
Differentiating Qualitative Representations into Learning Spaces ∗

Jochem Liem and Wouter Beek and Bert Bredeweg
Informatics Institute, University of Amsterdam, The Netherlands

Email: J.Liem, W.G.J.Beek, B.Bredeweg@uva.nl

Abstract

The DynaLearn interactive learning environment allows
learners to construct their conceptual ideas and investi-
gate the logical consequences of those ideas. By build-
ing and simulating causal models, students develop an
understanding of how systems work. The DynaLearn
interactive learning environment introduces six modes
of interaction, called learning spaces. By working in a
particular learning space, teachers can emphasise par-
ticular aspects of modelling a system (e.g. causality,
conditional knowledge). The DynaLearn software is
based on the Garp3 qualitative modelling and simula-
tion workbench, but integrates the interface into a single
screen and adds learning spaces.

Introduction
Qualitative Reasoning (QR) provides means to express con-
ceptual knowledge such as system structure, causality, con-
ditions for processes to start and finish, assumptions and
conditions under which facts are true, qualitatively distinct
behaviours, etc. Qualitative models provide formal means to
externalise thought on such conceptual notions.

This paper describes the DynaLearn Interactive Learn-
ing Environment (ILE) (Bredeweg (ed.) et al. 2009). Dy-
naLearn is specifically created for students to develop their
conceptual knowledge of systems. The DynaLearn ILE
offers diagrammatic presentations for learners to construct
their ideas, and test these by running simulations.

The DynaLearn ILE is based on the qualitative modelling
and simulation workbench Garp3 (Bredeweg et al. 2009;
Bredeweg and Salles 2009a). However, the DynaLearn
ILE was developed to accommodate different requirements.
Firstly, the software should be usable by different groups
of students, ranging from end of high school to bachelor
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and master students. Secondly, DynaLearn should allow the
modelling process to focus on a particular type of knowl-
edge depending on what is appropriate in the domain of
discourse. As such, the DynaLearn ILE has six different
modes of interaction, which can be considered complete ap-
plications tailored to a particular type of knowledge. These
learning spaces can be chosen based on the student’s level
of expertise, and the kind of phenomenon dealt with.

Educational Dimensions
Conceptual models contain different types of knowledge,
such as ontological or causal knowledge. From a teaching
perspective, these knowledge types can be considered ed-
ucational dimensions. Depending on the learning goal that
has to be achieved by the learner, a focus on a particular edu-
cational dimension will be appropriate, and thus a particular
modelling paradigm should be used.

Ontological Knowledge

Ontological knowledge pertains to the vocabulary that is
used within a particular domain of discourse. An important
distinction in the types of ontological knowledge is the dif-
ference between what is conceptual and instance knowledge.
Conceptual knowledge tends to refer to concepts. We use the
terms generic and specific knowledge instead of these terms,
as these words apply more naturally to situations (which are
modelled in QR models).

Generic situations refers knowledge to that applies to
more than one situation, for example, all the situations in
which heat exchange happens. Specific situations refer to a
single particular situation. For example, the river Mesta is a
particular river. Similarly, the state of the river Mesta during
last winter is an example of a specific situation.

Structural and Behavioural Knowledge

Structural knowledge represents arrangements of the things
that constitute the system, i.e. the (usually static) objects and
their relationships. Structural knowledge can be contrasted
with behavioural knowledge, which encompass the dynamic
aspects of the system. Behavioural knowledge describes the
possible states of the system.



Causal Knowledge
Causality links two events (the cause and the effect) in such
a way that the second event is the result of the first event.
Causal knowledge represents which quantities in a system
affect each other and how. Of particular importance is the
direction of causality, and whether the quantities inversely
affect each other or not.

Propagation Propagation causality is when changes in
one quantity causes changes in another quantity.

Processes Processes are the conceptualization of a se-
quence of observable changes of a system, and consistently
affect quantities while they are active. As such they are prop-
erties of dynamic systems. Processes consist of a set of re-
lated quantities, of which some serve as input and some as
output. Examples of processes are: photosynthesis, oxida-
tion, and birth. Processes have different features that are
important to communicate (Bredeweg et al. 2008):

• What should the structure of the system look like, for the
process to be applicable?

• Which quantities are involved? Which quantities are af-
fected by the process? How do the changes caused by the
process propagate through the system.

• Under what conditions does the process become active?
E.g. the boiling process becomes active when the tem-
perature reaches the boiling point. Under what conditions
does the process stop being active?

Assumptions and Scope
Every model and scientific theory includes assumptions. For
example, the ceteris paribus assumption (‘all other things
being equal’) is central to predictions. The choice of the
scope of the system (what to model and what not to model)
is an assumption that (for the purposes of that model) other
processes have no effect. When teaching a scientific theory
or a particular model, the assumptions made are essential
to convey. Two typical categories of assumptions that are
distinguished are simplifying assumptions and operating as-
sumptions (Forbus and Falkenhainer 1991).

Learning Spaces
The DynaLearn ILE provides six Learning Spaces (LSs) of
increasing complexity (in terms of the model ingredients
that can be used to construct knowledge). Each LS is a
self-contained interactive workspace meant to learn specific
details about system behaviour. In LS1-4 learners work in
a single representation called an expression. The LSs and
the model ingredients introduced in each LS are shown in
Table 1. The interfaces that can be used to inspect the simu-
lation results on each LS can be seen in Table 2. Progression
between LSs happens by augmenting the current level with
the smallest subset of possible modelling ingredients, again
ensuring that the next level is self-contained (Table 1).

Learning Space 1: Concept map
The first learning space in DynaLearn is meant to allow the
definition of the key concepts and relationships in a domain

Nr Learning space Introduced ingredients

1 Concept map Entities
Configurations

2 Causal model Attributes
Quantities
Value assignments
Derivatives
Causal relationships

(+ and -)
3 Causal model Quantity spaces

with state graph Correspondences
4 Causal differentiation Causal relationships:

Influences
Proportionalities

Inequalities
Operators:

(+ and -)
Agents
Assumptions

5 Conditional knowledge Conditional expressions
6 Generic and reusable Scenarios

Model fragments
Entity, agent, and

assumption definitions

Table 1: Overview of modelling ingredients per learning
space in the DynaLearn software. Each LS augments the
representation with a new set of model ingredients.

of discourse. As such, the focus of this learning space is
mostly ontological. Learners using this learning space are
encouraged to structure their thoughts.

A concept map (sometimes referred to as an entity-
relation graph) is a graphical representation that consists of
two primitives: nodes and arcs. Nodes reflect important con-
cepts, while arcs show the relationships between those con-
cepts (Novak and Gowin 1984). An example of a concept
map is shown in Figure 1a. The educational dimensions rel-
evant in the LS are:

Ontological knowledge The concepts and relationships a
learner introduced should reflect the terminology that is
used in the domain of discourse.

Scope The chosen system scope determines the result.

Concept maps do not capture dynamic behaviour, and do
not allow for computer-based reasoning (simulation). How-
ever, having this learning space is useful from a educational
point of view, as it is the basis from which more complex
knowledge representations emerge. The DynaLearn ILE
does not attempt to replicate the advanced features of other
concept map tools (that for instance allow nested nodes,
colouring and adding media) (Cañas et al. 2004).

Learning Space 2: Causal model
The second learning space allows learners to create a causal
model (Figure 1b). As the name suggest, the main focus of
this level is the representation of causal knowledge. There



Nr Learning space Introduced simulation views

1 Concept map
2 Causal model Simulation in expression
3 Causal model State graph

with state graph Quantity values
Value history
Transition history

4 Causal differentiation Equation history
5 Conditional knowledge Entities, Configuration,

and Attributes
Dependencies view
Model fragments view

6 Generic and reusable

Table 2: Overview of simulation views per learning space in
the DynaLearn software.

is a causal relationship that is directed and can be either
positive or negative. These relationships can be placed be-
tween quantities. For example: Amount +→Height repre-
sents that height of a contained liquid is positively affected
by amount of liquid.

An important ontological distinction that is introduced in
this level is that between structural and behavioural knowl-
edge. The structural aspects of the system are modelled
using entities, configurations and attributes. For exam-
ple: Container Contains−→ Liquid. The behavioural aspects of
the system consist of quantities that are connected to enti-
ties (Liquid : [Amount,Height, Pressure]), their deriva-
tives (δAmount ∈ {N,∅,H}), derivative value assignments
(δAmountv = N), and the causal relationships mentioned
above. The learner only defines the names of the quantities,
while the possible derivative values are predefined.

The causal model LS is the first learning space that intro-
duces semantics to the representation. Whereas a concept
map only gives a syntactic specification of the structure of
a system, LS2 adds meaning to the model representation,
resulting in a simulation of the modelled system’s future be-
haviour. In this LS, a single state simulation is performed
that is visualised in the model representation that the learner
is manipulating (Table 2). The assigned values in Figure 1b
become grey, while derivative value assignments that are in-
ferred by the simulator are added in blue. The reasoning en-
gine computes the derivatives of the quantities based on the
derivative value assignments and the causal relationships be-
tween the quantities. This can result in the derivative being
(1) unknown, (2) uniquely derivable, (3) ambiguous (multi-
ple value assignments), or (4) inconsistent (question mark is
visualised on top of the model).

The relevant educational dimensions in this LS are:

Structural and behavioural knowledge Learners have to
be able to distinguish between the structural description
of the system and the behavioural aspects that capture its
behaviour.

Causal knowledge The focus in this LS is particularly on
the causal relationships between quantities.

The representational approach taken for LS2 relates to
Betty’s brain (Leelawong and Biswas 2008). One differ-
ence is that Betty’s brain allows causal relationships with
different strengths. In DynaLearn this kind of knowledge
can be represented using inequality statements, but these are
available at LS4 and beyond (Causal differentiation, see be-
low). Another difference is the explicit inclusion of struc-
tural knowledge in DynaLearn at LS2.

Learning Space 3: Causal Model with State Graph
Where LS2 focussed on causality and direction of change,
the causal model with state graph learning space focusses
on the prediction of changes in time. The representation
of the causal model level is augmented with the notion of
values of a quantity. Quantities can be assigned a quan-
tity space that indicates which values a quantity can have
(e.g. Pressurev ∈ {zero, low, average, high,max}).
Furthermore, value assignments can be put on these values
(Pressurev = low).

The introduction of current values for quantities has the
consequence that the simulation results cannot be repre-
sented inside the expression (which is a visualisation of a
single state of behaviour). The reason is that it cannot ade-
quately show how the values of quantities change in time.
As such, the simulation results are represented as a state
graph (Figure 1c), in which each state identifies a qualita-
tively unique situation and each transition a possible change
from one situation to another (Table 2). A sequence of states
from the begin state to the end state is called a behaviour
path, and the visualisation of a sequence of values that for a
quantity in these states is called a value history (Figure 1c).

Another notion that is introduced in this learning space
is co-occurrence. Consider that Height and Pressure
should have the same values at the same time, and both have
the quantity space {zero, low, average, high,max}.
To represent this notion, correspondences are in-
troduced. There are quantity correspondences (e.g.
Height Q→Pressure), and value correspondences (e.g.
Height(zero) V→Pressure(zero)), which can both be
either directed or undirected. The value correspondence
indicates that if Heightv = zero then Pressurev = zero.
If the value correspondence is bidirectional, the reverse
inference is also possible. Quantity correspondences can
be considered a set of value correspondences between each
consecutive pair of the values of both quantities. There are
also inverse quantity space correspondences (Q1

Q

�

↔Q2)
that indicate that the first value in Q1 corresponds to the last
value in Q2, the second to the one before last, and so on.

In this LS the following steps are made in the education
dimensions:

Behavioural Knowledge With the introduction of quantity
spaces, the notion of qualitative distinct states, transi-
tions become important. The notion of a prediction and
changes in time are key here.

Assumptions Since the causal relationships on this LS do
not cause change themselves, the assigned derivative val-
ues are assumed to persist through the entire simulation.



For the stable derivative option, this is similar to the
steady-state assumption.

Learning Space 4: Causal Differentiation
The causal differentiation learning space (Figure 1d) fo-
cusses particularly on the notion of processes. To accommo-
date this, the causal relationships (+ and -) are refined into
influences and proportionalities (Forbus 1984). The other
representational elements LS3 remain the same. Quantities
that represent processes have influence relationships to other
quantities in the system (e.g. Birth rate I+→Size). The
structure of the system exemplifies a particular situation in
which the process is applicable.

In order to be able to control simulation results, inequali-
ties (Birth ratev > Death ratev) and operators (+ and -)
are introduced. The operators are useful when there are mul-
tiple conflicting causal relationships (e.g. Birth ratev +
Immigrationv > Death ratev + Emigrationv , which
results in δSize = N). How inequalities change in time is
visualised in the equation history (Table 2). Since inequality
statements remove particular behaviour from the simulation,
assumptions becomes important. Assumption labels can be
used to indicate that particular statements are true for pur-
poses of the simulation, but are not true in general.

When modelling, learners are encouraged to focus on a
constrained set of phenomena. For purposes of modelling
this choice constitutes the system, while all other effects on
the modelled phenomena are considered to be outside the
system. For this purpose, this LS introduces the notion of an
agent, which models an influence from outside the system.

The cause of the effects of agents tend not be modelled ex-
plicitly. For example, in a model about the euthrophication
of lakes due to agriculture runoff, the processes that result
in the runoff are less relevant to the message that the model
tries to convey. Since these processes are also not affected
by the eutrophication, they do not have to be modelled ex-
plicitly. Instead, they can be considered constant influences
from outside the system. This can be modelled by introduc-
ing an agent agriculture and a quantity runoff. Typically,
the behaviour of the runoff is provided via an exogenenous
quantity behaviour (Bredeweg, Salles, and Nuttle 2007;
Bredeweg et al. 2009), such as increasing, decreasing, sta-
ble, sinusoidal, generate all values. Such exogeneous be-
haviour makes the quantity of the agent exhibit specific be-
haviour, without the need to explicitly model this behaviour.

LS4 affects the following educational dimensions:

Process knowledge Having influences allows the correct
modelling of processes. Important aspects consider are
the structure required for the process to be applicable, the
quantities affected by the process, and how the changes
propagate through the system.

Causal knowledge The notion of causality is refined.

Assumptions The introduction of assumptions and inequal-
ities (and operators) makes it possible to explicitly model
operating assumptions, operating modes and steady state
assumptions.

Scope Agents can be used to model external influences.

The representation in LS4 relates to VMODEL (Forbus et
al. 2005). One difference is that VMODEL works with sin-
gle state simulations, while the DynaLearn LS4 has multiple
state simulations. Therefore, Dynalearn LS4 also facilitates
multiple views to inspect the simulation results.

Learning Space 5: Conditional Knowledge
The conditional knowledge learning space focusses partic-
ularly on the activation conditions of processes. Conse-
quently, choosing good landmark values in quantity spaces
is an important task to solve. For example, the quantity
space for the height of a bathtub should have a maximum
value, as at this point the overflow process becomes active.

Learners can create an expression using the same vocabu-
lary as in LS4. The knowledge in the expression (except the
value assignments) always applies. However, in this level
multiple conditional expressions can be defined. Condi-
tional expressions consist of the expression and a set of con-
ditional and consequential model ingredients (Figure 1e). If
the conditions are true, the consequences also apply. For ex-
ample, in a model of a pan with water on a stove, the cooking
process only becomes active if the temperature of the water
is greater or equal than the cooking point. In the conditional
expression of the boiling process (Figure 1e), the inequal-
ity Temperature ≥ Cooking point is the condition that
makes Boiling ratev = Positive (the consequence).

The conditional expression introduced in LS5, make mod-
elling assumption more natural. Where in LS4 all assump-
tions and related model ingredients are inside a single ex-
pression, in LS5 each assumption (modelled as a condition)
can be combined with a set of consequential model ingredi-
ents in a conditional expression. Assumptions can be added
to the expression to run simulations.

Given that the structure and behavioural relationships can
dynamically change on LS5, the Entities, configurations and
attributes and the dependencies views are introduced (Ta-
ble 2) . The former shows the structure of the model, while
the latter shows the behavioural relationships in a particular
state. The Model fragment view shows which of the condi-
tional expressions have become active.

The introduction of conditional expressions affects the
following educational dimensions:

Process knowledge Conditional expressions allow the
modelling when processes become active.

Assumptions Being able to have different conditional as-
sumptions in different conditional expressions allows
learners to more easily vary with different assumptions.

Learning Space 6: Generic and Reusable
The main focus of the generic and reusable learning space
is on generic knowledge and first principles. This LS re-
flects an improved version of Garp3. In contrast with the
earlier LSs, where it is more natural to talk about specific
instances of situations were certain processes are active, in
LS6 the knowledge is represented in a generic way in model
fragments. These can be considered formalisations of the
knowledge that applies in certain general situations. Model



fragments can be considered rules indicating that if cer-
tain model ingredients are present (conditions), certain other
model ingredients must also apply (consequences). The can
be represented as: conditions⇒ consequences.

Three types of model fragments are distinguished: (1)
process fragments are used to model processes, (2) agent
fragments are used to represent the effects of agents, and
(3) static fragments are used for the static structure of the
system. Model fragments are organised in a is-a hierar-
chy, which causes model ingredients to be inherited to child
model fragments. Furthermore, this LS allows model frag-
ments to be reused in other model fragments.

Next to model fragments, different scenarios can be mod-
elled. These represent specific cases of systems (with spe-
cific initial values). As such, behavioural relationships can-
not be modelled in scenarios (only in model fragments), as
these belong to the general knowledge. DynaLearn can run
simulations of models based on a particular scenario. As in
the previous LSs, the result of a simulation is a state graph.

At this level the notion of model ingredient definitions be-
comes important. Entity definitions are organised in an is-a
hiearchy (e.g. a Lion is an animal). By specifying such onto-
logical knowledge, it becomes possible to develop generally
applicable model fragments, but particular cases in scenar-
ios. Simulations then show how the generic knowledge ap-
plies to that particular case.

In terms of educational dimensions, substituting expres-
sions for model fragments and scenarios and adding model
ingredient definitions has the following consequences:

Ontological knowledge While in the earlier LSs it is more
natural to model specific cases, in LS6 the focus is on gen-
eral knowledge. The model fragments should represent
the situations in which certain processes apply in a generic
way. Scenarios can be used to to model specific cases to
which this general knowledge applies. Another difference
is that model ingredient definitions (general knowledge)
have to be created before they can be used in model frag-
ments and scenarios. For example, hierarchies of entity
definitions are made to bridge the gap between specific
cases and the general knowledge.

Examples of models in LS6 can be found in a special issue
of Ecological Informatics (Bredeweg and Salles 2009b).

Conclusion
The first iteration of the DynaLearn Interactive Learning En-
vironment (ILE) for constructing conceptual knowledge has
been successfully completed. The main contribution in this
version is the development of learning spaces (LSs). The
LSs allow teachers and learners to work on different levels
of complexity, making the software accessible for our target
audience of end of high school students and students start-
ing university. Furthermore the LSs focus on particular rep-
resentational features in order to highlight and investigate
specific qualitative aspects of systems behaviour. Each of
the consecutive LSs introduces or refines a set of model in-
gredients that emphasize a particular education dimension.
The educational dimensions that are relevant on the lower
LSs are also relevant on the higher LSs.

In addition to the learning spaces, DynaLearn has also
integrated the interactive windows into a single workspace
(single screen). Furthermore, adding model ingredients in
expressions on LSs up until LS6 only require a single in-
teraction. We anticipate that these changes will make the
DynaLearn usable for our target audience. The software is
available via the DynaLearn website1.
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