Project No. 231526 DynalLearn D3.1

Figure A.13: Use level 6 - Build showing list of Model fragments

Page 79/ 126



D3.1

DynaLearn

Project No. 231526

suondo nuan
:0p O,

€ 19A9] 18 (€ 7 T 1) SINSSI 298

:SINSS|

G

G
@6@

i

S,
eo
&)

s[uls

MIATA

LN

199198

0O UMOYS 5] 1dN230YM 03 BUliIaS2) 31113 poob

GRS EREEES

¥

weaqeuig

(JUAWUOIIAUS J)e[NWIS)
93po[MOouY 9[qesnal pue JLIdUAL) Q

7 ‘g

€771 Yied

PDIGTBE +civceeoe®

aweu [apo

aleu oleuadg

® 6 @ @

OpOL PPV Mpd  9lld

Figure A.14: Use level 6 - Simulate showing State graph

Page 80 /126



Project No. 231526 DynalLearn D3.1

18. Appendix B — From Garp3 to Dynalearn workspaces

Below a detailed account is given of how Garp3 functionality is migrated, removed, merged or
hidden at each of use levels in the DynalLearn ILE.

18.1. Main activities

e Uselevel 6

o Build workspaces
=  Showing all the buttons and ingredients
=  Providing user interaction

o Simulate workspaces:
=  Showing all the buttons and ingredients
=  Providing user interaction

o Miscellaneous
= Greyed icons / background colour button bar (top main screen)
= Lists (Scenario / Model fragments, Paths + Saved simulations)
=  Pull down menus
= Use levels as preference
=  Tooltips text

= Meta-data

= Trace window
= Tab

= (Clone

e Uselevel5
o Integrating ‘definition” with ‘adding’ dialogues (level 2, 3 and 4 use the same)
o Filter
=  Entity / Agent / Assumption
=  Always true model fragment
=  Conditional model fragments
* Use level 4 (subset of level 5)
o Filter
=  Only always true model fragment
= Subset of level 5 simulation results options
* Use level 3 (subset of level 4)
o Allowing quantity spaces to be added after a quantity is created
o Filter
=  Only always true model fragment (subset of level 4)
=  Selection of level 5 ingredients
* Use level 2 (subset of level 3, no quantity spaces)
o Filter
= No quantity spaces
= Simulation results (derivative values) in Build workspace
* Derivatives
* Show Ambiguous / Inconsistent simulation results
e Uselevell
o Filter
=  Only Entities and configurations
= Different look in terms of icons used

Page 81 /126



Project No. 231526 DynalLearn D3.1

18.2. Architecture

* appframe

* generic

o control

o helpers

o commands
*  build

o definition

o elements

o workspace
* simulate

o definition

o elements

o workspace
* sketch

o definition

o elements

o workspace

i meta
* jcons
18.3. General

* New and adjusted icons

o Adjusted icons have been created (We will include them in the current version of the
software).

o New icons are now available for: delete model (close model), plus/min for paths,
simulate single state (We will include them in icons/appframe so that they can be
used).

* Greyed icons are now available for all main screen icons and can be included in the new
software. Greying works analogous to the main screen in Garp3. Candidates for greyed
options are (main screen):

o General (active after some ingredient has been created)

= Save current model to file

= Save current model to new file

= Delete current model

= Save diagram to EPS file (we may ignore this, and print an empty page)

o Uselevel 6

= Edit last changed scenario (active a scenario has been created)

= Edit last changed model fragment (active after a MF has been created)

= All 5 simulate buttons (active after a scenario has been created)

= QOpen state-graphs, initial values, and created paths (active when a
simulation is available)

= Save state-graphs, initial values, and created paths (active after at least one
simulation was saved)

o Use level 5 (note: tooltip text will have to change, see text on tooltips)

= Edit last changed model fragment (active after a MF has been created)

Page 82 /126



Project No. 231526 DynalLearn D3.1

= All 5 simulate buttons (active after a scenario has been created)
= QOpen state-graphs, initial values, and created paths (active when a
simulation is available)
= Save state-graphs, initial values, and created paths (active after at least one
simulation was saved)
o Uselevel 4 and 3 (note: tooltip text will have to change, see text on tooltips)
= All 5 simulate buttons (active after a scenario has been created)
= QOpen state-graphs, initial values, and created paths (active when a
simulation is available)
=  Save state-graphs, initial values, and created paths (active after at least one
simulation was saved)
o Use level 2 (note: tooltip text will have to change, see text on tooltips)
= Simulate current scenario (active after a derivate value assignment has been
created?)
o Uselevell
=  No buttons available
*  ‘Save current model to file’ versus ‘Save to model’ versus ‘Save changes’. Issues:
o Does save to model still occur, or is it always referred to as ‘Save changes’? If yes,
rename to ‘Save changes’
o Can we simply these notions, by somehow circumventing ‘Save changes’
o Note: thereis also ‘Save model to disk’ (in the Build context). This should be
renamed to ‘Save current model to file’.
* Tooltips (main screen)
o General
=  Reminder: Check if all are present and correct
=  Print to postscript should be: Save diagram to EPS file
= Dynalearn logo should be: Open DynalLearn website
o Use level 6 (Build/Simulate icons)
= Remains as in Garp3 (seems currently correct)
o Use level 5 (Build/Simulate icons)
= Edit last changed scenario should be: Edit general model
= Open model fragments editor should be: Open condition model fragments
editor
= Edit last changed model fragment should be: Edit last changed conditional
model fragment
= Simulate current scenario should be: Simulate first step
o Use level 4 and 3 (Build/Simulate icons)
= Simulate current scenario should be: Simulate first step
o Use level 2 (Build/Simulate icons)
= Simulate current scenario should be: Simulate
o Use level 1 (Build/Simulate icons)
= No Build/Simulate buttons available, hence to tooltip texts
* Resizing main window?
o Should/can resizing main window be limited, such that greying (red to white) stays
correct? Should we?
* Dynalearn logo (main screen)
o Should Open DynalLearn website
* Use level icons (main screen)
o Hidden or Present depending on user preference
o The preference can be set in Settings (Pull down menu) using a small dialogue.
¢ Simulation preferences and Open trace window
o Keep functionality as in Garp3

Page 83 /126



Project No. 231526 DynalLearn D3.1

o Relocate buttons (already done)

o Trace window becomes integrated in new workspace

o Simulation preferences stays separate interactive dialogue

* Dependencies

o Itis expected that adding dependencies to a workspace (In/equalities,
Correspondences, Proportionalities and Influences) keeps working as in Garp3, and
that this functionality requires no specific adaptation for the DynalLearn context.
However, at the lower use levels some rewording within these dialogues will be
required (e.g. Proportionality — Effects, use level 3).

¢ Sketch (main screen)

o Only ‘meta model’ options remain (already shown in main screen Dynalearn)

*  Background colour top button bar main screen (Build/Definition, Build, Simulate, and Saved
states):

o Should switch between dark (selected) and light (not selected) grey depending on
selection being active

* Extra new requirement: Editable text in all workspaces (at least in the main workspace)

o Similar to standard file-name changing etc. being able to edit a text field in
workspaces by double clicking on the text field and type new text (e.g. being able to
change the names of model fragments in the Model fragments definition editor
without having to open the properties dialogue first).

18.4. Use level 6

How to move Garp3 screens / functionality to Dynalearn?

* Save/Open state-graphs, initial values, and created paths
o Saves for an existing simulation:
= The state-graph
= Created behaviour paths with this state-graph
= Scenario with initial values (this is of particular importance for the use levels
for which the notion of a scenario is implicit for the user).
o Opens for a previously saved simulation, including
= The state-graph
= Created behaviour paths
= Scenario Initial values
o Theinteractive dialogues can remain as the where in Garp3. When a saved
simulation is opened, the software opens in Simulation mode, showing the state
graph (as currently is done in Garp3)
o OWLicon (Open help page) should be removed

18.4.1. Use level 6 — Build

*  Build: Entity/Agent/Assumption hierarchy editor
o Open: Click on icon in main screen
o Close: by selecting another option in the main screen. In principle any active option is
possible.
o LHS button bar: should move LHS button bar main screen

Page 84 /126



Project No. 231526 DynalLearn D3.1

= Jssue: the order of items should be unified (new, properties, erase, ...,
‘window content organisers’)
o Menu options: see elsewhere in this document
Dialogues to Add/Delete etc. ingredients: remain as in Garp3
o Editor contents (hierarchy of E/A/A ingredients): Listed in the workspace of the main
screen
o OWLicon (Open help page) should be removed

O

* Build: Attribute/Configuration/Quantity/Quantity Space definitions editor
o Open:Click on icon in main screen
o Close: by selecting another option in the main screen. In principle any active option is
possible.
= The Close button can be removed, but when leaving the editor with unsaved
changes: present save/cancel/undo options to the user and act accordingly
(unsaved changes check). Taken what is present in Garp3, it becomes:
* Save changes to model: Save changes and go to newly selected
screen
* Cancel changes: Move to newly selected screen without saving
changes
* Edit changes: Do not go to newly selected screen
= Note possible bug: the configuration definitions editor does not seem to
have an unsaved changes check.
o LHS button bar: not applicable
= ssue: some of the in-screen buttons may be moved to the LHS button, to be
decided later.
Menu options: not applicable
Dialogues to Add/Delete etc. ingredients within the editor: remain as in Garp3
Editor contents: Listed in the workspace of the main screen
OWL icon (Open help page) should be removed

O O O O

* Build: Scenario definitions editor
o Open: Click on icon in main screen
o Close: by selecting another option in the main screen. In principle any active option is
possible.
o RHS button bar: should move to the LHS button bar main screen.
= Some options disappear:

* Simulate selected scenario (because already in main screen)

* Edit selected scenario (because already in main screen top level
options, and it can also be done by double clicking on the name of
the wanted scenario)

=  Forthe buttons, small icons should be used (e.g. available from the Model
fragments definition editor)
o Menu options: not applicable
Dialogues to Add/Delete etc. ingredients within the editor: remain as in Garp3
o Editor contents (List of scenario names): Listed in the workspace of the main screen
=  Future option: show the scenarios by icons
o OWLicon (Open help page) should be removed

O

* Build: Model fragment definitions editor

Page 85/ 126



Project No. 231526 DynalLearn D3.1

O

*  Build:
O
O

O O O O

*  Build:
O
O

Open: Click on icon in main screen
Close: by selecting another option in the main screen. In principle any active option is
possible.
LHS button bar: should move to the LHS button bar main screen.
= Some options disappear:

* Edit selected model fragment (because already in main screen top
level options, and it can also be done by double clicking on the icon
of the wanted MF)

Menu options: see elsewhere in this document

Dialogues to Add/Delete etc. ingredients within the editor: remain as in Garp3
Editor contents (hierarchy of Model fragments): Listed in the workspace of the main
screen

OWL icon (Open help page) should be removed

Scenario editor
Open: Click on icon in main screen
Close: by selecting another option in the main screen. In principle any active option is
possible.
LHS button bar: should move to the LHS button bar main screen.
= Add the Delete icon
Menu options: see elsewhere in this document
Dialogues to Add/Delete etc. ingredients within the editor: remain as in Garp3
Editor contents (Scenario ingredients): Listed in the workspace of the main screen
OWL icon (Open help page) should be removed

Model fragment editor
Open: Click on icon in main screen
Close: by selecting another option in the main screen. In principle any active option is
possible.
LHS button bar: should move to the LHS button bar main screen.
= Add the Delete icon
Menu options: see elsewhere in this document
Dialogues to Add/Delete etc. ingredients within the editor: remain as in Garp3
Editor contents (Model fragment ingredients): Listed in the workspace of the main
screen
OWL icon (Open help page) should be removed

18.4.2. Use level 6 — Simulate

¢ Simulate: ‘State-graph’

@)

Open: Click on icon in main screen (either Simulate current scenario or Full
simulation)
= |f simulation exists: open state graph view for that simulation
* Note: a simulation gets removed, when an edit action is carried out,
equal to how in Garp3 simulation results (and accompanying views)
are removed when an edit action is carried out.
= |f nosimulation exists:

Page 86 /126



Project No. 231526 DynalLearn D3.1

* Simulate current scenario: Performs a one step simulation with the
last edited scenario (as in Garp3)
¢  Full simulation: Performs a full simulation with the last edited
scenario (as in Garp3)
= Tab:atabis created in the main screen for this window, so that it can be re-
opened later on (note that also other options exist for opening, see ‘Open’
above in this section, and the general Clone option).
o Close:
= By either:
* By selecting another option in the main screen, or
* Byclosing tab, or
* By selecting an option from the LHS button bar.
= |n principle any active option is possible.
= Note: simulation gets removed when an edit action is carried out.
o LHS button bar: should move to the LHS button bar main screen.
=  Buttons with adjusted size have been created for this
o Menu options: see elsewhere in this document
o ‘Dialogues’ to inspect listed ingredients
= Select:
* Select individual states (as in Garp3)
* Select a path (as in garp3)
* Select all states (as in garp3)
* Deselect all states (as in garp3)

* Show entities, configurations and attributes (see elsewhere)
* Show quantity values (see elsewhere)
* List model fragments (see elsewhere)
* Show dependencies (see elsewhere)
* Transition history (see elsewhere)
* Equation history (see elsewhere)
* Value history (see elsewhere)
=  Run (all can be removed, because already in main screen)
* Open trace window (remove, because already in main screen)
* Simulation preferences (remove, because already in main screen)
* Open trace window (remove, because already in main screen)
* 5simulation options (remove, because already in main screen)
o Screen contents (state graph): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed
o Special attention should be given to the (see workspace bottom):
= Selected states
= Selected path
=  Note: Discussed elsewhere in this document

* Simulate (view): Show dependencies
o Open: Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens for each selected state
* Tab: Each view becomes a tab in the main screen
* The last tab opened is actually shown
* Extra feature: if number of selected states > 1 Then ask user if the
view should be opened for all states (choice: Yes or Cancel)
o Close:

Page 87 / 126



Project No. 231526 DynalLearn D3.1

= By selecting another option in the main screen, or
= Byclosing tab, or
= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o LHS button bar (show/hide ingredients): should move to the LHS button bar main
screen.
= Notice that the button bar of ‘Simulate: State-graph’ should also be shown
(most LHS).
o Menu options: none
o Buttons below in the screen (status bar?):
= Change layout entities (move to LHS button bar, new graphics needed?)
= Change layout quantities (move to LHS button bar, new graphics needed?)
= Zoom in (move to LHS button bar, new graphics needed?)
= Zoom out (move to LHS button bar, new graphics needed?)
= Save diagram to EPS file (remove, already in main screen)
= Close this window (remove, superfluous)
o Screen contents (dependencies): Listed in the workspace of the main screen
OWL icon (Open help page) should be removed

O

* Simulate (view): Value history
o Open: Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens once for all selected states
= Tab:atabis created in the main screen for this window, so that it can be re-
opened later on

= By selecting another option in the main screen, or
= Byclosing tab, or
= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o The value history view has a set of ‘options’:
e List of quantities
* Sort by quantity
* Sort by entity
¢ Selectall
¢ Selectnone
* Draw value history
¢ C(Clearscreen
= Canthese stay in the position as they currently are?
= Notice that the button bar of ‘Simulate: State-graph’ should also be shown
(most LHS).
o Buttons below in the screen (status bar?):
= Save diagram to EPS file (remove, already in main screen)
= Close this window (remove, superfluous)
o Screen contents (values): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed

* Simulate (view): Equation history (very similar to Value history)
o Open: Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens once for all selected states

Page 88 /126



Project No. 231526 DynalLearn D3.1

= Tab:atabis created in the main screen for this window, so that it can be re-
opened later on

= By selecting another option in the main screen, or
= Byclosing tab, or
= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o The equation history view has a set of ‘options’:
* List of in/equalities
* Display equations
* Derivative equations
¢ Selectall
¢ Selectnone
* Draw equation history
* C(Clearscreen
= Canthese stay in the position as they currently are?
= Notice that the button bar of ‘Simulate: State-graph’ should also be shown
(most LHS).
o Buttons below in the screen (status bar?):
= Save diagram to EPS file (remove, already in main screen)
= Close this window (remove, superfluous)
o Screen contents (equations): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed

* Simulate (view): Transition history
o Open:Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens once for all selected states
= Tab:atabis created in the main screen for this window, so that it can be re-
opened later on

= By selecting another option in the main screen, or
= Byclosing tab, or
= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o The transition history view has two ‘options’ (bottom of window):
= Zoom in on details (move to LHS button bar, new graphics needed?)
= Close this window (remove, superfluous)
= Notice that the button bar of ‘Simulate: State-graph’ should also be shown
(most LHS).
= (Clicking on the ingredients in the window shows a new window with more
details. Let’s keep this function as it is. Notice that, closing the transition
history should also close (remove) those detailed windows (as it currently
happens in Garp3)
o Screen contents (transitions): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed

* Simulate (view): Show entities, configurations and attributes
o Open: Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens for each selected state
* Tab: Each view becomes a tab in the main screen

Page 89 /126



Project No. 231526 DynalLearn D3.1

* The last tab opened is actually shown
* Extra feature: if number of selected states > 1 Then ask user if the
view should be opened for all states (choice: Yes or Cancel)

= By selecting another option in the main screen, or
= Byclosing tab, or
= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o Menu options: none
o Buttons below in the screen (status bar?):
= Change layout entities (move to LHS button bar, new graphics needed?)
= Zoom in (move to LHS button bar, new graphics needed?)
= Zoom out (move to LHS button bar, new graphics needed?)
= Save diagram to EPS file (remove, already in main screen)
= Close this window (remove, superfluous)
o Screen contents (structure details): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed

* Simulate (view): Show quantity values
o Open: Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens for each selected state
* Tab: Each view becomes a tab in the main screen
* The last tab opened is actually shown
* Extra feature: if number of selected states > 1 Then ask user if the
view should be opened for all states (choice: Yes or Cancel)

= By selecting another option in the main screen, or
= Byclosing tab, or
= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o Menu options: none
o Buttons below in the screen (status bar?):
= Edit selected quantity (move to LHS button bar, new graphics needed?)
= Close this window (remove, superfluous)
=  (Clicking on the ingredients in the window opens the quantity definitions
editor with the focus on the selected quantity. Can we keep this in place?
And when clicking the ingredients move to this editor in the main screen?
o Screen contents (quantities etc.): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed

* Simulate (view): List model fragments
o Open: Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens for each selected state
* Tab: Each view becomes a tab in the main screen
* The last tab opened is actually shown
* Extra feature: if number of selected states > 1 Then ask user if the
view should be opened for all states (choice: Yes or Cancel)
o Close:
= By selecting another option in the main screen, or
= Byclosing tab, or

Page 90/ 126



Project No. 231526 DynalLearn D3.1

= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o Menu options: none
o Buttons below in the screen (status bar?):
= Show model fragment in legacy mode (move to LHS button bar, new graphics

needed?)

=  Show model fragment in context (move to LHS button bar, new graphics
needed?)

= Edit selected model fragment (move to LHS button bar, new graphics
needed?)

* Clicking on the ingredients in the window opens one of the 3 views
mentioned above, for the selected model fragment. Can we keep
this in place? And when clicking the ingredients move to this
view/editor in the main screen? See 3 blocks below

= Close this window (remove, superfluous)
o Screen contents (quantities etc.): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed

o Simulate (view): List model fragments: Show model fragment in legacy mode
=  QOpen: happens when selected in List model fragments
* Tab: no tab is created for this view in the main screen
= C(Close:
* By selecting another option in the main screen, or
* By selecting another icon in LHS button bar of ‘Simulate: State-graph’
* Inprinciple any active option is possible.
= Menu options: none
= Buttons below in the screen (status bar?):
* Close this window (remove, superfluous)
= Screen contents (MF details.): Listed in the workspace of the main screen
= OW.Licon (Open help page) should be removed

o Simulate (view): List model fragments: Show model fragment in context
=  QOpen: happens when selected in List model fragments
* Tab: no tab is created for this view in the main screen
* Note: this view is a kind of dependency view

* By selecting another option in the main screen, or
* By selecting another icon in LHS button bar of ‘Simulate: State-graph’
* Inprinciple any active option is possible.
= Menu options: none
=  Buttons below in the screen (status bar?):
* Change layout entities (move to LHS button bar, new graphics
needed?)
* Change layout quantities (move to LHS button bar, new graphics
needed?)
* Zoom in (move to LHS button bar, new graphics needed?)
* Zoom out (move to LHS button bar, new graphics needed?)
* Save diagram to EPS file (remove, already in main screen)
* Close this window (remove, superfluous)
=  Screen contents (MF details.): Listed in the workspace of the main screen

Page 91 /126



Project No. 231526 DynalLearn D3.1

=  OW.Licon (Open help page) should be removed

o Simulate (view): List model fragments: Edit selected model fragment
=  QOpen: happens when selected in List model fragments
* Opens regular MF editor for selected model fragment
o See Build: Model fragment editor

18.4.3. Use level 6 — Specials

*  Pull down list for Scenarios names or Model fragment names (LHS top main screen)
o Main goal of this list is to provide an easy access to either the list of scenarios or list
of model fragments in alphabetic order.
o Topitemin the list
= QOverview (Scenarios) OR Overview (Model fragments)
o This list switches focus following the editor activated (last):
= |f user selects: Open scenarios editor
* Then show: List of scenarios, with Overview (Scenarios) selected
= |f user selects: Edit last changed scenario
* Then show: List of scenarios, with current scenario selected
= |f user selects: Open model fragments editor
* Then show: List of model fragments, with Overview (Model
fragments) selected
=  |f user selects: Edit last changed model fragment
* Then show: List of model fragments, with current model fragment
selected
o When an item from either list is selected, the accompanying editor is opened in the
main screen (with the selected details from the list, thus: either a specific model
fragment or a specific scenario).
o Selecting Overview:
= |f Overview (Scenarios) is selected from the list
* Then the Scenarios editor opens in the main screen
= |f Overview (Model fragment) is selected from the list
* Then the Model fragments editor opens in the main screen

*  Pull down list for paths (Middle top main screen)
o Main goal is to save references to sets of selected states (possibly paths), which can
later be reused to provide a view on the accompanying state graph.
o Given a (partial) simulation (state graph):
= Each selection of states can be saved (as part of the model, in fact as part of
simulation results)
= Default, the name is the numbers of the currently selected states, but the
user may adjust this and give a name to the selection when the selection is
saved.
= Adding or deleting a selection is done with the + and — button, on the RHS of
the list.

Page 92 /126



Project No. 231526 DynalLearn D3.1

O The saved ‘selected sets of states’ can be stored together with a simulation result
(sometimes referred to as ‘saved states’). Such a cluster can later be reopened again,
and the simulation and accompanying paths reused.

=  Main screen button:
* Save state-graphs, initial values, and created paths
* Open state-graphs, initial values, and created paths
o When are saved states and/or saved selected paths deleted?
= |Fsaved selected paths exists AND saved states do not exist
THEN remove saved selected paths as soon as

* Anewsimulation is generated
* An edit activity has been carried out
® But before allowing these steps to occur, inform the user about the
planned deletion and ask the user whether to proceed (options:
Proceed OR Cancel)
= |Fsaved selected paths exists AND saved states exist
THEN remove saved selected paths AND saved states as soon as

* An edit activity has been carried out

* But before allowing these steps to occur, inform the user about the
planned deletion and ask the user whether to proceed (options:
Proceed OR Cancel)

=  Note: Upon changing the ‘model’, all previously stored state-graphs should
be deleted (but ask user to confirm. If user says no, the model cannot be
changed!). How to implement this feature?

* Locate with each editor?

* Activate option upon saving model to file (users can then select to
save to a new file (Save as), and their older results will stay intact at
the original file).

o How to fill the ‘current list space’ with state numbers?
= |n principle we want to reuse the options available in Garp3, notably:
Selected states / Selected Path (bottom state-graph screen). The hope is that
we can merge these ideas and handle them as one, namely by applying the
following rule:

* If a path has been found (path list is not empty) — show path
(ignoring which states the user actually selected)

* If a path has not been found (path list is empty) — shown selected
states (if any)

o Itseems relevant to keep the Selected states / Selected Path as they currently are in
Garp3, but now listed in the main screen (bottom) when the state-graph view is
active (that is there is a simulation). But is this possible in the ‘status bar’?

* Tab (to obtain requirements, work out details after users have used DynalLearn software)
o A combination of a Path (or a set of states) and a view
o Tabs always live within a single simulation context

* Clone (to obtain requirements, work out details after users have used Dynalearn software)
o Being able to duplicate the main screen
= No limitation, allow as many copies as a user wants
= |t should be possible to close each of the clones individually

Page 93 /126



Project No. 231526 DynalLearn D3.1

* Extras
o Undo button (go X steps back in the model building task)
o Move simulation icons to button bar in main screen
=  When state-graph screen opens: LHS button bar shows simulation icons
= QOther views within the simulation context do not show the simulation icons
in the LHS button bar.

18.5. Use level 5

How to adapt Dynalearn use level 6 details to accommodate use level 5?

18.5.1. Use level 5 — General

* General on dialogues for adding ingredients: a dialogue supports a single action and is
automatically closed after the user has been carried out the action.

* Concerns dialogues for ingredients: Entity / Agent / Assumption / Attribute / Configuration /
Quantity / Quantity space

* Basicidea:

o Creating and Adding: The user opens a dialogue to add an ingredient to the main
screen. While in the dialogue, the user typically provides Name and Remarks
(attributes and quantities require more). Upon added the ingredient (saving) the
ingredient is added to the main screen (and to the dialogue internal list?), and the
dialogue itself is closed.

o Keeping a list: The dialogue keeps a list of the ingredients that are created by using it.
More in general: there is a single list of ingredients which is acted up in two places: in
the main screen and in the dialogue.

o Adding existing ingredient: The user can open the dialogue and select an already
existing ingredient to be added to the main screen (obeying the general Garp3 rules
of course: e.g. all entities should have unique names, so these ingredient can be used
only once, but the same quantity can be assigned to different entities, so these
ingredients can be used multiple times, etc.)

o Delete: The user can delete an ingredient from the list. The ingredient is then also
deleted from the main screen and the dialogue is closed (note: this is different from
Garp3, which requires deleting from the main screen first). The user can also delete
an ingredient from the main screen directly. If this ingredient is the last one, the
ingredient should also be deleted from the list.

o Properties: While having the dialogue open, the properties of a selected ingredient
can be edited (Name and Remarks). This should follow by the user clicking on
‘Adding/Saving’. The changes are then saved and the dialogue closed. When
selecting another ingredient (after changing properties of some ingredient), the user
has to confirm or cancel these changes (as in Garp3). Upon confirming, the changes
are saved and the dialogue closed. Upon cancelling the changes are not saved and
the dialogue is closed. Thus, effectively no switching between ingredients while
editing the properties of an ingredient.

o Cancel: The dialogue itself can be closed without saving a performed action (or
without having done an action at all) by using the cancel option.

* Typical fields/areas in the dialogues:
o List with names of all ingredients (scrollable)

Page 94 / 126



Project No. 231526 DynalLearn D3.1

o Area with the name of the ingredient selected in the list (editable)
Remarks area for free text associated to the selected ingredient (editable)

o Note that Attribute and Quantity have ‘nested lists’, because these ingredient types
also require to an ingredient from another list (quantity space and values,
respectively).

* Opening dialogue:
o Clicking on the associated button in the button bar in the main screen (LHS) opens
the dialogue.
= Possible improvement: In Garp3 dialogues open with the top list item being
selected (in focus). It would be better if the dialogue would open with
nothing selected (similar to the status after the new button is clicked in the
dialogues in Garp3), so that the user can start typing the ingredient name
directly.

o Clicking on the associated ingredient in the main screen also opens the dialogue (in

this case with the selection in focus).
* Closing dialogue:

o Adialogue is closed after a user action is completed. These actions are: Creating new
and adding, Selecting old and adding, Deleting, Changing properties (Name and/or
Remark), and Cancel.

* Condition and Consequence:

o This distinction is relevant when creating a ‘conditional’ expression. It plays no role

when users create the ‘always true’ expression.
* Main screen top: buttons opening definition editors:
o Theicons for opening the definition editors should be removed. It is sufficient to
have:
= The Creating and adding dialogues (see also below) to handle single
ingredients while being in a model fragment editor
= The model fragment editors to open a specific type of model fragment.

O

18.5.2. Use level 5 — Dialogues for adding ingredients

How to adapt Dynalearn use level 6 details to accommodate use level 5?

* Save/Open state-graphs, initial values, and created paths (as in use level 6)

* Build: Creating and adding Entities, Agents, and Assumptions
o Details are the same for the Entity/Agent/Assumption hierarchy editors. The text
below refers to ‘Entity’
o Two dialogues are involved whose functionality should be merge into a single
dialogue:
= Entity hierarchy editor (level 6: main screen)
= Add a new entity (level 6: dialogue)
o Name composed dialogue: Add entity
o Basis idea: see general text at the beginning of use level 5 text. As a reference, note
that the new dialogue Add entity will look rather similar to the dialogue for Add
configuration (see items below)
o Open/Close: see general text.
o Issue: Entity preference is impossible (None - Instance = Instance & Type >
Instance & Type hierarchy, see D.2.1 for details). All entities have to be of a unique

Page 95/ 126



Project No. 231526 DynalLearn D3.1

‘Type’ otherwise problems may occur when simulating (looping because of multiple
unifications based on instances having equal type)
o Buttons (from old to new):
= ‘Entity hierarchy editor’ (read: top to bottom & left to right)
* Add entity to hierarchy > Add entity
* Copy selected entity (New, similar as in other dialogues of this kind
at use level 5) (Note: not present in Garp3)
* Delete entity from hierarchy - Delete selected entity (& close
dialogue!)
* Show properties (remove, superfluous).
* 3xlayout icons (remove, because not needed for list)
= Add anew entity
* Apply changes - Save changes (& close dialogue!)
* Open attribute definitions editor (remove)
* Cancel changes - Cancel (& close dialogue!)
=  Note: From the two ‘Remarks’ fields only one should stay
=  Note: Layout should become similar to that of the other ‘add ingredients
dialogues (roughly: local buttons on the right, global buttons at the bottom)
o Filter details
= User created Entities are all stored directly under the top node in the
hierarchy (these top nodes are: Entity, Agent, and Assumption).
= The user does not see, or have access to the top nodes. The user sees only a
flat list (in alphabetic order).

¢ Build: Creating and adding Attributes
o Basis idea: see general text at the beginning of use level 5 text.
o Two dialogues are involved whose functionality should be merge into a single
dialogue:
= Attribute definitions editor (level 6: main screen)
= Add a new attribute (level 6: dialogue)
o Name composed dialogue: Add attribute
Open/Close: see general text.
o Buttons (from old to new):
= ‘Attribute definitions editor’ (read: top to bottom & left to right)
* Add attribute definition - Add attribute
* Copy selected attribute definition - Copy selected attribute
* Delete selected attribute definition - Delete selected attribute (&
close dialogue!)
* 4icons for managing attribute values (stay as they are)
* Save changes to model - Save changes (& close dialogue!)
* Undo changes - Cancel (& close dialogue!)
* Close (remove, superfluous)
= Add anew attribute
* Open attribute definitions editor (remove, superfluous)
* Apply changes - Save changes (& close dialogue!)
* Cancel changes - Cancel (& close dialogue!) (see above)
=  Note: From the two ‘Remarks’ fields only one should stay
o Filter details: none

O

Page 96 / 126



Project No. 231526 DynalLearn D3.1

* Build: Creating and adding Configurations
o Basis idea: see general text at the beginning of use level 5 text.
o Two dialogues are involved whose functionality should be merge into a single
dialogue:
= Configuration definitions editor (level 6: main screen)
= Add a new configuration (level 6: dialogue)
o Name composed dialogue: Add configuration
Open/Close: see general text.
o Buttons:
=  ‘Configuration definitions editor’ (read: top to bottom & left to right)
* Add configuration definition - Add configuration
* Copy selected configuration (New, similar as in other dialogues of
this kind at use level 5) (Note: not present in Garp3)
¢ Delete selected configuration definition - Delete selected
configuration (& close dialogue!)
* Save changes to model - Save changes (& close dialogue!)
* Undo changes - Cancel (& close dialogue!)
* Close (remove, superfluous)
= Add a new configuration
* Switch arguments (stays as it is)
* Open configuration definitions editor (remove, superfluous)
* Apply changes - Save changes (& close dialogue!)
* Cancel changes - Cancel (& close dialogue!) (see above)
=  Note: From the two ‘Remarks’ fields only one should stay
o Filter details: none

O

* Build: Creating and adding Quantities and Quantity Spaces
o Three dialogues are involved whose functionality should be merge into a single
dialogue:

= Quantity definitions editor (level 6: main screen)

= Quantity space definitions editor (level 6: main screen)

= Add new quantity (level 6: dialogue)

o Name composed dialogue: Add quantity
o Basis idea: see general text at the beginning of use level 5 text.

» Nested dialogue: From the 1* dialogue (Add quantity) users can open a 2
dialogue (Add quantity space). This 2 dialogue behaves in the same general
way as the other dialogues, and it has to be closed, before the action at the
guantity level (Add quantity) can be completed.

o Open/Close (Add quantity): see general text (happens from main screen)
= Open/Close (Add quantity space): see general text (happens from Add
guantity dialogue)
o Buttons:
= ‘Quantity definitions editor’ (read: top to bottom & left to right)

* Add quantity definition - Add quantity

* Copy selected quantity definition - Copy selected quantity

* Delete selected quantity definition - Delete selected quantity (&
close dialogue!)

* Delete selected quantity space definition - Delete selected quantity
space

* Open quantity space definitions editor - Add quantity space

* Save changes - Save changes (& close dialogue!)

Page 97 / 126



Project No. 231526 DynalLearn D3.1

* Undo changes - Cancel (& close dialogue!)
* Close (remove, superfluous)
= Add a new quantity

* Open quantity definitions editor (remove, superfluous)

* Apply changes - Save changes (& close dialogue!) (see above)

* Cancel changes - Cancel (& close dialogue!))

= Note: From the two ‘Remarks’ fields only one should stay
=  ‘Quantity space definitions editor’ (read: top to bottom & left to right)

* Add quantity space (stays as it is)

* Copy selected quantity (stays as it is)

* Delete selected quantity space (stays as it is) (note also removes
guantity space from the Add quantity dialogue) (& close Add
guantity space dialogue!)

* 6icons for managing quantity spaces (stay as they are)

* Save changes - Save changes (& close Add quantity space dialogue!)

* Undo changes - Cancel (& close Add quantity space dialogue!)

* Close (remove, superfluous)

o Default quantity spaces (to be added in addition to Mzp)
= P Plus
= Zp: Zero Plus
=  Zpm: Zero Plus Max
=  Zsml: Zero Small Medium Large
= Zsmlm:Zero Small Medium Large Max
= Zlah: Zero Low Average High
= Zlahm: Zero Low Average High Max
= Zlch: Zero Low Critical High
= Zlchm: Zero Low Critical High Max

18.5.3. Use level 5 — Always True and Conditional Fragment

* Atuse level 6, four ‘view editors’ exist:
o Build: Scenario definitions editor
Build: Model fragment definitions editor
Build: Scenario editor
Build: Model fragment editor
At use level 5 they are re-organised into three ‘view editors’ (discussed below):
= Build: Conditional model fragment definitions editor
= Build: General model fragment editor
=  Build: Condition model fragment editor

O
O
O
O

* To accommodate the filters at use level 5, it makes sense to introduce a new model fragment
type: Expression
o This model fragment should in principle allow for all ingredients to be created as
Conditions or Consequences (details depend on use level)
=  Should it therefore be a subtype of the model fragment type Agent, which
includes all ingredients (but not all as Condition and as Consequence)?
=  Orshould it be a new top-level item, next to Agent, Static and Process?

Page 98 /126



Project No. 231526 DynalLearn D3.1

o Having this additional type is essential for discriminating this fragment from other
fragments later on (e.g. for the export via OWL and repository storage), and it can
also be given unique ‘behaviour’.

o Note that if a new type is defined (as opposed to a subtype of Agent) this should be
accommodated for in the software at some places (e.g. the engine should be
augmented to also search for Expression (these adaptations are probably simple).

o Note that this new type can be used also for level 2, 3, and 4!

o The General model fragment (always true) should be of type Expression. Shall we
refer to this fragment as General?

o Each Conditional model fragment should be a direct subtype of this ‘General model
fragment’, such that these subtypes inherit the contents of the super type (and the
conditional details can be placed in the context of the always true expression). Shall
we refer to this fragment as Conditional?

* Build: Conditional model fragment definitions editor
o lIsin principle the same as ‘Model fragment definitions editor’ with the limitation
that users should only see the names of the Conditional fragments they have created
(and none of top-level model fragments nodes, such a Static, Process, Agent, and
Expression), and also not the always true expression General. Hence, it seems best to
use a simple list of names (using alphabetic order), and not use a graphical approach
with icons to show the conditional model fragments created by the user
o LHS button bar: all options stay in place, accept for:
= The 5 layout buttons (note, if we decide to keep the icons in the workspace
and not have only fragment names, then the layout buttons may be needed
partially).
=  Properties button (needs use level 5 filtering)
o Pulldown menu:
= File: asin use level 6 (accept ‘Properties’ needs use level 5 filtering)
= Edit: asin use level 6
= View: layout options disappear (details to be determined)

* Build: General model fragment editor
o lIsin principle the same as ‘Model fragment editor’ with the modification that all
ingredients may be expressed, and that they are all expressed as consequences
(blue).
o If we decide to use the type General, this editor will always work with a single
instance (subtype) of this type.
o LHS button bar: has buttons to add all ingredient types as consequences (blue).
However, the notion of consequences should not be shown to the user.
o Pulldown menu:
= File: asin use level 6 (accept ‘Properties’ needs use level 5 filtering)
= Edit: as in use level 6 (accept ‘Properties’ needs use level 5 filtering)
=  Conditions and Consequences - Rename: Ingredients (Single list of
consequences, blue)
= View: asin use level 6 (without ‘Show subfragments’).

¢ Build: Conditional model fragment editor
o Isin principle the same as the regular ‘Model fragment editor’.

Page 99 /126



Project No. 231526 DynalLearn D3.1

o If we decide to use the type Conditional, this editor will always work on direct
subtypes of this type.
o Note: The emphasis of Conditional fragments is on conditions of type magnitude,
derivative and in/equality.
o LHS button bar: as in the regular ‘Model fragment editor’
However, the notion of consequences should not be shown to the user.
o Pulldown menu:
= File: asin use level 6 (accept ‘Properties’ needs use level 5 filtering)
= Edit: as in use level 6 (accept ‘Properties’ needs use level 5 filtering)
= Conditions: as in use level 6
= Consequences: as in use level 6
= View: asin use level 6 (without ‘Show subfragments’).

O

* Colour coding
o General model fragment: all ingredients: Blue
o Conditional model fragment:
= Inherited ingredients: Green (as in Garp3)
= New conditions: Red (as in Garp3)
= New consequences: Blue (as in Garp3)

* Export model to Simulate
o From: General model fragment to:

= Scenario
* Entity
* Configuration
e Agent
* Assumption
* Quantity

* Quantity space
* Magnitude / Value assignment
* Derivative / Value assighnment
* In/equality
=  General model fragment (subtype of Expression)
* All contents, but without
o Magnitude / Value assignment
o Derivative / Value assignment
o In/equality
o From: Conditional model fragment(s) to:
= Conditional model fragment(s) subtype of General
* All contents (as defined)

18.5.4. Use level 5 — Simulate

* Simulate: ‘State-graph’ (as in use level 6)

* Simulate (view): Show dependencies (as in use level 6)
* Simulate (view): Value history (as in use level 6)

* Simulate (view): Equation history (as in use level 6)

* Simulate (view): Transition history (as in use level 6)

Page 100 / 126



Project No. 231526 DynalLearn D3.1

* Simulate (view): Show entities, configurations and attributes (as in use level 6, but
superfluous)

* Simulate (view): Show quantity values (as in use level 6)

* Simulate (view): List model fragments (as in use level 6)

o This can be simplified by showing only the list of fragment names that have applied in
each of the states, and hiding most of the options enumerated below. On the other
hand, if the fragment types General and Conditional are imbedded correctly within
the existing MF types, all these use level 6 details should also work correctly at use
level 5. So what to do here depends on choices made earlier concerning the approach
to this use level. Ideally, everything would simply stay as it is used at use level 6,
requiring no extra work here...

o Simulate (view): List model fragments: Show model fragment in legacy mode (option:
hide, make unavailable)

o Simulate (view): List model fragments: Show model fragment in context (option:
hide, make unavailable)

o Simulate (view): List model fragments: Edit selected model fragment

18.5.5. Use level 5 — Specials

*  Pull down list for Scenarios names or Model fragment names (LHS top main screen)
o This list will only show the Conditional model fragments
o The overall working stays as in use level 6

*  Pull down list for paths (Middle top main screen) (as in use level 6)

* Tab(asin uselevel 6)

* Clone (as in use level 6)

18.6. Use level 4

How to adapt Dynalearn use level 5 details to accommodate use level 4?

* Save/Open state-graphs, initial values, and created paths (as in use level 5)

*  Build: Creating and adding Entities, Agents, and Assumptions (as in use level 5)
* Build: Creating and adding Attributes (as in use level 5)

* Build: Creating and adding Configurations (as in use level 5)

* Build: Creating and adding Quantities and Quantity Spaces (as in use level 5)

* Issue: Entity preference (None - Instance - Instance & Type - Instance & Type hierarchy,
see D.2.1 for details) is in principle possible at this use level, particularly: None, Instance,
Instance & Type. Note: To be created if time permits.

* Atuse level 5, three ‘view editors’ exist:
o Build: Conditional model fragment definitions editor
o Build: General model fragment editor
o Build: Condition model fragment editor
o Atuselevel 4 there is only the General model fragment editor
= Build: General model fragment editor

Page 101 / 126



Project No. 231526 DynalLearn D3.1

* Build: General model fragment editor (as in use level 5)
o Note: Main screen top: buttons opening definition editors:
= The icons for opening the definition editors should be removed.
= At this use level only the general ‘Edit model’ icon is needed to open the only
model fragment in this model, namely General
= Note that the notion of model fragment is fully hidden the user at this use
level

18.6.1. Use level 4 — Export

* Export model to Simulate (as in use level 5)
o From: General model fragment to:

= Scenario
* Entity
* Configuration
e Agent
* Assumption
* Quantity

* Quantity space

* Magnitude / Value assignment

* Derivative / Value assignment

* In/equality

= General model fragment (subtype of Expression)

* All contents, but without
o Magnitude / Value assignment
o Derivative / Value assignment
o In/equality

18.6.2. Use level 4 — Simulate

* Simulate: ‘State-graph’ (as in use level 5)

* Simulate (view): Show dependencies (could be as in use level 5, but superfluous)

* Simulate (view): Value history (as in use level 5)

* Simulate (view): Equation history (as in use level 5)

* Simulate (view): Transition history (as in use level 5)

* Simulate (view): Show entities, configurations and attributes (could be as in use level 5, but
superfluous)

* Simulate (view): Show quantity values (as in use level 5)

* Simulate (view): List model fragments (not applicable, superfluous)

18.6.3. Use level 4 — Specials

*  Pull down list for Scenarios names or Model fragment names (LHS top main screen)
o Not applicable

Page 102 / 126



Project No. 231526 DynalLearn D3.1

*  Pull down list for paths (Middle top main screen) (as in use level 5)
* Tab(asin uselevel 5)
* Clone (as in use level 5)

18.7. Use level 3

How to adapt Dynalearn use level 4 details to accommodate use level 37

* Save/Open state-graphs, initial values, and created paths (as in use level 4)
Build: Creating and adding Entities, Agents, and Assumptions (as in use level 4)
Build: Creating and adding Attributes (as in use level 4)

Build: Creating and adding Configurations (as in use level 4)

Build: Creating and adding Quantities and Quantity Spaces
o Works in principle as in use level 4, accept with the following significant
modification:
= Quantities can be created without the user defining a quantity space
* Filter: Such gquantities are given a default quantity space (consisting
of a single interval) by the dialogue (without the user noticing).
= Quantity spaces can be adding to quantities without a user given quantity
space
*  Filter: this means that the dialogue replaces the default quantity
space by the user-given quantity space
= Quantity spaces can be changed for quantities with a user given quantity
space
o Note: Probably for the default interval a special purpose quantity space should be
defined: ‘gs-default’, so that it can easily be recognised and handle throughout the
software.
o Note: The derivative quantity space is not affected by the above, and is always added
for a quantity.
o Dialogues design:
=  Should the two dialogues be fully independent? Or do we implement special
purpose handling in the operation of the joined dialogues (see use level 4
and 5). From a user point of view, independent dialogues are preferred.

* Build: General model fragment editor (as in use level 4)

o Butthe scope of usable ingredients is limited (Entity, Attribute, Configuration,
Quantity, Quantity space, Value assignment (also Derivative), Correspondences and
Proportionalities).

=  Filter: Proportionalities are shown as + and —. This requires adapting the Add
proportionality dialogue to ‘Add effects’.

18.7.1. Use level 3 — Export

* Export model to Simulate (as in use level 4, but less ingredients)
o From: General model fragment to:

Page 103 / 126



Project No. 231526 DynalLearn D3.1

= Scenario
* Entity
* Configuration
* Quantity

* Quantity space
* Magnitude / Value assignment
* Derivative / Value assignment
=  General model fragment (subtype of Expression)
* All contents, but without
o Magnitude / Value assignment
o Derivative / Value assignment

18.7.2. Use level 3 — Simulate

* Simulate: ‘State-graph’ (as in use level 4)

* Simulate (view): Show dependencies (not applicable, superfluous)

* Simulate (view): Value history (as in use level 4)

* Simulate (view): Equation history (not applicable, superfluous)

* Simulate (view): Transition history (as in use level 4)

* Simulate (view): Show entities, configurations and attributes (not applicable, superfluous)
* Simulate (view): Show quantity values (as in use level 4)

* Simulate (view): List model fragments (not applicable, superfluous)

18.7.3. Use level 3 — Specials

*  Pull down list for paths (Middle top main screen) (as in use level 4)
* Tab(asin uselevel 4)
* Clone (as in use level 4)

18.8. Use level 2

How to adapt Dynalearn use level 3 details to accommodate use level 27?

Save/Open state-graphs, initial values, and created paths (not applicable, superfluous)
Build: Creating and adding Entities, Agents, and Assumptions (as in use level 3)

o Butonly Entities can be created (Agent and Assumptions are not used)
Build: Creating and adding Attributes (as in use level 3, but maybe we don’t want it?)
Build: Creating and adding Configurations (as in use level 3)

Build: Creating and adding Quantities and Quantity Spaces
o Works in principle as in use level 3, accept with the following significant
modification:
= Quantities have no user defined quantity space
* Filter: Such gquantities are given a default quantity space (consisting
of a single interval) by the dialogue (without the user noticing).

Page 104 / 126



Project No. 231526 DynalLearn D3.1

o Note: Probably for the default interval a special purpose quantity space should be
defined: ‘gs-default’, so that it can easily be recognised and handle throughout the
software.

o Note: The derivative quantity space is not affected by the above, and is always added
for a quantity.

o Dialogues design:

= The Add quantity dialogue needs to be adapted: the quantity space details
are not available.

* Build: General model fragment editor (as in use level 3)
o Butthe scope of usable ingredients is limited (Entity, Attribute, Configuration,
Quantity, Value assignment (only Derivative), and Proportionalities).
=  Filter: Proportionalities are shown as + and —. This requires adapting the Add
proportionality dialogue to ‘Add effects’.

18.8.1. Use level 2 — Export

* Export model to Simulate (as in use level 3, but less ingredients)
o From: General model fragment to:

= Scenario
* Entity
* Configuration
* Quantity

* Quantity space
* Derivative / Value assighnment
= General model fragment (subtype of Expression)
* All contents, but without
o Derivative / Value assignment

18.8.2. Use level 2 — Simulate

* Simulate: ‘State-graph’ (not applicable, superfluous)

* Simulate (view): Value history (not applicable, superfluous)

* Simulate (view): Transition history (not applicable, superfluous)

* Simulate (view): Show quantity values (not applicable, superfluous)

* Simulate result should be show in the Build context (Generic model fragment), which entails
three things:
o Derivative values
o Inconsistency (shown by a ‘?’)
o Ambiguity (shown by multiple value assignments on derivatives)

Page 105/ 126



Project No. 231526 DynalLearn

D3.1

18.8.3. Use level 2 — Specials

*  Pull down list for paths (Middle top main screen) (not applicable, superfluous)
* Tab (not applicable, superfluous)
* Clone (as in use level 3, but not in fact superfluous)

18.9. Use level 1

How to adapt Dynalearn use level 2 details to accommodate use level 1?

* Build: Creating and adding Entities (as in use level 3)
o Butingredient icon is different, this requires some adaptation
= Dialogues
= Display in main screen

Build: Creating and adding Configurations (as in use level 3)

No other Build features are available
There is no Export to Simulate
None of the Simulate features is available

18.10. Menu options

Approach: Some options fixed (always present), and others change depending on the context.

18.10.1. Main menu — General items

File

Open model from file (formats: hgp, owl)

Save current model to file (formats: hgp, owl, legacy)
Save current model to new file (formats: hgp, owl, legacy)
Delete current model

Start new model

---- (horizontal line)

Save diagram to EPS file

---- (horizontal line)

Page 106 / 126



Project No. 231526 DynalLearn D3.1

Quit

Issue: can we easily change the main menu options themselves also? Thus whether ‘Edit’ as such is
sometimes shown and sometimes not? Or should the top list always be the same, and only its
contents change? Below we assume that the top categories change, therefore the order is slightly
different from Garp3/Build such that the ‘always shown options’ are listed first (accept for ‘Settings’
which is shown last, and yet always present). Settings may also be placed after Edit if that is easier
given implementation constraints.

View

Always active in Build and Simulate context.

Edit

Only active in Build context.

Ingredient (was Element in Garp3) OR Conditions & Consequences

Only active in Build context. What is shown depends only the editor that is open

Settings

Always active in Build and Simulate context. Has 2 options from Garp3/Build and the item ‘Settings’
from Garp3/Simulate (currently under Display).

Display

Only active in Simulate context.

18.10.2. Menu options — Details

Garp3 DynaLearn (main screen)

Note: Below there are options that have two versions Hide and Show. Of those cases only the default
is mentioned. Both options should be treated in the same way. It concerns: Hide/Show parent-child
relations, Hide/Show conditional relations, and Hide/Show model ingredient tooltips.

Page 107 / 126



Project No. 231526 DynalLearn D3.1

18.10.2.1. Build: Scenario editor

File: File:
Scenario properties !! same (only if Scenario editor active)
Save diagram to EPS file same (always present)
Save model to disk rename: Save current model to file (always present)
Edit (scenario ingredients): Edit: (only if Scenario editor active)
Delete same (only if Scenario editor active; new in LHS bar)
Properties same (only if Scenario editor active)
Element: rename: Ingredient (only if Scenario editor active)
Entity (items as in Garp3)
Attribute

Configuration
Quantity
Value
Plus
Min
Inequality
Assumption
Agent
View: View: (only if Scenario editor active)
Collapse (items as in Garp3, with 2 exceptions)
Expand
Collapse relations
Expand relations
Show relevant
Full redraw (show all, default placing)

Expand all

Page 108 / 126



Project No. 231526 DynalLearn D3.1

Hide
Translations Settings: Language

Hide model ingredient tooltips Settings: Hide model ingredient tooltips

18.10.2.2. Build: Model fragments definitions editor

File: File:

Properties (of ingredients) move to Edit if possible (top item, then horizontal line)

Save diagram to EPS file same (always present)

Save model to disk rename: Save current model to file (always present)
Edit (MF type ingredients): Edit: (only if MF definitions editor active)

Add child (items as in Garp3)

Edit

Delete (new in LHS bar)

Clone

Copy

Paste

Make inactive
View: View: (only if MF definitions editor active)
Default view (items as in Garp3, with 2 exceptions)
Save this view
Open other view
Hide parent-child relations
Show conditional relations
Translations Settings: Language

Hide model ingredient tooltips Settings: Hide model ingredient tooltips

Page 109 / 126



Project No. 231526 DynalLearn D3.1

18.10.2.3. Build: Model fragment editor

File: File:

Model fragment properties same (only if MF editor active)

Save diagram to EPS file same (always present)

Save model to disk rename: Save current model to file (always present)
Edit (MF ingredients): Edit: (only if MF editor active)

Delete same (only if MF editor active; new in LHS bar)

Properties same (only if MF editor active)
Conditions: Conditions: (only if MF editor active)

Entity (items as in Garp3)

Attribute

Configuration
Quantity
Value

Plus

Min
Inequality
Assumption
Agent

Model fragment

Identity

Consequences: Consequences: (only if MF editor active)
Entity (items as in Garp3)
Attribute

Configuration
Quantity

Value

Page 110 / 126



Project No. 231526 DynalLearn D3.1

Plus

Min

Inequality
Correspondence

Proportionality

Influence
View: View: (only if MF editor active)
Show sub fragments (items as in Garp3, with 2 exceptions)
Collapse
Expand

Collapse relations

Expand relations

Show relevant

Full redraw (show all, default placing)

Expand all

Hide

Translations Settings: Language

Hide model ingredient tooltips Settings: Hide model ingredient tooltips

18.10.2.4. Build: Entity / Agent / Assumption editor

File:
Save diagram to EPS file same: (always present)

Edit (entity/agent/assumption ingredients): Edit: (only if E/A/A editor active)
Add child (items as in Garp3)
Delete

Properties

Copy

Page 111/ 126



Project No. 231526 DynalLearn D3.1

Paste
View View: (only if E/A/A editor active)
Horizontal (items as in Garp3, with 2 exceptions)
Vertical
List
Collapse
Expand all
Translations Settings: Language

Hide model ingredient tooltips Settings: Hide model ingredient tooltips

18.10.2.5. Simulate: State-graph view

File: File:
Select Scenario leave out
Save simulation in model leave out
Open saved simulation leave out
Simulate all scenarios leave out (is debug facility)
Save diagram to EPS file same (always present)
View: (same as LHS button bar): View: (active when in simulate context) Window
E-R structure (items as in Garp3)

Quantity values
Model fragments
Dependencies
Transition history
Equation history
Value history
Current scenario

Scenarios (‘to scenario editor’)

Page 112 / 126



Project No. 231526

DynalLearn

D3.1

Display:
Layout
Layout states
Layout terminations

Settings

Display: (active when in simulate context)

(items as in Garp3)

Settings: State graph settings

Page 113/ 126



19. Appendix C — GIT Software version management HOWTO

Note: This manual is meant to give pointers towards using Git. The manual is provided on an "as
is" basis without warranties of any kind. We have moved our work from Subversion to Git (to use
our university infrastructure, particularly to have reliable backups), but our experience is still
young. It would therefore be helpful to get feedback to improve this HOWTO. Send comments to
J.Liem@uva.nl. The latest version of this document can be found on:
http://www.science.uva.nl/~jliem/versionmanagement/

19.1. Distributed Version Management using Git

Version management [1], also called revision or (source) code control, allows users to manage
the changes to documents, source code, or other files. Version management is often used in
software engineering, as it allows multiple authors to work on the same files simultaneously and
easily integrate their mutual changes.

In traditional version management systems (such as CVS and Subversion) there is a central
place in which the current version of the files and their change history is stored, which called a
repository. Users obtain the latest version from this repository, which is called a working copy or
checkout. After editing the files in the working copy, the changes can be committed to the
central repository.

Versioning systems also allow branching or forking of development. Conceptually, a branch is a
copy of the files under version management that allows these files to be developed
independently from other branches. As such, the initial files put in the version management can
be considered a branch. Branches are typically used to develop new features separately (so that
the new features/bug fixes do not conflict with the existing stable codebase). When
development of such a feature is done, the branch is merged back to the branch from which it
was forked.

The new version management tool available at the UVA is Git [2]. Git is used by several large
projects such as the Linux Kernel, Perl and Google Android. Git takes a more modern approach
and is a distributed versioning system. As such, each user has a personal repository (cloned from
another repository). Checkouts are made from the local repository and commits are written to the
local repository. Changes can either be pushed to, or pulled from, another repositoryg.

Due to the distributed nature of Git, two branches with the same name in different repositories
are considered two separate branches. For example, a branch feature1 in the repository of
Richard is considered a different branch than the branch feature? in the repository of Sam. If
Richard wants the latest version of the feature1 code, Richard has to fetch the latest changes
from Sam’s repository, and merge his feature1 code with the code of Sam’s feature1 branch.

19.2. Git Documentation (Linux/Windows/MacOSX)

The Git community provides excellent documentation. There is an official Git tutorial [3] and
the Git-SVN Crash Course [4] for those who already know Subversion. Furthermore, there are
lectures by Randal Schwartz [5] and Linus Torvalds [6]. The command 'git help' provides access
to the git manual pages.

® This HOWTO does not discuss ‘pull’. Furthermore note that instead of ‘clone’, ‘remote add’ + ‘fetch’ is often used, as it allows naming
the repository that is cloned.

Page 114 / 126



19.3. Setting up Git

19.3.1. Setting up Git at the UVA/FNWI (Linux/Windows/MacOSX)

To use Git, the Git executable is required. Moreover, to ‘push to’ or ‘pull from’ another repository,
the Git executable has to be available on the computer hosting that repository. To make Git
available on (mremote/sremote/owxxX).science.uva.nl and the Ivl Linux machines, the
following paths should be added to your PATH variable (ask Google how to set environment
variables). Add /usr/bin/ to be able to use Git on owxxx and Ivl Linux machines. Add
/opt/arch/git/bin/ to be able to use Git on sremote and mremote. Furthermore, in the
LD LIBRARY PATH variable the directory /opt/arch/lib should be mentioned before /lib.
Otherwise pushes will fail (due to an old 1ibz installation).

To access a repository in your FNWI home  directory via SSH use
ssh://user@mremote.science.uva.nl (Or sremote.science.uva.nl if you are a student),
since direct SSH access to other computers in the FNWI network is forbidden from outside of the
FNWI.

Linux users at the FNWI can use Git by default if they changed their PATH variable
appropriately. Windows users at the FNWI can SSH (using the Secure Shell Client) to one of the
Linux machines in the network. Given that the PATH variable has been specified correctly, Git
can be run from that computer.

19.3.2. Setting up Git on Linux

Git is available as a package in most modern Linux distributions (usually git-core).

19.3.3. Setting up Git on Windows

Windows users need to install a software package to use git called msysgit [7]. This provides
them with a Git shell in which they can type the relevant commands. There is currently a
graphical layer being developed (to be used on top of msysgit), called tortoisegit [8], but
the maturity of this tool unclear (at the time of writing).

Note that msysgit automatically replaces Unix newlines to Windows newlines (or to other way
around) by default. As a result, doing a checkout action can result in modified files
immediately. To change this behaviour do:

$git config core.autocrlf false

19.3.4. Setting up Git on MacOSX

MacOSX users can install Git via MacPorts [9]. After installing MacPorts, install Git using the
following command in the terminal:

$ sudo port selfupdate; sudo port sync; sudo port install git-core

19.3.5. Setting up Git Continued (Linux/Windows/MacOSX)

Page 115/ 126



You can set your username and email address using git config. This information will be
stored with the changes you commit to repositories:

$git config --global user.name "Jochem Liem"

$git config --global user.email J.Liem@uva.nl

19.4. Version Management using Git (Linux/MacOSX/Windows)

As mentioned before, Git is a distributed version management system. It supports both the
traditional version management workflow with a “central” repository, and a distributed way of
version management (or combinations of both). Both workflows are explained below using the
use case in which Richard (staff-member) and Daniel (student) are working together on a paper.

19.4.1. Infrastructure and Permissions Basics

In order for Richard and Daniel to collaborate using Git, they must make their repositories
available to each other. Git allows multiple protocols, including SSH and HTTP.

The central repository workflow cannot normally be used over HTTP, since it does not
allow files to be written from a client. As such, Richard and Daniel do not both have
access to a single computer over SSH, they have to use a distributed versioning model
over HTTP." Note that this makes the repository public to the entire internet, unless
HTTP Basic Authentication [11] is used. However, this type of authentication is relatively
insecure. Passwords are sent as plain text over the web.

When using the distributed workflow with SSH, both Richard and Daniel have to have
access to the same computer. Furthermore, they need to set the permissions of their
repository to both read and execute (chmod -R 750 if they are in the same group, and
chmod -R 755 if they are not in the same group). Note that this also makes the
repository available to other users on the system (either everyone in the same group, or
everyone on the system).

When using the central repository workflow with SSH, both Richard and Daniel have to
have access to the same computer. Furthermore, the person running the central
repository has to give full permissions to either his entire group (chmod -R 770) or all
users on the system (chmod -R 777). Furthermore, the Git repository should be
configured so that new files are created with write permissions for either the entire group,
or every user on the system:

$git config core.sharedRepository 0775
$git config core.sharedRepository 0777

An option that is usually not plausible due to security issues is sharing a separate user
account for development. In this setup a central repository workflow can be used, and
the repository can be set to be only accessible to that specific user (chmod -R 700).

Note that in all SSH cases, the super directories of the repository directory should have read and
execute permissions.

'° Note that it is possible to write files over HTTP using WebDav [10]. However, this requires Apache2 with the WebDav module, and
permission to edit the ht tpd. conf file (which requires root access).

Page 116 / 126



19.4.2. Distributed Version Management using Git

In the distributed version management workflow, the repository should be accessible to your
collaborators. Either your collaborators have access to your system via SSH, or you make the
repository available via HTTP.

Richard wants to collaborate on his paper with Daniel. Since Daniel has no SSH access to his
system, he will make the paper available via HTTP.

Richard moves his paper to his public_html directory, and goes there:

Smv /home/richard/papers/paper312 \
/home/richard/public_html/gitroot/paper312

$cd /home/richard/public _html/gitroot/paper312

Richard creates a repository for the paper

$git init

Richard indicates that the files should be put in the repository:

$git add .

Richard commits all changed files to the repository

$git commit -a -m “I put paper31l2 in version management.”

Richard sends an email to Daniel indicating the URL of the repository and that he can start
working on the paper.

Daniel creates a directory for the paper in his public_html directory (and goes there):
$mkdir /home/daniel/public_html/gitroot/paper312

$cd /home/daniel/public_html/gitroot/paper312

Daniel creates a repository for the paper

$git init

Daniel indicates where the repository of Richard is:

$git remote add richard http://www.science.uva.nl/~richard/gitroot/paper312
Daniel fetches the changes from Richard’s repository

$git fetch richard

Daniel merges his local master branch with the remote master branch of Richard
$git merge richard/master

Daniel makes some changes and commits them to his repository

$git commit -a -m “I changed the abstract and the conclusions”

Daniel sends the URL of his repository to Richard, so he can see his changes.

Page 117 / 126



Richard indicates where the repository of Daniel is
$git remote add daniel http://student.science.uva.nl/~daniel/

Richard retrieves the changes from Daniel’s repository and merges his master branch with
Daniel’s master branch.

$git fetch daniel
$git merge daniel/master

To collaborate with another student Sam, Richard and Daniel both send their repository URLs to
Sam. Sam sends his repository URL to Richard and Daniel. To create the latest version of the
paper Richard and Sam both indicate where Sam’s repository is, they need to fetch the latest
version from both collaborators, and merge with both of their latest versions.

Note that it is possible to mix the distributed approach with the central repository approach
(below). That is, each collaborator would have a “central” (bare) repository on a web server
somewhere. A working repository (based on the “central” repository) is created on the computer
on which the versioned files are edited. The URL of the “central” repository is given to
collaborators.

19.4.3. Version Management using a Central Repository

Consider that Richard and Daniel both have SSH access. In this case they can choose to
collaborate using a central repository. Central repositories are bare repositories, which are
repositories without a checkout. This prevents conflicts (e.g. edits on the same line) in files in
the central repository. Conflicts should instead be solved locally. Therefore you can only push to
a central repository if you have the latest version of the files in the repository.

Daniel has his paper in /home/daniel/papers/paper312.

Daniel creates a repository, adds the files, and does a local commit
$cd /home/daniel/papers/paper312

$git init

$git add .

$git commit -a -m “First draft of paper 312”

Daniel creates a central repository in /home/daniel/gitroot/paper312

$git clone --mirror /home/daniel/papers/paper312/ \
/home/daniel/gitroot/paper312

Daniel makes it possible for ‘other’ to write to the repository
Schmod -R 777 /home/daniel/gitroot/paper312

$git config core.sharedRepository 0777

Daniel updates the information about this repository

$git update-server-info

Daniel sends the link to the repository to Richard.

Page 118 / 126



Richard creates a repository to work on the paper
Smkdir /home/richard/papers/paper312/

$cd /home/richard/papers/paper312/

$git init

Richard indicates the place of the central repository

Sgit remote add central \
ssh://richard@sremote.science.uva.nl/home/daniel/gitroot/paper312

Richard fetches the changes from the central repository and merges them with his local
master branch (which does not exist yet)

$git fetch central

$git merge central/master

Richard makes some changes to the paper and commits to the local repository
$git commit -a -m “Changed the abstract and conclusions”

Richard pushes the changes to the central repository

$git push central

Daniel wants to continue working on the paper.

Daniel indicates the place of the central repository:

$git remote add central /home/daniel/gitroot/paper312

Daniel fetches the changes from the central repository and merges his master branch with
the master branch on the central repository

$git fetch central

$git merge central/master

19.5. Issues with Laptops and Windows

People with Windows computers at home probably have neither SSH access nor a HTTP server
running on their computer. As such getting changes from repositories is difficult in the
distributed version management workflow. Laptops have a similar issue. Changes are difficult to
get from laptops due to their changing IP address (depending on the wireless network). As such,
repositories do not have a stable URL.

One possible solution is to have your own “central” (bare) repository to which you push your
changes. You give the link to this repository to your collaborators. They pull your changes from
this “central” repository.

Page 119/ 126



19.6. Migrating from Subversion

If you want to migrate your own repositories from Subversion to Git, heed the following advice.
Do not try to migrate using git-svn alone. Compile the latest version of Git (we had some
broken branches in our repository due to an outdated version of git-svn), and use the svn2git
script [12] to migrate the repository.

19.7. DynalLearn/Garp3 and Git"

The Garp3 codebase is versioned using Git. Depending on your goals, there are alternative ways
to interact with Git. The following three use cases should cover most goals:

1. Always have the latest version of Garp3 (or one of the development branches)
2. Develop Garp3 (or one of the development branches)
3. Develop Garp3 as a UVA employee (or one of the development branches)

UVA employees use our central Garp3 repository, while others use our “public” Garp3 repository.
UVA employees can access the repository using their normal username and password. The
“public” Garp3 repository is password protected using HTTP Basic Authentication. Git uses the
curl library to connect to repositories accessed via HTTP. To get access to the public Garp3
repository a .netrc file (Linux/MacOSX) or netrc (Windows) file has to be created in your
home directory. This file specifies the username and password to connect to the password
protected Garp3 repository. The contents of this file should be:

machine staff.science.uva.nl login developer password G3gmsw|gr
machine www.science.uva.nl login developer password G3gmsw|qr

Important: The UVA is bound by contractual agreements not to publicly disseminate
development versions of Garp3. If you want to work on Garp3, and want to make the repository
available via the web, you are required to shield the repository using HTTP Basic
Authentication [1]. Make sure to notify the UVA of the URL, username and password if you want
us to integrate your changes in our Garp3 development tree.

19.7.1. Latest Development Version of Garp3

The guidelines in this section are applicable when you want to have the latest version of Garp3,
but do not want to develop new Garp3 functionality. To make the guidelines applicable to any
user we use the HTTP protocol (since the SSH protocol requires a user on the repository
machine). We assume that a .netrc (or netrc on Windows) has been created as described
above.

Create a clone of the public Garp3 repository in your home directory:
Scd ~

$git clone http://www.science.uva.nl/~jliem/gitroot/Garp3.git Garp3.git

" The DynaLearn branch is, for legacy reasons, incorporated under the Garp3 branch. This means that accessing the Garp3 branch
means accessing the DynalLearn branch. There are no changes whatsoever.

Page 120 / 126



By default the standard development branch of Garp3 is checked out.
To update to the latest version of Garp3

$cd Garp3.git

$git fetch origin

$git merge origin/master

The steps above are sufficient for most users. However, some users might want the latest version
of a particular development branch in Garp3.

Show the remote branches
$git branch -r

Create a local branch based on a remote branch and make a checkout (in this example we
checkout origin/AutomaticModelBuilding as the local branch
AutomaticModelBuilding

$git checkout -b AutomaticModelBuilding origin/AutomaticModelBuilding

The local checkout now reflects the AutomaticModelBuilding branch. Therefore merging
now merges with this branch instead of the master branch.

Show all the branches (and the active branch)

$git branch -a

Update the AutomaticModelBuilding branch

$Sgit fetch origin

$git merge origin/AutomaticModelBuilding

To switch back to the master branch do

$git checkout master

Switching to the newly created AutomaticModelBuilding branch
$git checkout AutomaticModelBuilding

Note that it is impossible to push changes to the origin repository using this method (since it is
HTTP server).

19.7.2. Developing Garp3

If you are a researcher or student and want to further develop Garp3 (making the changes
available to us), it is appropriate to make use of the distributed nature of Git and both the HTTP
(to clone and fetch changes from the Garp3 repository at the UVA) and SSH protocol (to push
changes to your own central repository). Again, we assume that the .netrc/ netrc file has
been created. UVA uses the distributed nature of Git, which does not require write access to the
Garp3 repository. Developers can make their own repository available to UVA by putting it on the
web. By informing UVA about the URL of the repository, UVA can pull changes back to the UVA
Garp3 repository. Irrespective of whether you are a single student, or represent a group of
developers, a single bare repository should be made mirroring the UVA public Garp3 repository.

Page 121/ 126



Project No. 231526 DynalLearn D3.1

This bare repository should be made available over the web. Note again that bare repositories
do not have a checkout. This prevents conflicts in the central repository when pushing. Conflict
should be resolved locally. Therefore pushing is only allowed if you have the latest version of
each branch in your local repository.

Create a mirror of the Garp3 public repository
$cd /home/user/public _html

$mkdir gitroot

$cd gitroot

Sgit clone --mirror http://www.science.uva.nl/~jliem/gitroot/Garp3.git
Garp3.git

Make sure that other developers have write access to the repository
$Schmod -R 777 Garp3.git (or ‘770’ if you are in the same group)
Scd Garp3.git

$git config core.sharedRepository 0777 (or 0775 if you are 1in the same
group)

Note that the last step is not necessary if you are the only one developing. Also, perhaps fewer
rights are required at your university.

Update the information about the repository location
$git update-server-info

The URL of this created public repository should be made known to the Garp3 developers (if you
want your changes integrated). The URL should also be made known to the developers at your
university.

Each developer (or a single student) creates a clone of the newly made public repository (over
SSH, since they want to push back to the public repository).

Create a local repository to develop in

Sgit clone ssh://anotheruniversity.edu/home/user/gitroot/Garp3.git
Garp3.git

By default the master branch of the public repository is checked out. The other branches are
tracked as remote branches (e.g. origin/AutomaticModelBuilding).

Show the all branches
$git branch -a
Checkout a remote branch as a newly created local branch

Sgit checkout -b AutomaticModelBuilding origin/AutomaticModelBuilding
After some development the changes should be locally committed and pushed to the public
repository

$git commit -a -m “Changed A, B and C”

Page 122 / 126



Project No. 231526 DynalLearn D3.1

$git push origin

To update a few active branches based on the public repository do the following:
$git fetch origin

$git checkout master

$git merge origin/master

$git checkout AutomaticModelBuilding

$git merge origin/AutomaticModelBuilding

Note that usually there is no reason to update all branches in your repository, since you tend to
develop only a few branches.

During development your public repository may get out of sync with the UVA public repository.
By adding the UVA public repository as a remote repository to your local git repository, changes
can be pulled from it, and pushed to your own public repository.

Add the UVA public repository to as a remote repository in your local repository (requires the
.netrc/_netrc file):

$git remote add uva http://www.science.uva.nl/~jliem/gitroot/Garp3.git

Get changes from the UVA Garp3 repository and integrate them
$git fetch uva

$git checkout master

$git merge uva/master

$git checkout AutomaticModelBuilding

$git merge uva/AutomaticModelBuilding

Push the changes to your public repository

$git push origin

Developing Garp3 as a UVA employee

If you are a UVA employee with SSH access to mremote.science.uva.nl, you can use the Garp3
central repository.

Create a clone of the central repository and create a master branch
Smkdir Garp3.git

$cd Garp3.git

$git init

Sgit remote add central
ssh://user@mremote.science.uva.nl/home/jliem/gitroot/Garp3.git

$git fetch central

Page 123 / 126



Project No. 231526 DynalLearn D3.1

$git merge central/master

After making changes you can commit them locally and push them to the central repository
$git commit -a -m “Changed A, B, and C”

Sgit push central

If you like to work on another branch create a local branch with the same name first

$Sgit checkout -b AutomaticModelBuilding central/AutomaticModelBuilding

Again, you can do development and commit. To get changes made by others, merge your
master branch with the master branch on the central repository.

$git fetch central

Sgit merge central/AutomaticModelBuildin

19.8. Acknowledgements

Many thanks to Jeroen Roodhart for manually installing Git on the mremote/sremote Solaris
machines, and to Adri Bon for installing Git on all the Education/Research Linux Machines.

[1] http://en.wikipedia.org/wiki/Revision control

[2] http://git-scm.com/

[3] http://www.kernel.org/pub/software/scm/git/docs/qgittutorial.html

[4] http://qit.or.cz/course/svn.html

[5] http://www.youtube.com/watch?v=8dhZ9BXQgc4

[6] http://www.youtube.com/watch?v=4XpnKHJA0k8

[7] http://code.google.com/p/msysqit/

[8] http://code.google.com/p/tortoiseqit/

[9] http://www.macports.org/

[10] http://www.kernel.org/pub/software/scm/qgit/docs/howto/setup-git-server-over-http.txt

[11] http://maymay.net/blog/2008/08/08/how-to-use-http-basic-authentication-with-git/

[12] http://github.com/jcoglan/svn2git/tree/master

Page 124 / 126



Project No. 231526 DynaLearn D3.1

Page 125/ 126



e-mail: Info@Dynalearn.eu
website: www.Dynalearn.eu





