

Delivery date:

Submission date:

Leading beneficiary:

Status:

Dissemination level:

Authors:

2010/07/31

Augsburg University (UAU)

Version 06 (final version)

PU (public)

Michael Wißner, Markus Häring, René Bühling, Wouter Beek, Floris

Linnebank, Jochem Liem, Bert Bredeweg, Elisabeth André

Delivery date:

Submission date:

Leading beneficiary:

Status:

Dissemination level:

Authors:

D5.3

Basic Help and Teachable Agent

Deliverable number:

Deliverable title:

Project number:

Project acronym:

Project title:

Starting date:

Duration:

Call identifier:

Funding scheme:

231526

DynaLearn

DynaLearn - Engaging and

informed tools for learning

conceptual system knowledge

February 1st, 2009

36 Months

FP7-ICT-2007-3

Collaborative project (STREP)

pat
Typewritten Text
2010/08/31

Project No. 231526

Page 2 / 34

DynaLearn D5.3

Abstract

In this document we present two different use cases of the DynaLearn software which
involve virtual characters: The Teachable Agent and the Basic Help.

We elaborate on how the necessary knowledge for these use cases is extracted from
the CM component, how it is represented and how it is turned into presentations by
the virtual characters that are engaging and helpful for the learners. We also describe
how the different parts of the dialog system presented in Deliverable 5.2 aid us in
achieving this task.

Internal reviewers

Paulo Salles (FUB), Institute of Biological Sciences, University of Brasilia

Esther Lozano (UPM), Ontology Engineering Group, Universidad Politécnica de
Madrid

Acknowledgements

For the parsing of OWL-based data, we use the OWL API, primarily maintained by the
University of Manchester (http://owlapi.sourceforge.net).

http://owlapi.sourceforge.net/�

Project No. 231526

Page 3 / 34

DynaLearn D5.3

Document History

Version Modification(s) Date Author(s)

01 First draft 2010-07-14 Wißner,Häring,Bühling
02 Input by UvA 2010-07-16 Beek,Linnebank,Liem,Bredeweg
03 Draft for review by partners 2010-07-19 Wißner, André

04
Integrated suggestions from review by
FUB

2010-07-26 Wißner

05
Integrated suggestions from review by
UPM

2010-08-17 Wißner,Beek

06 Final version 2010-08-20 Wißner,Bühling

Project No. 231526

Page 4 / 34

DynaLearn D5.3

Contents

Abstract __ 2

Internal reviewers __ 2

Acknowledgements __ 2

Document History __ 3

Contents __ 4

1. Introduction ___ 6

2. Basic Help ___ 7

2.1. Introduction and different Types of Help ___ 7

2.2. Interaction Flow and Examples ___ 7

2.3. Knowledge Extraction and Representation ___ 9

2.3.1. Requirements for Basic Help knowledge representation and extraction ______________ 9

2.3.2. General aspects of the Basic Help knowledge representation and extraction _________ 10

2.3.2.1. Modularity __ 10

2.3.2.2. Knowledge linking ___ 10

2.3.2.3. Natural language __ 11

2.3.3. Specific aspects of the Basic Help knowledge representation and extraction _________ 11

2.3.3.1. “What is?” __ 11

2.3.3.2. “How to?” __ 12

2.3.3.3. “Why?” ___ 15

2.4. Dialog Management ___ 16

2.4.1. Sceneflow and Example Scenes __ 16

2.4.2. Usage of Verbalization Module ___ 17

2.4.3. Usage of User Model ___ 18

3. Teachable Agent __ 19

3.1. Introduction and Purpose ___ 19

3.2. Learning by Teaching with a Teachable Agent __ 19

3.3. Interaction Flow and Examples __ 20

Project No. 231526

Page 5 / 34

DynaLearn D5.3

3.4. Knowledge Extraction and Representation __ 27

3.5. Dialog Management ___ 27

3.5.1. Sceneflows and Example Scenes ___ 27

3.5.2. Usage of Verbalization Module ___ 30

3.5.3. Usage of User Model ___ 30

4. Conclusion ___ 31

5. Discussion and Future Work ___ 32

References ___ 33

Project No. 231526

Page 6 / 34

DynaLearn D5.3

1. Introduction

The DynaLearn project aims to conceive and develop an interactive learning environment which
combines current technologies and research from different areas in a way that provides learners and
teachers with the optimal tools for a rich educational experience.

The DynaLearn software reflects this through the integration of the following three modules, each
providing different benefits to the overall application:

• Conceptual Modeling (CM): Offers a graphical editor to build diagrammatic representations to
learners to articulate, analyze and communicate ideas, and thereby construct their conceptual
knowledge

• Semantic Technology (ST): Provides web-based ontology mapping which be used to find and
match co-learners working on similar ideas to provide individualized and mutually benefiting
learning opportunities

• Virtual Characters (VC): A cast of different virtual characters can be called upon to make the
interaction with the software engaging and motivating

To further specify the scope of this report, work on the Virtual Characters consists of the following tasks:

• To enable learners to express their ideas on a conceptual model using a virtual character as a
presenter that combines verbal and non-verbal means for communication

• To realize various kinds of dialog between virtual characters representing different roles and
functions to explain a conceptual model

• To design communicative strategies for multiple agents that engage in a dialog about the model
created by their learners

This Deliverable reports on the progress of work on the second item, namely the results of Task 5.3 “Basic
help and teachable agent”.

The remainder of this document is structured as follows: The next two chapters will discuss in details
both the Basic Help (2) and the Teachable Agent (3). We will end with a conclusion (Chapter 4) as well as a
discussion and an outlook of future work (Chapter 5).

Project No. 231526

Page 7 / 34

DynaLearn D5.3

2. Basic Help

2.1. Introduction and different Types of Help

The Basic Help support functionality communicates the knowledge pertaining to those aspects of the
DynaLearn interactive learning environment (ILE) that are visible to the user and that the user can
directly interact with. For any one of these visible aspects, the knowledge communicated explains the
direct properties as well as the embedding of the visible aspect within the broader context of the rest of
the ILE. There are three kinds of directly visible aspects, and they are distributed over the three kinds of
Basic Help:

• “What is?” handles the knowledge regarding the diagrammatic representation of the user-
created model. The visible aspects are the various modeling ingredients that constitute the on-
screen structure of the model.

• “How to?” handles the knowledge regarding the screens, dialogs and buttons that the user
interacts with. The visible aspects can either be the screens themselves, or modeling ingredients.

• “Why?” handles the knowledge regarding the diagrammatic representation of the simulation
results. The visible aspects are the visual representation of magnitude and derivative values, as
well as states and state transitions that are visualized in the state graph simulation environment.

Even though individual Basic Help requests focus on relatively isolated pieces of model and workbench
knowledge, these model ingredients and workbench components are always inherently linked to the
larger fabric of the complete model and the overall workbench. The strategy of the Basic Help
functionality is therefore to be concise and focused with respect to individual knowledge requests, but to
allow for more complexity by adding hyperlinks that can be optionally clicked in order to gain a broader
understanding of the material.

2.2. Interaction Flow and Examples

For this example, let us assume that the learner has opened the Communicating Vessels model, as shown
in Figure 1.

Project No. 231526

Page 8 / 34

DynaLearn D5.3

Figure 1: Communicating Vessels model

Now he asks “What is Water right?” by selecting the appropriate item from the menu. The Teacher
character will then appear and, after a short introduction, offer the desired explanation (see Figure 2).

Figure 2: The Teacher character giving an explanation about an entity instance

If learners want further information, they have two possibilities of asking follow-up questions: One is to
select a purple term from the Teacher’s answer, which will bring up the glossary, explaining the term.
This explanation can in turn contain glossary terms. See Figure 3 for an example of the glossary.

Project No. 231526

Page 9 / 34

DynaLearn D5.3

Figure 3: Glossary, describing the term "Consequence"

The other possibility for a follow-up question is to click on a green term. This will generate a new What is?
question about this term and the Teacher will again give the explanation.

The interaction flow for “How to?” and “Why” questions is similar to the one for the “What is?” question
shown here: The learner selects something (a model ingredient, a state in a simulation etc.) and the
possible questions will be listed in the support menu. Upon choosing one of them, the character will
appear and give the answer, as well as possibilities for follow-up questions of the same kind.

2.3. Knowledge Extraction and Representation

This section discusses the knowledge representation and extraction of the Basic Help component. In
section 2.3.1 we formulate the requirements which the knowledge representation and extraction should
adhere to. Section 2.3.2 describes how these requirements have been met by the Basic Help design.
Section 2.3.3 focuses on those aspects of the knowledge representation and extraction that are peculiar
to the three Basic Help variants, i.e. the “What is?”, the “How to?”, and the “Why?” functionality.

2.3.1. Requirements for Basic Help knowledge representation and extraction

Since support information should be made available immediately based upon the learner’s interaction,
complex information extraction and/or logical derivation methods should be avoided as much as
possible. Ideally, the representation of the support knowledge should make complex processing
superfluous by being particularly tailored towards the support effort.

Because the Basic Help knowledge should be communicated to the user in natural language, the
knowledge architecture of the support functionality should provide the ingredients that allow the
generation of a natural language dialogue.

This gives us the following four requirements to which the Basic Help knowledge representation and
extraction architecture should adhere:

Project No. 231526

Page 10 / 34

DynaLearn D5.3

• The transmitted knowledge should always be both concise and focused on one particular aspect
of a model or the workbench.

• The knowledge should be immediately available to the user.

• The user should have the ability to access broader knowledge as an option.

• The knowledge must be communicated in natural language.

2.3.2. General aspects of the Basic Help knowledge representation and extraction

This section discusses the way in which the requirements of the previous section have been met by the
general Basic Help design.

2.3.2.1. Modularity

The first two points can be covered both at the same time, since a knowledge representation in which
information is formulated in a concise and focused manner, does not require much additional
information retrieval or logical derivation. The reasoning is largely being incorporated into the
representation. In order to achieve this, a modular representational approach is used.

In order to be modular, each ingredient is associated with its own RDF/XML structure. This means that
the granularity at which the Basic Help information requests are processed, i.e. individual model
ingredients, is the same level at which the model has been represented in the Basic Help knowledge
representation. This makes the representation in close agreement with the extraction process, in the
sense that no additional information retrieval or other complex methods are required.

Normally, knowledge in the DynaLearn software is represented using OWL. However, we nevertheless
chose to use this special RDF/XML structure for the following reasons: The logical restrictions that the
OWL language poses are too stringent for the intended purpose. Also, the existing OWL representation
was not modular. This is partly due to the many interconnections that the OWL language possesses,
making the representation more convoluted than it should be for the intended purpose.

2.3.2.2. Knowledge linking

Since a support interaction between a learner and a teacher typically consists of a to-and-fro between
learner requests and teacher elucidations, we want to address the third requirement, as identified in the
previous section, by incorporating the ability to link to further Basic Help requests from within the
explanation of the previous Basic Help elucidation.

These knowledge links are represented as RDF linked data URIs. In the knowledge extraction process
they are directly mapped onto hyperlinks that figure in the output dialog which the Virtual Character
communicates. Since the knowledge representation contains a modular description of every readily
available visual aspect, this means that the learner can click on any of the concepts that are mentioned in
the dialogue, triggering a follow-up Basic Help request.

In addition to linking through to other modular ingredients, hyperlinks are also added for terms that are
specific to the DynaLearn ILE as well as to the Qualitative Reasoning methodology that the ILE is based
on. These terminological hyperlinks, which are also represented as RDF linked data, are clickable in the
Virtual Character’s communication balloons as well.

Project No. 231526

Page 11 / 34

DynaLearn D5.3

2.3.2.3. Natural language

Another requirement (as identified above) is that the support knowledge representation allows the

generation of a natural language dialogue.1

In order to stay close to natural language, we want to represent the knowledge in a flat, i.e. non-nested
manner. In addition to avoiding nesting as much as possible, the structure of the representation should
itself be similar to natural language’s grammatical structure. The general form of a sentence is Subject-
Predicate-Object, so that the Object term is predicated of the Subject term. The RDF/XML representation

has exactly this structure.

2

In order to make the DynaLearn ILE even more versatile with respect to language interactions, the user
can choose different languages in which to encode his model. In addition to that, we allow the Basic Help
component to support multiple languages as well. As of yet, only the English language (with a distinction
between British and American English) is fully supported, but additional languages can be added simply
by extending the number of tags in the various Basic Help components. An example of how this works is
given in the “How to?” section. Tags for additional should translate the original English information and

are marked with the xml_lang argument. All languages from the ISO 639 standard

3

2.3.3. Specific aspects of the Basic Help knowledge representation and extraction

 are supported.

In this section those aspects of the Basic Help representation and extraction are described that are
peculiar to the three different forms of Basic Help, i.e. the “What is?”, the “How to?”, and the “Why?”
functionality.

2.3.3.1. “What is?”

The “What is?” knowledge is generated for a specific model ingredient that the user selected prior to
issuing the “What is?” question. Since the model ingredients are different for every model that a user
creates, this information is generated on the fly. Within a single model, the various model ingredients are
identified by unique URIs. These URIs also provide the possibility to link through to additional “What is?”
knowledge requests (as mentioned above).

The code example in Figure 4 shows how the representation is centered around an individual model
ingredient (in this case an entity instance called ‘Stove’). The represented material consists of (a) all the
direct properties of this model ingredient as well as (b) all other model ingredients to which it is directly
related.

1 Artificial languages are less natural and must first be learnt, whereas the support functionality should also help starters, i.e.
learners without prior knowledge of the DynaLearn ILE. Schematic representations, although potentially powerful, would not
be adequate for the support functionality, since its purpose is to explain aspects of the schematic representation of qualitative
systems knowledge. Introducing yet another schematic representation would thus be counter-productive. Also, natural
language adds another medium to the text-based on-screen representations, thereby providing an extra channel to effectively
communicate knowledge.
2 For a more in-depth discussion of the technical details of the natural language properties of the RDF/XML representation,
see deliverable 3.2, section 9.3.
3 See the ISO 639 standard at http://www.loc.gov/standards/iso639-2/php/code_list.php

http://www.loc.gov/standards/iso639-2/php/code_list.php�

Project No. 231526

Page 12 / 34

DynaLearn D5.3

Figure 4: Example of “What is?” representation

Examples of direct properties are an ingredient’s name, remarks, category, and state. Examples of direct
relationship are having quantities, occurring in configurations, and being the instance of a definition.

For some directly linked ingredients, it is interesting to show more information than just the directly
related ingredient by itself. For instance, when an entity instance is related to another entity instance via
a configuration, we want to know the directedness of this relation as well. Also, we want to know the
entity instance that resides on the other side of the configuration. Because of the reification of

configurations, it would otherwise not be possible to refer to the other entity instance directly.4

2.3.3.2. “How to?”

The “How to?” functionality has two modes: with and without a model ingredient selection. In the latter
case, the actions that can be performed in the current screen of the DynaLearn ILE are accessible through
a layered menu. The layered menu including action categories like “Add”, “Remove”, and “File”. Under
these categories reside “How to?” requests such as “How to add an entity?”, “How to remove an imported
model fragment?”, and “How to create a new model?”.

In the second “How to?” mode, i.e. the one with model ingredients selected, the selected model
ingredients work as a filter on the layered menu of “How to?” requests, showing only those that pertain
to the current selection.

The “How to?” knowledge representation consists of two interlinked hierarchies. One consists of the
actions that a user can perform in the DynaLearn ILE (Figure 5). These comprise actions the user can
perform in order to alter the current model, like adding, deleting, and changing model ingredients. Other
actions allow the user to open, save or print a model, simulate a model, or change a model’s metadata.
Lastly, there are actions that allow the user to engage with the virtual character use cases that the
DynaLearn ILE offers.

4 For a complete overview of the various “What is?” properties that are generated, see deliverable 3.2.

Project No. 231526

Page 13 / 34

DynaLearn D5.3

Figure 5: The action hierarchy for the “How to?” functionality

In addition to the action hierarchy, there is a hierarchy of screens (Figure 6). These consist of the main
window, the views that can be opened inside the main window, and the various dialogs that can be
opened from either the main window or from a specific view that is opened inside the main window.

Project No. 231526

Page 14 / 34

DynaLearn D5.3

Figure 6: The screen hierarchy for the “How to?” functionality

The hierarchic structure of the actions and screen is represented using SKOS
(http://www.w3.org/TR/skos-primer/), e.g. the skos:broaderTransitive line in the below code
snippet.

http://www.w3.org/TR/skos-primer/�

Project No. 231526

Page 15 / 34

DynaLearn D5.3

In the knowledge representation, the screens and actions are related to each other. Every screen allows
certain actions to be performed. And each action needs to be performed in an appropriate screen. For
representing these interrelations we use the Basic Help namespace, called ‘bh’. The tags bh:locatedIn
and bh:accessibleFrom implement these interconnections.

An important aspect of the DynaLearn ILE is the different learning spaces in which the conceptual
modeling experience is segmented. Because each learning space makes different functionality available,
the actions that are available may differ across learning spaces. In addition to that, even if the same
action is available in multiple learning spaces, then still the preconditions for performing that action, as
well as the consequences that performing the action may have, can differ across learning spaces. See
deliverable 3.1 “Multi Use Level Workbench” for an overview of the various learning spaces.

In order to incorporate how the functionality of the ILE is distributed over the various learning spaces, an
argument is included that marks the learning spaces to which the stored knowledge applies. In the below
example, three different description of the same action (i.e. adding a configuration instance) are
provided. Each description describes the action in the context of different learning spaces.

As was discussed above, the DynaLearn ILE allows for multi-language support. By adding tags that
contain the same information as their English counterparts in translation, it is possible to incrementally
add new languages to the Basic Help functionality. In the example in Figure 7, the name of the described
action has also been added in German.

Figure 7: Example of “How To?” representation

2.3.3.3. “Why?”

The “Why?” functionality communicates how the changes that are visualized in the simulation
environment can be explained in terms of the simulated behavior. The “Why?” question can be asked
with respect to a changing derivative value, a changing magnitude value, and a state change in the state
graph.

The changes in the derivative and magnitude values are explained in terms of the values they had in the
previous state and the influences and proportionalities that influenced it. See Figure 8, for instance.
When asking a “Why?” question upon selecting quantity Amount with magnitude Zero and derivative
Increasing, the communicated explanation is: “Amount was steady, but is positively influenced by Flow,
which has magnitude Positive. Therefore, Amount is now increasing.” An explanation can consist of an
arbitrary number of influencing and propagating relationships:

• Explanation for one incoming influence:
o <bh:isInfluenced sign="SIGN" rdf:resource="QUANTITY"

magnitude="VALUE"/>
o <bh:previousMagnitude rdf:resource="VALUE"/>

Project No. 231526

Page 16 / 34

DynaLearn D5.3

• Explanation for one incoming propagation:
o <bh:isPropagated sign="SIGN" rdf:resource="QUANTITY"

derivative="VALUE"/>
o <bh:previousDerivative rdf:resource="VALUE"/>

Figure 8: An example model for which “Why?” requests are formulated

The changes between consecutive states in the state graph are more complicated, because now
inequalities and calculi between quantities can play a role as well. For instance, in state 1 the Flow
between the two Containers in Fig. 3 is Positive and decreasing. In state 2 the Flow between the two
Containers is Zero and steady. In order to explain this, the calculus between the two Pressure quantities
needs to be communicated. The Pressure on the left is larger than the Pressure on the right. But in state 2
the two Pressures are equal, making the Flow Zero. Such an inequality change is represented as follows:

<bh:fromGreaterToEqual arg1=”Height_Left” arg2=”Height_Right”/>

This change combined with the proportionality information regarding the positive influence of the
Height on the Pressure, gives the reason for the complex change between state 1 and 2.

2.4. Dialog Management

In this section we will explain how we used the different parts of dialog management introduced in
Deliverable 5.2 “Basic tutorial tactics for virtual agents” in the Basic Help use case.

2.4.1. Sceneflow and Example Scenes

The dialogs that the Teacher character performs for the Basic Help are governed by sceneflow depicted in
Figure 9.

Project No. 231526

Page 17 / 34

DynaLearn D5.3

Figure 9: Sceneflow for Basic Help

After the Teacher is called by a learner, it gives a short welcome (marked “A” in Figure 9) and then waits
for a help request (B). Once there is one, its type is checked and an appropriate scene is called (C, D or E).
After the help is given, the Teacher waits for the next request, which could either be a follow-up question
or an entirely new request.

Scenes for What Is? questions are distinguished based on the type of ingredient that learners ask about.
For example, a scene used for explaining an entity might look like this:

Scene_en: What_is_entity
T: $EntityName is an entity. It was added as a $EntityState and its definition is $EntityDefinition.
It has the following quantities: $ListOfQuantities
It is part of the following configurations: $ListOfConfigurations

Note that the content of the placeholders is not specified directly when calling the scene. Instead, a map
with placeholder-content pairs is supplied.

Scenes for Why? questions work in a similar way and are distinguished based on what the questions was
asked about (a state, a derivative or a magnitude).

Finally, scenes for How To? questions are even easier to handle, as there is no special distinction
necessary. They are simply supplied with two placeholders, one for the task that the learner asked about
and one for the instructions how that task can be accomplished. Here is a very simple example of such a
scene:

Scene_en: How_to
T: To $task, you have to $instructions.

2.4.2. Usage of Verbalization Module

Since all the conceptual knowledge communicated for the Basic Help is represented in a RDF-based way
as described above, we first parse it using the OWL API [1]. After the necessary data is extracted, we can
use it to fill the placeholders in the scenes used by SceneMaker. As an example, let us take another look
at the above mentioned example “What is Water right?”. If the learner would ask this question, the RDF-
representation listed in Figure 10 would then be send to the Virtual Characters from the CM module.

Project No. 231526

Page 18 / 34

DynaLearn D5.3

Figure 10: Example of an answer represented in RDF

The representation is then parsed. After that, we can fill the placeholders in the scene shown in the
previous section (What_is_entity).

2.4.3. Usage of User Model

As of now, the Basic Help does not make use of the information of the user model. However, we plan to
use the data provided by the user model to filter the information given in all three versions of the Basic
Help in order to avoid giving experienced learners unnecessary information and do make sure
inexperienced users are offered every help they need.

Project No. 231526

Page 19 / 34

DynaLearn D5.3

3. Teachable Agent

3.1. Introduction and Purpose

The design of the Teachable Agent is based on the principle of Learning by Teaching. Learning by
Teaching is an effect that many students experience while learning with fellow students or when
teaching younger students. They have to find different ways to explain their knowledge so that the other
students understand as well. They gain different perspectives on the same subject matter and can fill
their knowledge gaps. It may also be motivating to see how your teaching efforts result in the growing
knowledge of your students.

A Teachable Agent (TA) transfers this principle to the field of virtual learning environments. According to
the research by Blair et al. [2], a TA has a knowledge representation that can be created by the learner.
From this structured knowledge the agent can extract answers to questions asked by the learner. It also
must be able to explain its train of thought, so the learner can see how causal chains arise in his own
model. By testing the agent's understanding of the matter through questioning, the learner can evaluate
his own presentation of the knowledge and detect mistakes when the agent doesn't answer as expected.

Constant verification of the own understanding is an important part in the learning process that
unfortunately often comes short due to the learners' aversion to tests. However, learners are less
restrained in confronting an agent several times with the same test than in retaking this test themselves.
That's why we allow the learner in our application to take part in a quiz and to send his personal
teachable agent to this quiz in his place. Since the TA's knowledge mirrors an image of the learner's
knowledge, he may serve as a proxy in an educational quiz.

3.2. Learning by Teaching with a Teachable Agent

The essential ideas for a teachable agent were described by Blair et al. [2] who implemented an
application were learners could design a concept map to model knowledge and were supported in this
task by a virtual agent. This agent used the concept map to form answers to questions asked by the
learner and was able to explain his train of thought. In this way the learner could validate his model. Blair
et al. also noticed that the learners tend to adopt the way the agent builds up causal chains in the
knowledge model. So the agent also acts as an ideal when it comes to teaching complex reasoning. In
this scenario the learner does the teaching by modeling the knowledge of the agent and asking him
questions. But he learns from the mistakes the agent does as they indicate errors in his representation of
the topic and also by watching the agent playing his role as a student.

Early versions of Betty's Brain, as the application later was called, only included the modeling
environment for the concept maps and the teachable agent. Later versions introduced a second agent,
the so called "Mr. Davis", who is best described as an assistant teacher for the learner [3]. He can quiz the
teachable agent, providing a series of generated questions that help the learner to evaluate his model as
a whole. But this quiz is not animated and only presented in the shell of the application. Additionally Mr.
Davis provides general advice for the learner.

We detached the services of this assistant teacher character from the teachable agent and integrated
them in other characters that also may provide services not related to this use case. Further in this
deliverable we will focus on our implementation of a teachable agent.

Project No. 231526

Page 20 / 34

DynaLearn D5.3

3.3. Interaction Flow and Examples

The learner can choose between a female and a male character (see Figure 11). To give it more
personality he can name his teachable agent by himself or just give it a randomly generated name. The
name of the TA will be used in dialogs with other agents for a more believable performance.

Figure 11: Selecting and naming a Teachable Agent

When the learner has decided on the appearance of their teachable agent and its name, the virtual
character appears and establishes first contact with a friendly greeting (see Figure 12). Actually this step
is important for the dialog management of every virtual character as this is an essential part of human
everyday conversations. After the agent has introduced himself the learner has access to its various
services.

Project No. 231526

Page 21 / 34

DynaLearn D5.3

Figure 12: The TA greets the learner

The most basic services for a teachable agent (according to Blair et al.) are the use cases Ask and Explain.
The learner asks his virtual companion a question and may ask him to explain his answer. These
questions relate to the model the learner created in the CM and are created via a menu (see Figure 13).

Figure 13: Dialog for asking questions

The teachable agent repeats the questions and takes some time for thinking. Of course this is only show,
since the system already computed the answer. But the TA is designed to mime a student who's not
smarter than his human companion. His knowledge is based on the students QR model and we want the
student to think, his virtual companion has to cope with such questions the same way he does.

This behavior is motivated by studies carried out by Kim et al. [4]. They examined the effect of
competency (low vs. high) and interaction type (proactive vs. passive) of virtual characters on learning
success, self-efficacy and attitude towards the virtual character. Their results show that with regard to
competency maximum learning success and maximum motivational effect, i.e. high self-efficacy and
positive attitude, can't be achieved at the same time. High competency supports learning success, while a
low-competent agent has a positive effect on self-efficacy and attitude. In our implementation of
Learning by Teaching the virtual character is intended to motivate the learner to keep working on his
model using the teachable agent to evaluate his work. So we designed a low-competent behavior for this
agent. The learner should establish a peer-like relationship to his teachable agent in which he has the
control and also the responsibility for the actions of the virtual character.

Figure 14 shows the TA answering a question.

Project No. 231526

Page 22 / 34

DynaLearn D5.3

Figure 14: The TA repeats a question and answers it

If the answer of the teachable agent is right, this is a direct success for the learner, but it may be that the
agent is not able to answer the question. This indicates an error in the model of the student. But also not
all answers of the TA are right. It lies in the responsibility of the student to decide if the given answer is
the one he expected. If this isn't the case, this might again indicate that the model is incorrect, since the
answer of the TA is retrieved from it, but it may also imply that the student hasn't fully understood his
own work. To clarify this case the student can ask the agent to explain its answer in detail. Of course the
use case Explain only makes sense if a question was asked before. If this is not the case, the agent will tell
the student that he must ask a question first. Figure 15 shows an example of the TA explaining his
answer. Note the grey “history bubble” that contains its last utterance to help the learner keep track of
what is being said.

Figure 15: The TA explains its last answer

Project No. 231526

Page 23 / 34

DynaLearn D5.3

As further visual cues for the learner, the agent also makes appropriate gestures and highlight the
mentioned ingredients within the model. See Figure 16 for how the TA points upwards as it is talking
about an increase. Also, note the halo around the quantity it is talking about.

Figure 16: Additional visual cues

These two use cases cover the essential services a TA should provide to implement the principle of
Learning by Teaching after the example of Blair et al. With these the student is able to receive feedback
to his model by analyzing the answers his teachable agent retrieves from it.

As an additional service in our application, the learner is able to let his TA participate in a quiz. This use
case is called Challenge. The TA is asked some questions by the quizmaster agent and tries to answer
them correctly. Figure 17 shows a simplified version of the sceneflow that controls the dialog for the TA
with which we can describe the most essential details.

Project No. 231526

Page 24 / 34

DynaLearn D5.3

Figure 17: Schematic illustration of the Challenge use case

At the beginning of this dialog the two agents greet each other (see Figure 18). This makes the
performance more entertaining and believable.

Figure 18: Quizmaster and TA greeting each other

After this greeting phase the quizmaster starts to ask his first question, as can be seen in Figure 19.
During the virtual characters presentation of the quiz, the learner has the option to skip it (“Skip Dialog”).

Project No. 231526

Page 25 / 34

DynaLearn D5.3

Figure 19: The quizmaster asks a question

Similar to the Ask use case the teachable agent will take some time to think before answering the
question. The quizmaster provides positive or negative feedback depending on whether the answer was
right or wrong (see Figure 20) and the teachable agent will respond accordingly with joyful or sad
statements (see Figure 21).

Figure 20: The Quizmaster tells the TA its answer is wrong

Project No. 231526

Page 26 / 34

DynaLearn D5.3

Figure 21: The TA is not amused

With these responses the TA shows his interest in his results in the quiz and in this way strengthens the
relation between the learner and his agent. Displaying emotions might trigger emotions like joy or
compassion in the observer - the learner - that motivate him to carry on with the quiz and his work with
the teachable agent. Also the dialog gets livelier in contrast to a simple sequence of questions and
answers. With the response of the teachable agent to the feedback of the quizmaster the cycle ends and
starts over with a new question asked by the quizmaster. After a certain number of questions, the
quizmaster will present the results of the quiz, which are summarized in a table, as can be seen in Figure
22.

Figure 22: Quiz results

Learners also have the option of reviewing the results for all quizzes (not just the most recent one) that
their TA took so far.

The state machines controlling the behavior of the quizmaster and the teachable agent are separated
and working parallel. In this use case they create a lively dialog between two virtual characters, with only
a few conditions that manage the turn-taking.

Project No. 231526

Page 27 / 34

DynaLearn D5.3

With these services (Ask, Explain, Challenge), provided by the teachable agent, the learner is able to
evaluate his QR model and his understanding of the subject matter according to the principle of Learning
by Teaching.

3.4. Knowledge Extraction and Representation

The conceptual knowledge necessary for the Teachable Agent use case includes questions that learners
can ask their TA along with the answers to them, explanations for the answers and finally questions and
answers for the quiz challenge.

Details on these types of conceptual knowledge, how they are extracted by the CM and how they are
represented can be found in Deliverable 3.3 “Question generation and answering”.

3.5. Dialog Management

We will now explain how we used the different parts of dialog management introduced in Deliverable 5.2
“Basic tutorial tactics for virtual agents” in the Teachable Agent use case.

3.5.1. Sceneflows and Example Scenes

This section will focus on describing how agent-agent-dialogs are synchronized using SceneMaker, using
the Challenge as an example. We will also provide examples for the other use cases Ask and Explain, but
the management for these cases is much simpler. This is why we will mostly provide more details
concerning the dialog content than a technical elaboration for them.

The first level of the dialog management represents the very basic structure of the teachable agent with
its three use cases (see Figure 23).

Figure 23: First level of the teachable agent's dialog flow

Project No. 231526

Page 28 / 34

DynaLearn D5.3

It also shows that the teachable agent starts with an address of welcome (marked “A” in Figure 23) after
his selection via the selection screen. Here are two example scenes for this sequence:

Scene_en: Welcome_Pet
P: Hello $userName! My name is $petName. I'm your teachable agent and I'm looking forward to have a good
learning session with you.

Scene_en: Welcome_Pet
P: Hello $userName! I'm $petName! I can answer specific questions and explain my answers to you. You might
also challenge me and see how I do in a quiz.

The tags $userName and $petName are placeholders for the learner's name and the name of the
teachable agent. They will be replaced by SceneMaker at runtime.

After this short introduction a controller node (B) handles the learner's selection of use cases. Each use
case is handled in its own super node which is started according to the user’s choice. Explain is the easiest
case in regard to its state machine. Since all information the visualization needs is computed by the CM
component, the dialog management has not much more to do than handle the exceptional case when no
question was asked before.

Still simple but a bit more complex is the state machine for the Ask-case. As shown in Figure 24, the first
step of the TA is to repeat the question generated by the learner via the ask-dialog (A).

Figure 24: Sceneflow for Ask

The agent takes his time for thinking (B) before the state machine proceeds. If no answer has been
computed, the TA will apologize for his failure (C). Otherwise the answer will be integrated in one of the
following scenes and expressed by the agent (D):

Scene_en: answer_question
P: Ok, I think the answer is: $answer

Project No. 231526

Page 29 / 34

DynaLearn D5.3

Scene_en: answer_question
P: [schueler_suspense] I hope this one is right. I say the answer is: $answer

Scene_en: answer_question
P: If you ask me - and you do - the answer is: $answer

When the agent has answered the question, the dialog is ended with a short comment (E). The technical
description shows that the concept of Ask was simple and intuitive recreated in a state machine hiding
technical details in the nodes and edges.

More challenging is the dialog management for the Challenge-Case as the state machine for this service
(see Figure 25) has to be synchronized with the quizmaster agent’s part of the dialog.

Figure 25: Full sceneflow for Challenge

You will notice conditions on the edges that refer to nodes that are not part of the teachable agent’s
state machine (N5, N10, N14, N68). These nodes are part of the quizmaster’s state machine and mark the
parts of the dialog where both agents start with greeting each other (A). At this point of the dialog the
CM module has already computed all questions and answers, so the agents only have to integrate them
into an ongoing dialog.

While the quizmaster reads his questions the TA is prepared for his answer (B). After the obligatory short
thinking pause (C) the TA answers the question either correct (D), wrong (E) or tells the quizmaster he has
no idea (F). As we know whether this answer is right or wrong we handle the distinction of cases for the
rest of the dialog management already at this point. In each branch we wait for the feedback of the
quizmaster (G, H) and let the TA then respond accordingly (I, J):

Scene_en: response_positive
P: [schueler_yes_bravo] Yes, I'm smart!

Project No. 231526

Page 30 / 34

DynaLearn D5.3

Scene_en: response_negative
P: [schueler_suspense] I'll do better next time!

This is the end of the Challenge-cycle that is repeated until all questions are asked and answered. Since
the visualization handles all requests coming from the dialog management in a queue until this point no
synchronization with its component has been done. We only took care that the state machines of the two
agents send their requests in the right order. At the end of the cycle we pause it (K) so the visualization
can catch up with the dialog management. For this the state machine requests a notification from the
visualization component as soon as the response of the teachable agent has been uttered. Therefore we
implemented the small method called notify(type, id), where type defines if we want to be
notified when an animation has ended or just an utterance. With the second parameter we pass an
identification the visualization sends back when the action is done.

When the visualization has processed the last request, the dialog management proceeds with the
Challenge-cycle. The quizmaster will ask his next question and the TA will try to answer it correctly. When
all questions are asked and answered the agents will bid each other farewell (L) and the state machines
will end the use case.

3.5.2. Usage of Verbalization Module

As of now, all the conceptual knowledge used in the Teachable Agent use case is verbalized by the CM.
However, it is intended to move this to the VC, using the verbalization as described in Deliverable 5.2.

3.5.3. Usage of User Model

As this use case focuses on displaying the knowledge of the teachable agent, the user model is not used
so far. Possible applications include the following situations:

• The TA does not know the answer to a question. If checking the user model reveals that the
learner also does know little about the concept at hand, the TA might make a funny comment
about it.

• Questions in the quiz challenge for the TA might (unnoticed by learners) focus on those
questions that the learners themselves have problems with, giving them additional possibilities
to increase their understanding of them.

Project No. 231526

Page 31 / 34

DynaLearn D5.3

4. Conclusion

In this deliverable we presented two use cases of the DynaLearn software, Teachable Agent and Basic
Help.

The Teachable Agent offers learners a way for “Learning by Teaching”, but it also represents a proxy that
they can use to take tests in their place.

The Basic Help offers learners constructive advice on working with the CM in a more interesting manner
than a simply online help would.

We showed what data needs to be extracted from the CM and how it is represented. But most important
for the scope of this document, we showed how the dialog functionality established in Deliverable 5.2 is
applied to turn this representation into engaging presentations by the virtual characters, thus enhancing
the learners’ experience.

Project No. 231526

Page 32 / 34

DynaLearn D5.3

5. Discussion and Future Work

While the Teachable Agent offers learners multiple kinds of interactions, it will be interesting to see how
learners use them and interact with the characters in the upcoming evaluations. A part from the
questions of how learners will use the existing interactions, there is also the question of whether these
will be sufficient or if learners would prefer different or additional ones. For example, some learners from
a preliminary evaluation stated they would like to see an explicit “Teach” interaction instead of simply
adding to their model.

As a further idea for future work on the Teachable Agent the idea of extending the quiz challenge to
multiple TAs comes to mind. Through means provided trough the semantic repository, learners would be
able to have their agent compete with those of other learners.

Finally, as mentioned above, once the verbalization of the Teachable Agent use case is handled by the VC
component, data from the User Model can be used to try to customize the interactions with the TA
towards the specific preferences of a learner.

As for the Basic Help, it has also to be seen how learners react to the different kinds of help offered, how
they use them and how that will influence their modeling activities.

Even more than for the Teachable Agent, the integration of data from the User Model should provide us
with means to tailor the help delivered to the needs of the learners.

Project No. 231526

Page 33 / 34

DynaLearn D5.3

References

[1] Horridge, M., Bechhofer, S.: The OWL API: A Java API for Working with OWL 2 Ontologies. OWLED
2009, 6th OWL Experienced and Directions Workshop, Chantilly, Virginia, October 2009

[2] Blair, K., Schwartz, D., Biswas, G., Leelawong, K.: Pedagogical Agents for Learning by Teaching:
Teachable Agents. In: Educational Technology & Society, Special Issue on Pedagogical Agents, 2006

[3] Biswas, G., Roscoe, R., Jeong, H., Sulcer, B.: Promoting Self-Regulated Learning Skills in Agent-Based
Learning Environments. In: Proc. of the 17th Int. Conf. on Computers in Education, pp 67-74, 2009

[4] Kim, Y., Baylor, A.L., PALS Group: Pedagogical Agents as Learning Companions: The Role of Agent
Competency and Type of Interaction. In: Educational Technology Research and Development 54 (3),
pp 223-243, 2006

	Abstract
	Internal reviewers
	Acknowledgements
	Document History
	Contents
	Introduction
	Basic Help
	Introduction and different Types of Help
	Interaction Flow and Examples
	Knowledge Extraction and Representation
	Requirements for Basic Help knowledge representation and extraction
	General aspects of the Basic Help knowledge representation and extraction
	Modularity
	Knowledge linking
	Natural language

	Specific aspects of the Basic Help knowledge representation and extraction
	“What is?”
	“How to?”
	“Why?”

	Dialog Management
	Sceneflow and Example Scenes
	Usage of Verbalization Module
	Usage of User Model

	Teachable Agent
	Introduction and Purpose
	Learning by Teaching with a Teachable Agent
	Interaction Flow and Examples
	Knowledge Extraction and Representation
	Dialog Management
	Sceneflows and Example Scenes
	Usage of Verbalization Module
	Usage of User Model

	Conclusion
	Discussion and Future Work
	References

