input: xxCommunicatingVessels_testing

Web method: retrieveModel

Description : incorrect retrieval of a model from repository

Role: domain expert Use case: CUS002_Open_model_from_repository

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: Input: xxCommunicatingVessels_testing

Web method: retrieveModel

Description : list models using teacher role

Role: teacher Use case: CUS007_list_models

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input:

Web method: listModels

Description : list models using learner role

Role: learner Use case: CUS007_list_models

Scenario: correct Term type:

Grounding type: Ingredient:

Project No. 231526

Page 39 / 45

DynaLearn D4.4

TEST CASE: TC0071

TEST CASE: TC0172

TEST CASE: TC0072

TEST CASE: TC0073

TEST CASE: TC0074

TEST CASE: TC0075

Language: Input:

Web method: listModels

Description : list models using domain expert role

Role: domain expert Use case: CUS007_list_models

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input:

Web method: listModels

Description : list models using teacher role and selecting models related to a course

Role: teacher Use case: CUS007_list_models

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input: uva-crse

Web method: listModels

Description : correct query english model

Role: teacher Use case: CUS008_query_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: english Input: Container

Web method: queryModels

Description : incorrect query english model

Role: teacher Use case: CUS008_query_model

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: english Input: Containerxxx

Web method: queryModels

Description : correct query english model

Role: learner Use case: CUS008_query_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: english Input: Container

Web method: queryModels

Project No. 231526

Page 40 / 45

DynaLearn D4.4

TEST CASE: TC0076

TEST CASE: TC0077

TEST CASE: TC0178

TEST CASE: TC0179

TEST CASE: TC0180

Description : incorrect query english model

Role: learner Use case: CUS008_query_model

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: english Input: Containerxxx

Web method: queryModels

Description : correct query english model

Role: domain expert Use case: CUS008_query_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: english Input: Container

Web method: queryModels

Description : incorrect query english model

Role: domain expert Use case: CUS008_query_model

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: english Input: Containerxxx

Web method: queryModels

Description : correct query portuguese model

Role: teacher Use case: CUS008_query_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: portuguese Input: adulto

Web method: queryModels

Description : incorrect query portuguese model

Role: teacher Use case: CUS008_query_model

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: portuguese Input: Containerxxx

Web method: queryModels

Description : correct query spanish model

Role: teacher Use case: CUS008_query_model

Scenario: correct Term type:

Project No. 231526

Page 41 / 45

DynaLearn D4.4

TEST CASE: TC0181

TEST CASE: TC0182

TEST CASE: TC0183

TEST CASE: TC0078

TEST CASE: TC0079

Grounding type: Ingredient:

Language: spanish Input: Cerveza

Web method: queryModels

Description : incorrect query spanish model

Role: teacher Use case: CUS008_query_model

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: spanish Input: Containerxxx

Web method: queryModels

Description : correct query german model

Role: teacher Use case: CUS008_query_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: german Input: akne

Web method: queryModels

Description : incorrect query german model

Role: teacher Use case: CUS008_query_model

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: german Input: Containerxxx

Web method: queryModels

Description : Update of an entire english model into repository

Role: teacher Use case: CUS009_update_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: english Input: CommunicatingVessels_testing.owl

Web method: storeModel

Description : Update of an entire portuguese model into repository

Role: learner Use case: CUS009_update_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: portuguese Input: GroundingInPortuguese.owl

Web method: storeModel

Project No. 231526

Page 42 / 45

DynaLearn D4.4

TEST CASE: TC0080

TEST CASE: TC0081

TEST CASE: TC0083

TEST CASE: TC0084

TEST CASE: TC0085

TEST CASE: TC0086

Description : Update of an entire spanish model into repository

Role: domain expert Use case: CUS009_update_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: spanish Input: GroundingInSpanish.owl

Web method: storeModel

Description : Update of an entire german model into repository

Role: teacher Use case: CUS009_update_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: german Input: GoungdingInGerman.owl

Web method: storeModel

Description : Update of an entire dutch model into repository

Role: domain expert Use case: CUS009_update_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: dutch Input: GroundingInDutch.owl

Web method: storeModel

Description : correct retrieval of a binary hgp model from repository

Role: teacher Use case: CUS010_retrieve_hgp_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input: CommunicatingVessels_testing.owl

Web method: retrieveModel

Description : correct retrieval of a binary hgp model from repository

Role: learner Use case: CUS010_retrieve_hgp_model

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input: GroundingInPortuguese.owl

Web method: retrieveModel

Description : correct retrieval of a binary hgp model from repository

Role: domain expert Use case: CUS010_retrieve_hgp_model

Project No. 231526

Page 43 / 45

DynaLearn D4.4

TEST CASE: TC0087

TEST CASE: TC0088

TEST CASE: TC0089

TEST CASE: TC0201

TEST CASE: TC0202

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input: GroundingInSpanish.owl

Web method: retrieveModel

Description : incorrect retrieval of a binary hgp model from repository

Role: teacher Use case: CUS010_retrieve_hgp_model

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: Input: xxCommunicatingVessels_testing

Web method: retrieveModel

Description : incorrect retrieval of a binary hgp model from repository

Role: learner Use case: CUS010_retrieve_hgp_model

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: Input: xxCommunicatingVessels_testing

Web method: retrieveModel

Description : incorrect retrieval of a binary hgp model from repository

Role: domain expert Use case: CUS010_retrieve_hgp_model

Scenario: incorrect Term type:

Grounding type: Ingredient:

Language: Input: xxCommunicatingVessels_testing

Web method: retrieveModel

Description : list courses using teacher role

Role: teacher Use case: CUS011_list_courses

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input:

Web method: listCourses

Description : list courses using learner role

Role: learner Use case: CUS011_list_courses

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input:

Project No. 231526

Page 44 / 45

DynaLearn D4.4

TEST CASE: TC0203

Web method: listCourses

Description : list courses using domain expert role

Role: domain expert Use case: CUS011_list_courses

Scenario: correct Term type:

Grounding type: Ingredient:

Language: Input:

Web method: listCourses

	Abstract
	Internal review
	Acknowledgements
	Document History
	Contents
	1. Introduction
	2. Inference during ontology matching
	2.1. CIDER system
	2.2. Inference to enhance similarity computation

	3. Inference during semantic feedback
	3.1. Taxonomic evaluation in ontologies
	3.1.1. Inconsistency
	3.1.2. Incompleteness
	3.1.3. Redundancy

	3.2. Taxonomic evaluation in DynaLearn
	3.2.1. Inconsistency errors
	3.2.2. Incomplete concept classification

	4. Inference during instance grounding
	4.1. Identical data structure for “Show types” options
	4.2. Problem: “Show types” off issues for grounding and feedback
	4.3. Allowing grounding of instances
	4.4. Solution: Deriving domain concepts from DBPedia concepts

	5. Conclusion
	6. Discussion
	References
	Appendix A: Semantic Technologies Testing Plan
	A1. Overview
	A2. Scope
	A3. Testing Process
	A4. Test Cases Definition
	TEST CASE: TC0001
	TEST CASE: TC0002
	TEST CASE: TC0003
	TEST CASE: TC0004
	TEST CASE: TC0005
	TEST CASE: TC0006
	TEST CASE: TC0007
	TEST CASE: TC0008
	TEST CASE: TC0009
	TEST CASE: TC0010
	TEST CASE: TC0011
	TEST CASE: TC0012
	TEST CASE: TC0013
	TEST CASE: TC0014
	TEST CASE: TC0015
	TEST CASE: TC0016
	TEST CASE: TC0017
	TEST CASE: TC0018
	TEST CASE: TC0019
	TEST CASE: TC0020
	TEST CASE: TC0021
	TEST CASE: TC0022
	TEST CASE: TC0023
	TEST CASE: TC0024
	TEST CASE: TC0025
	TEST CASE: TC0026
	TEST CASE: TC0027
	TEST CASE: TC0028
	TEST CASE: TC0029

