Deliverable number:

Deliverable title:

Delivery date:
Submission date:

Leading beneficiary:

Status:

Dissemination level:

Authors:

Project number:
Project acronym:

Project title:

Starting date:
Duration:

Call identifier:
Funding scheme:

D3.1

Multi use level workbench

2009/11/30

2010/02/28

University of Amsterdam (UVA)
Version 07 (final)

PU (public)

Dynalearn

3

Jochem Liem, Wouter Beek and Bert Bredeweg

231526

DynalLearn

DynalLearn - Engaging and
informed tools for learning
conceptual system knowledge
February 1st, 2009

36 Months

FP7-1CT-2007-3

Collaborative project (STREP)

STVENTH TRAMWORK
PROCHANNE

Project No. 231526 DynalLearn D3.1

Abstract
]

The Dynalearn software allows learners to capture their ideas and investigate
their logical consequences. By building causal models and simulating these,
students develop an understanding of how systems behave. Dynalearn
introduces 6 use levels at which the software can be used. Furthermore, by
working at a particular use level, teachers can emphasise particular aspects of
modelling a system (e.g. causality, conditional knowledge). The DynalLearn
software is based on the Garp3 qualitative modelling and simulation
workbench, but integrates the interface into a single screen, adds use levels,
and incorporates significant improvements such as allowing multiple
simulations, storing selections in state graphs, and saving simulations to a
model.

Acknowledgements

The authors would like to thank Anders Bouwer, Floris Linnebank, and Jan
Wielemaker for their insightful suggestions and support in the implementation,
Paulo Salles for creative discussions on use levels and qualitative system
dynamics and for providing feedback on an earlier draft, Dirk Bertels for
support with the design of the interface, and Jorge Gracia del Rio for giving
feedback on an earlier draft.

Page 2/ 126

Project No. 231526 DynalLearn D3.1

Document History

Version | Modification(s) Date Author(s)

01 Basic outline + Initial content 2010-02-21 B. Bredeweg

02 First draft of 10, 12 and 13 and more 2010-02-23 J. Liem & W. Beek
03 Chapters 3, 4,5,6,7,8,9 2010-02-24 | W. Beek & J. Liem
04 Chapters 1, 2, 15 and 16. 2010-02-25 J. Liem & W. Beek
05 Global editing + fine tuning 2010-02-26 B. Bredeweg

06 Processing internal review 2910-02-27 W. Beek & J. Liem
07 Further editing + Finalising 2010-02028 | B. Bredeweg

Page 3/ 126

Project No. 231526

DynalLearn

D3.1

Contents
Abstract 2
Acknowledgements 2
Document History 3
Contents 4
1. Introduction 8
2. Learning spaces — Use levels 9
3. Interface — Main features 12
3.1. Title bar 12
3.2. Menu bar 12
3.3. General button bar 12
3.4. Action button bar 14
3.5. Navigation bar 18
3.6. Workspaces 19
3.7. Content button bar 20
3.8. Colour coding 22
3.9. Content window 23
4. Concept map — Use level 1 25
4.1. Representation 25
5. Basic causal model — Use level 2 27
5.1. Representation 27
5.2. Simulation 28
6. Basic causal model with state graph — Use level 3 30
6.1. Representation 30
6.2. Simulation 31
7. Causal differentiation — Use level 4 33
7.1. Representation 33
7.2. Simulation 34
8. Conditional knowledge — Use level 5 36
8.1. Representation 36

Page 4 / 126

Project No. 231526 DynalLearn

D3.1

9. Generic and reusable knowledge — Use level 6

10.

11.

12.

13.

8.2. Simulation

38

40

9.1. Representation

40

9.2. Simulation

42

Multiple simulations, saving simulations and path selection

10.1. Multiple simulations

43

43

10.2. Storing selected states and paths

44

10.3. Saving simulation results

44

10.4. Implementation

45

Meta-data

47

11.1. Abstract and general remarks

47

11.2. General information

48

11.3. Status and bug report

49

11.4. Model data

49

Special features

51

12.1. Multiple languages

51

12.2. OWL export/import

51

12.3. Tooltip — Basic explanation

51

12.4. Upward compatibility for Garp3 models at use level 6

12.5. EPS export

53

53

12.6. Switching use levels

53

12.7. Screen cloning

53

12.8. Tabs in the simulate environment

54

Implementation details

55

13.1. Change Requestors

55

13.2. Application content

58

13.3. Representation of (conditional) expressions

60

13.4. Export to reasoning engine

61

13.4.1. Expression export to model fragment and scenario part
13.4.2. Altered export functions in model fragment class

13.4.3. Exogenous behaviour constant for derivative value assignments

Page 5/ 126

62

63

63

Project No. 231526 DynalLearn D3.1

14. Conclusion 64
15. Discussion 65
16. References 66
17. Appendix A — Interface design (intermediate from D2.1 to D3.1) 67
18. Appendix B — From Garp3 to Dynalearn workspaces 81
18.1. Main activities 81
18.2. Architecture 82
18.3. General 82
18.4. Use level 6 84
18.4.1. Use level 6 — Build 84

18.4.2. Use level 6 — Simulate 86

18.4.3. Use level 6 — Specials 92

18.5. Use level 5 94
18.5.1. Use level 5 — General 94

18.5.2. Use level 5 — Dialogues for adding ingredients 95

18.5.3. Use level 5 — Always True and Conditional Fragment 98

18.5.4. Use level 5 — Simulate 100

18.5.5. Use level 5 — Specials 101

18.6. Use level 4 101
18.6.1. Use level 4 — Export 102

18.6.2. Use level 4 — Simulate 102

18.6.3. Use level 4 — Specials 102

18.7. Use level 3 103
18.7.1. Use level 3 — Export 103

18.7.2. Use level 3 — Simulate 104

18.7.3. Use level 3 — Specials 104

18.8. Use level 2 104
18.8.1. Use level 2 — Export 105

18.8.2. Use level 2 — Simulate 105

18.8.3. Use level 2 — Specials 106

18.9. Use level 1 106

Page 6 / 126

Project No. 231526 DynaLearn D3.1
18.10. Menu options 106
18.10.1. Main menu — General items 106
18.10.2. Menu options — Details 107

19. Appendix C — GIT Software version management HOWTO 114
19.1. Distributed Version Management using Git 114
19.2. Git Documentation (Linux/Windows/MacOSX) 114
19.3. Setting up Git 115
19.3.1. Setting up Git at the UVA/FNWI (Linux/Windows/MacOSX) 115
19.3.2. Setting up Git on Linux 115
19.3.3. Setting up Git on Windows 115
19.3.4. Setting up Git on MacOSX 115
19.3.5. Setting up Git Continued (Linux/Windows/MacOSX) 115
19.4. Version Management using Git (Linux/MacOSX/Windows) 116
19.4.1. Infrastructure and Permissions Basics 116
19.4.2. Distributed Version Management using Git 117
19.4.3. Version Management using a Central Repository 118
19.5. Issues with Laptops and Windows 119
19.6. Migrating from Subversion 120
19.7. DynalLearn/Garp3 and Git 120
19.7.1. Latest Development Version of Garp3 120
19.7.2. Developing Garp3 121
19.8. Acknowledgements 124

Page 7/ 126

Project No. 231526 DynalLearn D3.1

1. Introduction
|

Qualitative Reasoning (QR) provides means to express conceptual knowledge such as system
structure, causality, conditions for processes to start and finish, assumptions and conditions
under which facts are true, qualitative distinct behaviours, etc. Qualitative models provide
formal means to externalise thought on such conceptual notions. However, building qualitative
models is difficult and hampered by the lack of easy to use tools.

This document describes the DynalLearn Interactive Learning Environment (ILE). The functional
design of this system was presented in [3]. DynalLearn is specifically created for students to
develop their conceptual knowledge on systems. The Dynalearn ILE offers diagrammatic
presentations for learners to express their ideas, and test these by running simulations.

The Dynalearn ILE is based on the qualitative modelling and simulation workbench Garp3
[1,2]. However, in DynaLearn the aim is to accommodate different groups of students. As such,
the tool can be used on different use levels, depending on the student’s level of expertise, and
the kind of phenomenon dealt with. Furthermore, in DynalLearn the entire interface has been
integrated into a single workspace (single screen).

The content of the report is as follows. Chapter 2 describes the ideas underpinning each of the
use levels. Chapter 3 describes the main features of the integrated interface. Chapters 4 through
9 describe each of the use levels of the ILE. Chapter 10 describes the new multiple simulation
(and saved simulation) functionality. Chapter 11 describes the editors for meta-data. Chapter 12
describes a set of special features available in the DynalLearn ILE. Chapter 13 is devoted to
implementation details that explain how certain functionalities were established. Finally,
Chapter 14 and 15 discuss the results and conclude.

The following details have been added in the appendix for completeness. Appendix 1 shows the
relevant screens for each use level as they have been developed as an intermediate design step
from D2.1 [3] towards the current implementation. Appendix 2 enumerates in detail how the
functionality available in Garp3 was migrated to the Dynalearn ILE context, particularly
emphasising how to remove, hide or merge Garp3 complexity at the lower use levels in the
DynaLearn ILE. Finally, Appendix 3 holds the user manual of the GIT version management
software used for the development of the DynalLearn ILE. GIT is also used for the other software
development in DynaLearn.

Page 8 / 126

Project No. 231526 DynalLearn D3.1

2. Learning spaces — Use levels
|

The learning spaces in the Dynalearn software are organised as a set of use levels with
increasing complexity in terms of the modelling ingredients a learner can use to construct
knowledge. Six use levels have been designed and implemented (Figure 2.1 and Table 2.1):

e Concept map

¢ Basic causal model

¢ Basic causal model with state-graph
* Causal differentiation

e Conditional knowledge

e Generic and reusable knowledge

Each level is a self-contained interactive workspace useful for learning specific details about
system behaviour. Self-contained implies that the representational primitives available within a
use level form a logical subset of all the primitives available. Hence, they allow for automated
reasoning on behalf of the underlying software. It also implies that from a Qualitative System
Dynamics perspective, learners are able to create sensible representations of the phenomena
they perceive when observing the behaviour of a real-world system. Moreover, what learners
express using the software, will have consequences for what the software can infer. Hence,
learners can be confronted with the logical consequences of their expressions, which either may
or may not match the observed system behaviour or their expectations thereof. Particularly in
the case of mismatch there is ample room for interactive learning. Progression between use
levels happens by augmenting the current level with the smallest subset of possible modelling
ingredients, again ensuring that the next level is self-contained. The formal context and starting
point for developing the use levels is Garp3 [1,2].

Causal model
- state graph
- dec/std/inc
- q-values

Conditional
knowledge

Concept
map

Causal

Causal model Knowledge

RIS differentiation Re-use
&) -Rates & - Scenario &
- dec/std/inc . ,
propagation MF’s

Figure 2.1: Schematic representation of the six use levels in Dynalearn (Notice, dec:
Decreasing, std: Steady, inc: Increasing, g-values: Qualitative values. MF: Model fragment).

Page 9/ 126

Table 2.1: Overview of modelling ingredients in the DynalLearn software. The levels are
cumulative; details from lower levels are also present at higher levels. Learners create a single
expression at use levels 1 to 4. At use level 5 one or more conditional expression can be added

to that. At use level 6 learners may create multiple expressions, including a scenario.

Nr Use level Introduced ingredients

1 Concept map e Entities
e Configurations

2 Causal model e Attributes

* Quantities

* Value assignments

¢ Derivatives

e Causal relationships (+ and -)

3 Causal model with state graph * Quantity spaces
e Correspondences

4 Causal differentiation e Causal relationships (+ and — refined)
o Influences
o Proportionalities

* Inequalities

e Operators (+ and -)

* Agents

¢ Assumptions
5 Conditional knowledge * Conditional expressions
6 Generic and reusable * Multiple expressions

o Model fragments
o Scenarios

Below, a summary of the characteristics of each use level is presented (see [3] for further
details).

A concept map (sometimes also referred to as an entity-relation graph) is a graphical
representation that consists of two primitives: nodes and arcs. Nodes reflect important concepts,
while arcs show the relationships between those concepts (cf. [7]). From a qualitative reasoning
point of view, concept maps are less interesting because they do not capture dynamics.
However, having this use level is useful from a learning point of view, as it is the root from which
more complex knowledge representations emerge. Therefore a simple version of such a
workspace is foreseen in the Dynalearn software.

The use level basic causal model focuses on quantities, how they change and how this change
influences other quantities to change. Quantities represent behaviour. They are connected to
entities, the structural units in the model. Simulation at this use level means to calculate for
each quantity one of the following options (for its derivative): decrease, steady, increase,
ambiguous (because of opposing influences), or unknown (because of missing information). This
use level relates to the representational approach taken in [4].

The use level basic causal model with state-graph augments the basic causal model level with
the notion of a quantity space, which can be assigned to one or more quantities. Adding this

Page 10 /126

feature has a significant impact on the simulation results and necessarily introduces concepts
such as state-graph, behaviour path, and value history.

The use level causal differentiation takes all details defined for the basic causal model with
state-graph and refines certain notions, particularly those related to causality. Different from the
preceding use level is that the notion of exogenous quantity behaviour is included in the default
setting. Also included in the default setting is the idea of an agent. The representational
approach taken in [5] covers a subset of the vocabulary available at this use level.

The use level conditional knowledge is a refinement of the causal differentiation level. All
representation details apply as they do for this preceding level. The main difference is the
possibility to specify conditions under which specific set of details are true. In the preceding use
levels all the expressions created by a learner are always true. However, some facts (e.g. the
process of evaporation) only occur when certain conditions are satisfied. The conditional
knowledge use level addresses situations like these.

The use level generic and reusable knowledge reflects Garp3 in its current status. The main
difference with the other use levels is the focus on ‘re-usable’ knowledge. That is, to capture
essential details in a context-independent manor as much as possible, or otherwise to explicate
the conditions under which the knowledge is applicable. At this level the notion of types and
hierarchy become important. Also the idea of learners creating their own models by re-using
(partial) solutions stored in a repository now viable.

Page 11 /126

Project No. 231526 DynalLearn D3.1

3. Interface — Main features

This chapter presents the main features of the interface of the Dynalearn ILE. The main
features are all accessible via the application window of the DynalLearn ILE, shown in Figure
3.1. The application window is divided in several regions that correlate to specific functionality.
Each of those regions is discussed below.

[titlebar]
[menubar] O\

) 3 2 _CioacaEtAl2009: Model fragment definitions editor - Build
general : Flle Edit Conditions Consequences View Seftings)
I < e 5
buttonbar | ~ st Rt NN LT — N) || =
action j - ; § ; . @ %
0000 o | AWM D B|E Eacia| s
buttonbar -
- - Sce01 single algal popalation w| | Gomplex cover mechanism - (a a G %
navigation
bar = ?I ‘: Algal bloom @Aquanceoosysiem
e ¥ Aquatic ecosystem
content . ~ Livesin
3% Y Livesin
buttonbar - - ~ Blue green algae ®Dmioms
& &F /Blue green algae Diatoms
] == == A "
- - @ Auatc hetogicarsntty @ Aduatc beiogica entty
o i &) Blomass
content
window = a’.’ o
Cs; i
vl
‘, @ @ . (}covevmecnamsm bga and diatoms
¥ i i i
u G ?
&®

statushar SwmecOpmmmodw =

Figure 3.1: The functional regions of the DynalLearn application window.

3.1. Title bar

The title bar at the top of the screen shows the name of the currently active model, as well as a
description of the current workspace (e.g. ‘Model fragment definitions editor’ in Figure 3.1). The
text inside the title bar therefore depends on the current workspace inside the application.1

3.2. Menu bar

The menu bar is located right below the title bar. It comprises a context-sensitive menu with
actions that can be applied in the current workspace.

3.3. General button bar

The general button bar is located below the menu bar. It is divided into several functionally
distinct regions (Figure 3.2).

' Different views are displayed in the content button bar (section 3.7) and content window (section 3.8).

Page 12 /126

Project No. 231526 DynalLearn D3.1

open/save models active model list access metadata print content
7)
@ & A P
» e @ & EEETINNNNINNNEEY & & eXel e

Figure 3.2: The general button bar.

The first five buttons (from left to right) are used for retrieving, storing, closing and creating new
models. The functionality of these buttons is described in Table 3.1.

Table 3.1: General button bar, open/save models group.

Action Icon Description
Open Model e The purpose of this task is to open a model from a file. It is possible
pe ode - to open normal model files but also to open OWL formatted files.

Save Model @ The purpose of this task is to save a model as a .hgp file (or in
OWL format).

Save Model The purpose of this task is to save a model to a new filename.

As

Closes the current model. This means that the current model will

Close Model @ be removed from the dropdown list of active models. If there are
unsaved changes, the user will be asked to either save or discard
these changes.
The purpose of this task is to start a new model in the DynalLearn

New Model @ workbench. The new model button brings up a dialog in which a
model name can be given and a use level can be chosen.

The next element on the general button bar is the dropdown list displaying the models that are
currently loaded inside the Dynalearn workbench. This allows the user to switch between
models by selecting an item from this list. The list is updated whenever a model is created,
opened, or closed.

The next group of buttons (to the right of the dropdown list) in the general button bar consists of
four buttons. These buttons are used for accessing various sorts of metadata regarding the
currently active model. The functionality of these buttons is described in Table 3.22

% The metadata views and features are described in chapter 11.

Page 13 /126

Project No. 231526 DynalLearn D3.1

Table 3.2: General button bar: Accessing metadata group.

Action Icon Description
Abstract) . .
and 5 The purpose of this task is to add abstract and general remarks to the
@ model metadata, such as information that explains something about
General . .
the model goals and/or about the intended audience.
remarks
General The purpose of this task is to add general information to the model
Informal metadata.
Status and : . :
Bu Gt The purpose of this task is to add status reports about the model in
9 s order to keep track of known problems and solving them.
Reports
The purpose of this task is to add version information about the
Model Data
model to the metadata.

The last element on the general button bar is the right-most button that is used for printing the
information that is currently displayed inside the content window (see Section 3.8). The general
button bar is the same in all use levels.

3.4. Action button bar

Right below the general button bar, the action button bar is shown (see Figure 3.3). Globally,
the buttons can be grouped into two categories: the ones used to build a model, and those used
to run simulations with the model.

save simulations

edit definitions edit model fragments run simulations simulation views
17 0 5 12 73 9 5 5% " 2 : . ¢ . -
oaseiii | N MBR|BEcg|om =y
L)\)
1 I
build buttons simulate buttons

Figure 3.3: Action button bar, showing the buttons for building models to the left ('edit
definitions' and 'edit model fragments') and the buttons for running, viewing, and simulations on
the right.

There are two groups of build buttons: those used to edit definitions, and those used to edit
model fragments.

The first group of build buttons, the edit build buttons, is used to access workspaces for editing
definitions. In these workspaces, the user can add, remove, or edit definitions without adding
instances of those definitions to a specific model. In other words, the buttons from the first group
allow the user to create a palette of general elements that can later be instantiated as concrete

Page 14 /126

model ingredients that are used to create models with. The functionality of these buttons is
described in Table 3.3.

Table 3.3: Action button bar, buttons for building definition.

Action

Icon

Description

Edit Entity
Hierarchy

&

Entities are the physical objects or abstract concepts that play a
role within the system and define the system structure. The entity
hierarchy editor enables the user to define a hierarchy of entities
with child-parent relations between them.

Edit Attribute
Definitions

Attributes are static features of entities, often used to add
descriptive details to the entity that are not used for calculations
and do not change during the simulation. The attribute definitions
editor enables the creation of attributes and the assignment of
values that further specify these features.

Edit
Configuration
Definitions

Configurations are used to model relations between entities and
agents. They are also referred to as structural relations. The
configuration definitions editor enables the creation, deletion and
modification of configurations that can be used in model
fragments and scenarios.

Edit Quantity
Definitions

Quantities represent changeable features of entities and agents.
The quantity definitions editor enables the creation, deletion and
modification of quantities that can be attached to entities and
agents in model fragments and scenarios.

Edit Quantity
Space
Definitions

A quantity space specifies a range of qualitative values a quantity
magnitude or derivative can assume. Each quantity has two
associated quantity spaces: a definable one for the magnitude,
and the default quantity space {min, zero, plus} for the derivative of
the quantity. The quantity spaces definitions editor enables the
creation, deletion and modification of quantity spaces that belong
to quantity. The qualitative values in a quantity space form a total
order. Each qualitative value is either a point or an interval, and
within the quantity spaces these two types consecutively alternate.

Edit Agent
Hierarchy

Agents are used to model entities outside of the modelled system.
The agent hierarchy editor enables the user to define a hierarchy
of agents with child-parent relations between them. Agents can
have quantities influencing the rest of the system, which are
sometimes called exogenous or external influences.

Edit
Assumption
Hierarchy

Assumptions are labels that are used to indicate that certain
conditions are presumed to be true. They are often used to
constrain the possible behaviour of a model. The assumption
hierarchy editor enables the user to define a hierarchy of
assumptions with child-parent relations between them. Because
they describe neither structural nor behavioural aspects of a
system, they belong to neither the structural building blocks nor the
behavioural building blocks categories.

Page 15/ 126

The second group of build buttons is used to access workspaces that allow modelling
ingredients to be added to a specific model. A model is not created in one fell swoop, but
instead consists of multiple components that together constitute the complete model. There are
two kinds of model components: those that a simulation can starts from, called scenarios, and
those that a simulation cannot start directly from, called mode/ fragments.3 In the second group
of build buttons, there are two buttons for each of these types. These buttons are described in
Table 3.4.

Table 3.4: Action button bar, editing scenarios and model fragments.

Action Icon Description

Clicking this button displays the list of scenarios. New scenarios can
be added to this list, and existing ones can be edited, copied or
removed from the list.

Scenarios describe a specific situation in which the system can be

Edit
Scenario
Definitions
List

found. They can consist of all the ingredients that can be used as
conditions in model fragments, except for other model fragments.

Scenarios are used as input for the qualitative simulator. The
qualitative simulator interprets the scenario (by finding applicable
model fragments, incorporating their consequences, and deriving
unspecified/implicit values for quantities) to generate one or more
start states. These start states are then used to generate the rest of
the behavioural graph.

Edit
Scenario

In this workspace the contents of the last edited scenario can be
edited again. Ingredients that can be added, changed or removed
include instances of entities, attributes, configurations, quantities
and quantity spaces, values, dependencies, agents, and
assumptions. These are all conditional model ingredients.

Edit Model
Fragment
Hierarchy

Clicking this button displays the hierarchy of model fragments. New
model fragments can be added to the hierarchy, and existing ones
can be edited, copied, or removed from the hierarchy. In addition
to this, model fragments can be deactivated (and reactivated
again).

Model fragments describe part of the structure and behaviour of a
system in a general way. They are partial models that are
composed of multiple ingredients. Model fragments have the form
of arule. This means that model ingredients are incorporated as
either conditions or consequences. Model fragments themselves
can be reused within other model fragments as conditions.
Furthermore, subclasses of model fragments can be made, which
augment the parent model fragment with new ingredients. The
consequence ingredients of model fragments that match the actual
system situation will be added to that scenario. In that case, the
scenario fulfils the conditions specified in the model fragment
(which describes a general situation).

® Scenarios must answer certain conditions that may trigger changes in the system, so that they allow simulations to start and run.

Page 16 / 126

Project No. 231526

DynalLearn D3.1

Edit Model
Fragment

In this workspace you can edit the contents of model fragments,
including entities, attributes, configurations, quantities and quantity
spaces, values, dependencies, agents, assumptions, inequalities,
values, calculations, influences, proportionalities, conditional
model fragments, correspondences and identities.

Besides the build buttons, there are two groups of simulate buttons one related to running
simulations and the other to accessing simulation results. The functionality of the first group of
simulate buttons is described in table 3.5.

Table 3.5: Action button bar, running simulations.

Action Icon Description
The simulate scenario button starts the simulation with an expression,
the last edited scenario or the scenario that is currently selected in
Simulate £ the scenario editor. It only performs the first step in the simulation,
Scenario) that is, determining the possible interpretations of the scenario (each
becoming states) by matching model fragments and determining the
values for each quantity.
The run full simulation button simulates an expression, the last
Run Full a edited scenario, or the scenario that is currently selected in the
Simulation ' scenario editor. It generates the full simulation of the scenario or
expression in the simulate workspace.
Terminate . The terminate selected states button determines the possible ways a
Selected De? . : N
- state can end. This results in a set of terminations.
States
Order The order selected states button determines which terminations have
Selected C,:j priority and which terminations can occur together. This step
States removes and combines multiple terminations.
Close The close selected states button either creates new states of each
Selected f_};- termination, or creates transitions to already existing states (if the

States resulting state already exists).

Open The purpose of this workspace is to set the simulation preferences.
Simulation e These are settings that can influence the way in which the
Preferences simulation is created.

Open The purpose of this workspace is to set the trace option, a

Trance - functionality that allows for a description of the reasoning steps done
Window by the simulation engine to be visualised.

The second group of simulate buttons that provides access the simulation results is described in

Table 3.6.

Page 17 /126

Project No. 231526

DynalLearn D3.1

Table 3.6: Action button bar, access simulation workspaces.

Action Button Description
Icon
Show Value 1 mi The value history shows the values quantities go through in a series
History of selected states. The value histories are shown per quantity.
Show . The Equation history shows a diagram of inequality/equation
Equation Ot @ values in each of the currently selected states, and for each of the
History quantities.
The purpose of this workspace is to inspect all the relationships
Show R0 | ;) o s . .
. . involving entities and quantities (dependencies) that hold in a
Dependencies O . .
selected state of the simulation state-graph.
Show : : :
. The purpose of this workspace is to inspect the values of all the
Quantity »g o ;)
quantities in a selected state of the simulation state-graph.
Values
Show The modelling ingredients workspace lets the user inspect the
Modelling 9\,‘;;, structure of the entities, configurations and attributes in the
Ingredients currently selected state(s) of the simulation state-graph.
: The model fragments list enumerates the model fragments that are
List Model L . .
< active in the currently selected state(s) of the simulation state-
Fragments
graph.
Load/Save The load/save simulations workspace allows for the current
Simulations ~ simulation to be saved, or a saved simulation to be loaded.

Depending on the use level that the user is in, a different collection of action buttons is
displayed.4

3.5. Navigation bar

The navigation bar is displayed below the action button bar. It contains two dropdown lists.
These dropdown lists display various modelling ingredients. What is displayed depends on the
current workspace in the application (workspaces are discussed in the next section).

Besides the two dropdown lists, to the right, the use level switcher is displayed. The six use levels
are there represented as six blobs that occur in a linear ordering. The use level with the shadow
behind it indicates the current use level.’

* Specific buttons available in each use level are discussed in Chapters 4 - 9.

® Eventually, this use level switch will be used to traverse from one use level to another. See also section 12.6.

Page 18 /126

3.6. Workspaces

Before describing the features of the content button bar and of the content window, it makes
sense to explain the notion of workspaces in the DynalLearn ILE.

These are the views that are currently present in the DynalLearn ILE:
* Build views:
o Hierarchy views:
= Entity hierarchy view: showing the ontology of entity definitions.
= Agent hierarchy view: showing the ontology of agent definitions.
= Assumption hierarchy view: showing the ontology of assumptions.
= Scenario list workspace: showing the list of scenarios.
= Model fragment list workspace: showing the list of model fragments.

= Model fragment hierarchy workspace: showing the ontology of model
fragments.

o Content views:

= Expression fragment content view: shows the expression fragment for
editing purposes.

= Scenario content workspace: shows a scenario for editing purposes.

= Model fragment content workspace: show a model fragment for editing
purposes.

e Simulation views:

o State graph view: shows the behaviours the simulation derived from the specified
model.

o Value history view: shows the qualitative value changes throughout the
simulation.

o Equation history view: shows (in)equalities in a simulated state.

o Dependencies view: shows the relations between entities and quantities in a
simulation state.

o Quantity values for state view: shows the values of the quantities in a simulated
state.

o Entity-Relation (ER) view: shows the dependency relations between entities and
quantities in a simulated state.

o Model fragments in state view: shows a list of model fragments that are active in
a simulated state.

* Metadata views: show four different sorts of metadata (chapter 11).

Page 19/ 126

Project No. 231526 DynalLearn D3.1

Switching between views is effected by changes multiple interface items at the same time. Not
only what is shown in the content window changes, but the menu options and content buttons

change as well, in order to enable the user to interact with the new content. The following five
interface elements change upon switching views:

1. The text that is displayed in the title bar (Section 3.1).
2. The actions that are displayed in the menu bar (Section 3.2).

3. The modelling ingredients that are displayed in the dropdown lists inside the navigation
bar (Section 3.5).

4. The buttons that are shown in the content button bar (Section 3.7).

5. What is shown in the contents window (Section 3.8).

3.7. Content button bar

As discussed above, what fills the content button bar depends on the currently opened view.
The items that are shown when the hierarchy view is active are described in Table 3.7.

Table 3.7: Buttons for the content button bar of the view editor.

Action Icon Description

. Adds a new definition. This is used for adding new entities,
Add New 4 . . s) .
. . configurations, quantities, quantity spaces, assumptions, agents,
Definition . .
scenarios, expression fragments, and model fragments.

Open Displays the properties of the currently selected ingredient, showing
Definition @ its name, remarks, as well as definition type specific information (e.g.
Properties the parent type to which an entity definition belongs).

Copy ﬁ initi
Definition . | Creates a copy of the selected definition.

Remove 5 N
Definition ?/ Removes the currently selected definition.

If the content view is active, then the items enumerated in Table 3.8 are shown in the content
button bar. Which specific buttons are displayed, depends on the active use level. These
distinctions will therefore be discussed in Chapters 4 through 9. In general terms, in an
expression fragment and in a scenario only consequential model ingredients can be added (the
blue ones). In a model fragment, both conditional (red) and consequential (blue) model
ingredients can be added.

Page 20/ 126

Project No. 231526 DynalLearn D3.1

Table 3.8: Buttons for the content button bar of the view editor.

Action Description

Add Entity Adds an entity to a scenario or model fragment.

Adds an attribute to a scenario, expression, or model

Add Attribute
fragment.

Add
Configuration

Adds a configuration between two entities in a scenario,
expression, or model fragment.

Adds a quantity to an entity in a scenario, expression, or

Add Quantity model fragment.

Add Quantity

Space Adds a quantity space to an existing quantity without one.

Adds a value assignment to either a magnitude value, or to a

Add Value derivative value in the quantity space.

Adds a calculus relation between two ingredients. There are
multiple ways operator relations can be used:

* Between two quantities

* Between a quantity and a (point) value
* Between two (point) values

* Between an operator and a quantity

Add Operator
Relation (Plus or
Minus)

i B8 LW <+ 46 §& L &6 18 Q ¢

* Between an operator and a point value

(In)equalities can exist between different kinds of ingredients.
There are five different combinations of arguments within an
inequality relation:

* An inequality between two quantities.

* Aninequality between two quantity values.

* Aninequality between a quantity and a point value.

* Aninequality between a derivative and a point value.

* Aninequality between two derivatives of two different

quantities.

Add (In)Equality

& &R

Page 21 /126

Project No. 231526 DynalLearn D3.1

Add @'

Positive/Negative Adds a positive or negative causal relationship between two
Causal g entities.
Relationship '\S"

Adds a correspondence. There are two kinds of
correspondence:

A
Correspggdence * Q-correspondences: between two quantity spaces.
* V-correspondence: between two magnitudes / quantity
values.
Add Adds a positive or negative proportionality between two
Proportionality quantities.

Adds a positive or negative direct influence relationship

Add Influence between two quantities.

Add Assumption Adds an assumption to a scenario or to a model fragment.

& QG R QG @ @

Add Agent Adds an agent to a scenario or to a model fragment.
Add Model Adds an existing model fragment as a condition to the
Fragment as currently edited model fragment. The added model fragment
Condition must be part of the same library of model fragments.
Identity links are a way to specify that two entities or agents
Add identity refer to the same object. At least one of the items must

originate from a conditional model fragment.

Deletes the currently selected element from a scenario or

Delete Element
model fragment.

g

3.8. Colour coding

In most of the use levels in DynalLearn (UL1-4), the modelling ingredients in expressions are
coloured blue. This colour indicates that these ingredients (except value assignments) are true
in the entire simulation. However, in UL5 conditional knowledge is introduced via conditional
expressions. The contents from the regular expression is incorporated the condition expression,
and is visualised in green. In these conditional expressions it is possible to add modelling
ingredients as conditions (red) or consequences (blue). The conditional expression can be read
as a rule. If the conditions hold, then the consequences are also true. In this view, the
representations on the earlier use-levels can be seen as rules without conditions.

At use-level 6 model fragments and scenarios are introduced. Similar to expressions, scenarios
can only contain modelling ingredients as consequences (coloured blue). In model fragments,
both conditions and consequences can be added. However, it is also possible for a model
fragment to inherit contents from its parent, which is coloured green. Furthermore, it is possible

Page 22 /126

Project No. 231526 DynalLearn D3.1

to import complete model fragments of which the contents is coloured black (with the model
fragment identifier coloured red).

3.9. Content window

Using the buttons in the content button bar, modelling ingredients are added to the content
window, showing the currently edited scenario or model fragment. In the content window these
elements have their own distinguishing icons that are, for obvious reasons, similar to the icons
that are displayed inside the content button bar (see Table 3.8). Icons that are used in the
content window are enumerated in Table 3.9. Also, the meaning of these modelling elements is
explained below.

Table 3.9: Icons of the model ingredients in the content window of the view editor.

Ingredient Icon Description

Entities are the physical objects or abstract concepts that constitute
® the system. Their relevant properties are represented as quantities

that may change under the influence of processes. Entities are
arranged in a subtype hierarchy.

Entity

Agent Agents can have quantities influencing the rest of the system, which

: Agents are used to model entities outside of the modelled system.
are called exogenous quantities or external influences.

Assumptions are labels that are used to indicate that certain

@ conditions are presumed to be true. They are often used to constrain
the system behaviour generated by a model. They can be
associated to structural and behavioural aspects of a system.

Assumption

Configurations are used to model relations between instances of
entities and agents. Configurations are referred to as structural
relations.

Configuration

Quantities represent changeable features of entities and agents.
Quantity They are represented by their quantity value, which consists of the

pair magnitude (amount of stuff) and derivative (direction of
change).

A quantity space specifies the range of possible values that

[| magnitude and derivatives of a quantity can have. Each quantity
has a user defined quantity space for the magnitudes, and a default
Quantity space ™ quantity space for the derivatives, namely: {dec, std, inc}°. Values
are ordered in a quantity space. Each qualitative value is either a
| point or an interval, and within quantity spaces these two types
consecutively alternate.

Magnitude and A value assignment indicates that a quantity has or should have a
derivative » particular magnitude or derivative value in a scenario or in a model
assigned value fragment.

® dec = decrease; std = steady; inc = increase.

Page 23 /126

Direct influence

® ®

Direct influences are directed relations between two quantities, and
are either positive or negative. Direct influences are the cause of
change within a model, and are therefore said to model processes.

Depending on the magnitude of the source quantity and the type of
influence, the derivative of the target quantity either increases or
decreases. The direct influence [+(Q2, Q1) causes the quantity Q2
to increase if Q1 magnitude is positive; to decrease if Q1 is
negative; and remain stable when Q1 is zero (assuming there are no
other causal dependencies on Q2).

The source quantity is often referred as being a rate, as it expresses
the amount of change within a certain time period. For a negative
influence (I-) the effect of the source quantity in the target quantity
is just the opposite.

Proportionality

® @

Qualitative proportionalities are directed relations between two
quantities. They propagate the effects of a process, i.e. they set the
derivative of the target quantity depending on the derivative of the
source quantity. For this reason, they are also referred to as indirect
influences. Proportionalities can also either be positive or negative.

A proportionality P+(Q2, Q1) causes Q2 to increase (get the
derivative value plus) if Q1 is increasing (that is, it has already the
derivative value plus); Q2 will decrease if Q1 is decreasing; and Q2
will remain stable if Q1 is also stable (assuming there are no other
influences on Q2). For a proportionality P— this is just the opposite.

Correspondence

®®®6 .

Correspondences are relations between qualitative values of
quantity spaces belonging to different quantities, and provides the
notion of simultaneity: if specific values of two quantities
correspond, then when one occurs, the other one also occurs.

Correspondences can be either directed or undirected. The former
means that when value A of quantity space X corresponds to value
B of quantity space Y, the simulator derives that quantity space Y
has value B when quantity space X has value A. If the
correspondence is undirected, it may also derive the value A of
quantity space X when quantity space Y has value B. There are 6
correspondence types, 12 if directedness is included.

Inequality

Inequalities (<, <, =, 2, >) specify an ordinal relation between two
items, i.e. that one item is different from (or equal to) the other item.
Because inequalities specify an order between items, they are
sometimes referred to as ordinal relations. There are eleven ways to
use inequalities, depending on the type of the two items related by
them.

Page 24 / 126

Project No. 231526 DynaLearn D3.1

4. Concept map — Use level 1
|

The concept map use level (or use level 1) is the simplest way the DynalLearn software can be
used. It allows the learner to create a network of nodes connected by relationships.

4.1. Representation

In terms of the DynalLearn knowledge representation the following ingredients can be used in
the concept map (Figure 4.1):

e Entities
e Configurations

000 X/ UL6-CommunicatingVessels: Full envisionment - Scenario Editor - Build

File Edit Ingredients View Settings

RS I I R R — - N) (@

o4 mny?/m\cc“
I Cou
— Qunite kingdom Hull
Located in
Held in
eeting Universit
Dynalearn project meeting Unlvortl%y of hull

Participated in

Person
Paulo salles

Welcome to Dynalearn 0.0.13)

Figure 4.1: The concept map.

Important to note is the feature to make the knowledge representation even simpler. By default it
is possible to add type information to concepts. For example, the United Kingdom is a Country.7
However, for some group of student a teacher may choose to make the representation even
simpler by removing the type information (this is done by clicking the Hide Supertypes options
in the menu). The dialogs to add entities and configurations are adapted to not show the type
information. The concept map without type information is shown in Figure 4.2. Note that this
option is also available in user-levels 2 to 5.

At use level 1, no simulations can be run.

" In this example, 'United Kingdom' is the concept name and 'Country’ is its type.

Page 25/ 126

Project No. 231526 DynaLearn D3.1

000 N\ UL2-BasicCausal: Expression (Expression fragment) - Model Fragment Editor - Build

File Edit Ingredients View Settings

» m m o @ [UriConceptwep o

O“‘“/m\c
ted kingdom Hull

Located in

O/m\
Dynalearn project meeting University of hull

Participated in

MR e

CPIIIlO salles

Welcome to Dynalearn 0.0.13

Figure 4.2: The concept map without type information.

Page 26 / 126

Project No. 231526 DynalLearn D3.1

5. Basic causal model — Use level 2
N

The basic causal model use level (or use level 2) is the first use level in which simulation can
be run.

5.1. Representation

The Build workspace is shown in Figure 5.1.

000 X! UL6-CommunicatingVessels: Full envisionment - Scenario Editor - Build

File Edit Ingredients View Settings

A ™ m @ @ (Ui T

@&

articipatesin

ocial structure
The economy Society

The population
me
» /@Hspplness
Wealth
&

&

we/die

“nr o

N
-nr

<ar

<gr O

Welcome to Dynalearn 0.0.13

Figure 5.1: Use level 2 — Build workspace.
Learners can express conceptual models using the following ingredients:

* Entity
* Attribute
e Configuration
* Quantity
* Quantity space

o Derivative
* Value assignment

o Derivative

e Causal dependency, plus and minus

Page 27 / 126

Project No. 231526 DynaLearn D3.1

5.2. Simulation

By pressing the simulate button in the expression workspace a simulation is performed. The
visualisation is almost identical to the Build workspace. As shown in Figure 5.2 only the values
assigned in the Build editor are greyed out (as in Economic growth and Inflation), and the
derived values are added using a blue-coloured value assignment (as in Wealth and Happiness).

000 X/ UL6-CommunicatingVessels: Full envisionment - Scenario Editor - Build
File Settings Edit Elements View
UL2-BasicCausal 2
AR N i,
&=,
g articipatesin
2
ed
s T:elal structure Society
e% © economy The population
'-
@ R nomic growth
2
&
T Happiness
‘-'P/‘ t‘a Wealth /'®
v
&) o &
@ ° =
@D nttation 2
— > N v
. 2z
) v
A
2
v

Welcome to Dynalearn 0.0.13

Figure 5.2: Simulate — The simulation on use level 2.

It is possible to have ambiguous results and inconsistent results for a simulation. Ambiguous
means that there are multiple possible values for a quantity. This is visualised using multiple
value assignments (Wealth and Happiness in Figure 5.3). Inconsistency means that the assigned
values (Economic growth, Inflation and Wealth in Figure 5.4) contradict the values derived by
the simulator. This is visualised using a large question mark.

000 X/ UL6-CommunicatingVessels: Full envisionment - Scenario Editor - Build

Eile Settings Edit Elements View

e) 3@%%@@).@@9
& &y
g articipatesin
eé ocial structure
C—é' The economy $:calep'gpulnuon

= «ar O
o
=

anr O

Welcome to Dynalearn 0.0.13

& @Economic growth
- /
/@Happlness
(&) Wealth @
5

5

w
“n»

wy
-n»

Figure 5.3: Simulate — Ambiguous outcome on use level 2.

Page 28 /126

“ Fi

Project No. 231526 DynalLearn D3.1

000 N\ UL2-BasicCausal: Expression (Expression fragment) - Model Fragment Editor - Build

File Settings Edit Elements View

ﬁ; “ '\ @ (Pk,' UL 2-BasicCausal g]

DynalLearn
\

ocial structure
The economy

Society
The populatio

vadie

/'@Happlness

&

Wealth

pe

T\
h
<ar O

o
3
o

<nr
<ar

<gr O

Welcome to Dynalearn 0.0.13

Figure 5.3: Simulate — Inconsistent outcome on use level 2.

Page 29 /126

Project No. 231526 DynaLearn D3.1

6. Basic causal model with state graph — Use level 3

Use level 3 augments use level 2 by providing the option to add one or more quantity spaces to
a quantity. These quantity spaces can be selected from a default list or created new by the
learner. Adding this feature has a significant impact on the simulation results and necessarily
introduces concepts such as state-graph, behaviour path, and value history.

6.1. Representation

The Build workspace is shown in Figure 6.1.

o000 X Expression - Simulate

File Edit Ingredients View Seftings

& \3 @ % UL3-BasicCausalStateGraph El @.‘;

N

Al

2\ W &

y Participates in
Soeial structure
Y e economy Society
i The population
7
@ onomic growth
N
i 6
;; . .
2 Happmess
N
&
= ; 5
ar 5 ju
— Inftation A
@ 5 v
A
» g
v

Welcome to Dynalearn 0.0.13

Figure 6.1: Use level 3 — Build.
Learners can express conceptual models using the following ingredients:

* Entity
* Attribute
e Configuration
* Quantity
* Quantity space

o Magnitude

o Derivative
* Value assignment

o Derivative

o Magnitude

Page 30 /126

Project No. 231526 DynaLearn D3.1

e Causal dependency, plus and minus

e Correspondence

6.2. Simulation

Simulating the model generates a state graph (Figure 6.2), which visualises the following
ingredients

¢ State
¢ State transition

States can be selected individually, as a set, or as a path.

o000 X\ Expression - Simulate

File View Display Settings

A 3 \') @ @ UL3-BasicCausalStateGraph g] @" @l @ f/ﬁ | iﬁ

A
=

"/

I ERENEIL

w 0g
5\
=Y

Welcome to Dynalearn 0.0.13

Figure 6.2: Use level 3 — Simulate: State graph.

From the simulate workspace the Value History (Figure 6.3) and the Transition History (Figure
6.4) workspaces can be opened. Both visualisations take the selected states as input. The Value
history displays the following ingredients:

* Entity

* Quantity

* Quantity space (magnitude)

e States

e Current value (in each state)
o Magnitude

o Derivative value

Page 31/126

Project No. 231526 DynalLearn D3.1

laYala) X Expression - Simulate

File View Display Settings)

Economic irowlh éThe econorni
P The economy: Economic growth

Inflation (The economy)
Wealth (The population)

O Interval
1 2 3

The population: Happiness

High
— (O~ Medium
@ Low
—@——— Zero
1 2 3

Graph

Welcome to Dynalearn 0.0.13 >

Figure 6.3: Use level 3 — Simulate: Value history.

The Transition history displays how states transition into each other. It shows the following
ingredients:

e States
* Transitions

Furthermore, for each transition the Transition history shows what is causing the transition to
occur. For example, the magnitude of a quantity changes into the interval above its current
magnitude because it had a positive derivative in a previous state. Each of the transitions can
be further analysed, which brings up a screen that provides details about the transition (Figure
6.4, front). The screen containing the transition details again shows what caused the transition
to occur (a so-called transition rule), but it also shows the result of this transition rule on the
current state (e.g. condition: Happiness is zero and increasing), and its successor (results:
Happiness derivative is greater than zero and Happiness is low).

X/ Expression - Simulate
File View Display Settings

: pop
2->3 to_point_above(The population: Happiness) N

X! Details about transition between state 1 and 2 - Simulate

cause:
to_interval_above(happiness1)
conditions:
quantity values:
value(happiness1, unk, zero, plus)
results:
dependencies:
d_greater(happiness1, zero)
quantity values:
value(happinessi, unk, low, _G582)
status:
closed

o

Welcome to Dynalearn 0.0.13 %

Figure 6.4: Use level 3 — Simulate: Transition history.

Page 32 /126

Project No. 231526 DynaLearn D3.1

7. Causal differentiation — Use level 4

Use level 4 augments use level 3 in multiple ways. The main distinguishing feature is the
inclusion of proportionalities and direct influences instead of the plus- and minus-signed
relationships of the previous use level. Another difference is that every quantity has a quantity
space. These quantity spaces are defined by using the quantity space editor. Whenever a
quantity is being created in the quantity editor, a quantity space must be selected for it (in other
words, in use level 4 quantities cannot exist without a quantity space).

7.1. Representation

The Build workspace is shown in Figure 7.1.

000 X\ UL4-CausalDifferentiation: Expression (Expression fragment) - Model Fragment Editor - Build

File Edit Ingredients View Settings

Welcome to Dynalearn 0.0.13

Figure 7.1: Use level 4 — Build.
Learners can express conceptual models using the following ingredients:
* Entity
* Attribute
e Configuration
* Quantity
* Quantity space
o Magnitude

o Derivative

Page 33 /126

Project No. 231526 DynaLearn D3.1

* Value assignment
o Derivative
o Magnitude

e Causal dependencies
o Proportionalities
o Influences

e Correspondence

7.2. Simulation

As in use level 4, simulating the model generates a state graph (Figure 7.2, back). From the
simulate workspace the value history and transition history views can be opened. New in this use

level is the equation history (Figure 7.3), and the quantity values workspace (Figure 7.2, front).
The quantity values workspace displays the following ingredients:

* Entities

* Quantities

* Magnitude

* Derivative, including second order derivative

X Expression - Simulate
File View Display Settings

9 \3 \:} @ (pjkj UL4-CausalDifferentiation g] @‘; F/‘. @ C? | (=

Select: @
'g @ O O O X Values in state 1 - Simulate
G%Q\(i) Growth (Tree): Plus, + (+)
. Shade (Tree): Low, + (+)
Y Size (Tree): Low, + (+)
View:
P2k &
el [
[o—]

Welcome to Dynalearn 0.0.13

Figure 7.2: Use level 4 — Simulate workspace.

The equation history displays how equations (e.g. inequalities between quantities) change over
time. It shows the following ingredients:

* Entities

¢ Quantities

Page 34 /126

Project No. 231526 DynaLearn

D3.1

¢ Magnitudes
* Derivatives
* Inequalities
e Operators

OO0 X! Expression - Simulate

File View Display Settings

] ?
Size (Tree) ? Shade (Tree Size (Tree) ? Shade (Tree)

123

Display equations

=

Derivative equations

)

Select

S

Graph

4%

Welcome to Dynalearn 0.0.13

Figure 7.3: Use level 4 — Equation history workspace.

Page 35/ 126

i
-

Project No. 231526 DynaLearn D3.1

8. Conditional knowledge — Use level 5

Use level 5 augments use level 4 by allowing conditional expressions to be defined. These
conditional expressions incorporate the expression fragment, but allow separate conditions and
consequences to be added.

8.1. Representation

The Build workspace (Figure 8.1) is identical to the expression editor in use level 4. However,
there are new buttons that allow switching to the conditional expression list and switching to the
last edited conditional expression as well.

000 X/ UL6-CommunicatingVessels: Full envisionment - Scenario Editor - Build

File Edit Ingredients View Settings

. : ULS-ConditionalKnowledge 7 () P
e A A e @) @
Sy { 5.0 e 3~ @ 0 Lt QOO mQ 8. B
2 orard| s meeas|@
‘gxpression Rl
2
ed
b ®
'_‘
&
i'.a
2
aB
2 A Water
s O/Water left
2
K< o 5
9 Volume
@ Vefime S P &
— @ sina—— Dz T g
@ mef’r’@w""‘v 6\k19"‘v & l?»'lna:ximum o shaximum O I?ﬂaximum o
s Maximum oMaximum = Maximum gPositive ™ gPositive gPositive
m gPositive 2 fPositive gPositive 8Zero i wZero aZero i
@ ®Zero i wZero A WZero A A 4 A
L— | 2 2 2 v v v
: v v v

Welcome to Dynalearn 0.0.13

Figure 8.1: Use level 5 — Build workspace.

The conditional expression list (Figure 8.2) shows a list of all the conditional expressions a
learner has created. The conditional expression workspace (Figure 8.3) allows the following
ingredients to be created (as conditions and consequences, unless specifically specified):

* Entities

e Agents

¢ Assumptions

e Configurations

* Quantities, including quantity spaces
* Value assignments

e Operators, plus and minus

Page 36 / 126

Project No. 231526 DynaLearn

D3.1

* Inequalities
¢ Correspondences (consequence only)
e Causal Dependencies (consequence only)
o Proportionalities
o Influences
000 X/ UL6-CommunicatingVessels: Full envisionment
File Edit Settings

DB @i = no|®

-l

A @D @ @& [IECTuiENKesIgeg

‘ Overview (Conditional Expressions)

[Assume equal heights

CIEE

®

- Scenario Editor - Build

| -

Dynalearn

Welcome to Dynalearn 0.0.13)

Figure 8.2: Use level 5 — Conditional expression list

(s NeNe)

File Edit Conditions Consequences View

X/ ULS-ConditionalKnowledge: Assume equal heights (Agent fragment) - Model Fragment Editor - Build
Settings

- s D @ @ ECHmowowsEe

€ 6 ™)

\)
D =,) o 1L ® e
WERB Bl =P
| Assume equal heights -
d w A 1. n fragmen Tube
‘%E!p.'ss!o.. fregment Tube
) From To _
85 8% T Syriow @)
. Container
Container @cantllnor right
@2 @: Contalner left Nip -
1 5
@Pcsitive
wZero
,g"; ‘; gNegative g‘!] Contains
Contains ™
| af - 1 ()
=) Water
Water -
| s Water left Bwater night
X F (P (P (Py) I
Yo - Height
. . y Pressure _
& Oueme S e >R
@ (@) l‘Q,\ Zpm c
g & Oz 6z /e/®\.. 5Y Uit 6
sMaximum Maximum sMaximum gPositive 3 gPositive
> L gPositive ‘!;“'""e gPositive wZero A wZero L
& sty ; :
2 4 7 v M
?m:/ v GAssume maximum heights equal

‘Volume

Zpm
sMaximum
@Positive
®Zero

o

-nr

Dynalearn

Welcome to Dynalearn 0.0.13 ¥

Figure 8.3: Use level 5 — Conditional

Page 37 /126

expression workspace.

Project No. 231526 DynaLearn D3.1

8.2. Simulation

The simulate workspace (Figure 8.4) adds some new buttons in comparison to use level 4:
e Show Conditional Expressions for State
* Show Dependencies
e Show ER Diagram

o000 X! Expression - Simulate

File View Display Settings

q ﬂ '5 % 9337. UL5-ConditionalKnowledge g g,;’ ﬂl m ﬂo

¥
-

| Expression -l

LIl 4l A

2]
©
5

Lo

Welcome to Dynalearn 0.0.13

Figure 8.4: Use level 5 — Simulate workspace (State graph).

The Show Conditional Expressions in State workspace (Figure 8.5) shows the conditional
expressions that have become active in a particular state.

o000 X! Expression - Simulate

File View Display Settings

A m D @ @ [LECodatcnsknowiedge T @ @ @)@

i

i

DB @ |t | B

| Expression vl

Model fragments in state 1:

Assume equal heights: Container left, Container right, Tube, Water left, Water right
(] frag C left, C right, Tube, Water left, Water right
P : C left, C: right, Tube, Water left, Water right

& 2 4

Welcome to Dynalearn 0.0.13 P

Figure 8.5: Use level 5 — Simulate conditional expressions.

Page 38 /126

Project No. 231526 DynaLearn D3.1

The dependencies workspace (Figure 8.6) shows all model ingredients that are either in the
expression, that are the result of the simulation (i.e. value assignments), or that have been
introduced by active conditional expressions in a particular state. The workspace allows specific
relationships to be hidden in order to make insightful images for reports.

laYale) X! Expression - Simulate
File View Display Settings ,‘.,‘
s
ﬁ 5 :} @ @E UL5-ConditionalKnowledge ﬂ‘f‘ ﬂ]. M C?
1 -
B E @ rmatr—n (P
\ Expression -l
® &2
Tube
.
e i Fiow
O\ WPositive y
N = § =Zero
= INegative
- - = Pressure(Water left) - Pressure(Water right
& (1+) | (1= s 1
+)
N = - 1-f
¢ N @]) - _
— (Pe) (P-)
@@ Water left /
= = = N Volume
i< 4= = Volume Pressure (>)
d<) | =) | d>) 2 Pressure sMaximum
— | — | = sMaximum sMaximum S Maximum @ - Iositive &
- ~ BPositive y BPositive y WPositive o ! (af wZero
& =Zero (=Zero \ / =Zero s
N = = - (P4
Oy @) | @ Height = eTant
sMaximum =) 9
~ — ~ BPositive y - =Maximum
FQ) | @@ | (@) =Zero BPositive 4
=Zero
‘d&') w\z"-,
¢ :‘\ a0y | (@)
EIEICNEY
Welcome to Dynalearn 0.0.13 &

Figure 8.6: Use level 5 — Simulate dependencies workspace.

The Entity-Relation (ER) workspace (Figure 8.7) shows the structure of the system in a particular
state. The conditional expression is shown with dashed lines.

X\ Expression - Simulate
File View Display Settings

| Expression -l

Assume maximum heights equal

Container left Tube Containerright
—From—« —To—«
|
Contains Contains
4
Water left Waterright

L we

Welcome to Dynalearn 0.0.13 r

Figure 8.7: Use level 5 — Simulate ER diagram workspace.

Page 39 /126

Project No. 231526 DynalLearn D3.1

9. Generic and reusable knowledge — Use level 6
|

The generic and reusable knowledge use level (or use level 6), allows the full range of
representation and reasoning that is available in Garp3. Particularly, in contrast to use level 5,
expressions (including conditional expressions) are no longer available. Instead, learners create
scenarios and model fragments.

In contrast to expressions (which contain both scenario and model fragment aspects), which will
always become active in a simulation, in use level 6 a simulation is based on a single scenario
(which describes the initial state of the simulation). The model fragments (which contain both
conditions and consequences) can be seen as rules (IF [conditions], THEN [consequences]). If
the scenario fulfils the conditions of a model fragment, it becomes active, and the ingredients
represented as consequences of the model fragment are introduced to the description of the
initial state.

9.1. Representation

The scenario workspace is shown in Figure 9.1. In it the following ingredients can be used (all
these can only be added as consequences):

e Entities

e Agents

¢ Assumptions

e Configurations

e Attributes

* Quantities, including quantity spaces
* Value assignments

e Operators, plus and minus

* Inequalities

In contrast to the conditional expressions in use level 5, which were based on the expression
fragment, model fragments in use level 6 can be created independently. Another addition in
use level 6 is the ability to organize model fragments into a subtype hierarchy (Figure 9.2).
Moreover, model fragments can be imported into other model fragments. The model fragment
workspace (Figure 9.3) shows the Liquid Flow model fragment using the imported Contained
Liquid model fragment twice, and introducing a set of new ingredients. In the model fragment
editor the following ingredients can be used (as both conditions and consequences unless
specified otherwise):

e Entities
e Agents
* Assumptions (only conditional)

e Configurations

Page 40 /126

Project No. 231526 DynalLearn D3.1

* Quantities, including quantity spaces

* Value assignments

e Operators, plus and minus

* Inequalities

e Correspondences (consequences only)

e Causal Dependencies (consequences only)
o Proportionalities
o Influences

* Model fragments (conditions only)

* Identity relationships

000 X UL6-C icatingVessels: Full envisi - Scenario Editor - Build
File Edit Ingredients View Settings ,‘.,‘

R UL6-CommunicatingVessels

2390 e
8 0 3 4 41 2 2 3 o
o: ot ot ¥ |2k 10 it
vocee@ivs MWD BW|F Fciadrn =g
Full envisionment w| [Liquid flow v
] =l
e@ 0Assume equal heights
| ontainer Container
& Contalner left Contalner right
i Contains
S— ater
g Water left ‘Water right
? (@Height! (@Heignt!
a A w0
gPlus BPlus
= wZero 4 wzeo
w 3 v
Welcome to Dynalearn 0.0.13
Figure 9.1: Use level 6 — Build: Scenario editor.
o000 X/ UL6-CommunicatingVessels: Model fragment definitions editor - Build
File Edit View Settings)
W

A ® D Q@ @ [Hlecommunicatingvesseis TR | @y @R @) @S
3 4 41 2 - e
1|2 e | P

wocse ®iv | @ WD D& E

| Eull envisionment | | Qverview (Model fragments) vl
] Boecona

= | Static Contained liquid

B a. a s

— | Process ™ Liquid flow " Assume equal heights

ﬁ A%(

? | Agen

u|

BBERE

Welcome to Dynalearn 0.0.13

Figure 9.2: Use level 6 — Build: Model fragment overview.

Page 41 /126

Project No. 231526 DynalLearn D3.1

000 X UL6-CommunicatingVessels: Liquid flow (Process fragment) - Model Fragment Editor - Build
File Edit Conditions Consequences View Settings

% ﬁ '5 @ ‘pa\ UL6-CommunicatingVessels El @._1‘ Cnr/!, @ {ﬂo |E
3 4 41 2

vocoexios | DMBDBD|@ @i |rm ot

‘ Full envisionment - ‘ Liquid flow vl

Dynalearn
\ 4

Container
AN ont

BContalner left {Rycontained liquid

Cont Oxfjontainer
(ycontained 1@y ontalner left

Contains

Contains
Liquid Liquid
@quuld left @Liquld left
))

Voitime @Halgﬁ(_ Sfpresss

Heignt
@)Pressure o @)Volume

ee®R ki e dde

BRe e Evedie

O = _pZpm-a
Zpm < Zpm &z (=) P Q)
silax gy Max O Zpm g Zoma 5 T EMax =t zpm 5
§Plus =/ gPlus mhilax silax (@) gPlus milax
wZero wZero BPlus gPlus ®Zero #Plus
o 2 2 wZero wZero 4 2 WZero
? v 2 2 v 2
v v v

Welcome to Dynalearn 0.0.13

Figure 9.3 Use level 6 — Build: Model fragment editor.

9.2. Simulation

The simulate workspace (Figure 9.4) shows the state graph representing the predicted behaviour
of the system. In use level 6, the complete range of simulate workspaces (introduced in earlier
workspaces) is available for the learner to use.

000 X! Full envisionment - Simulate

File View Display Settings

e %lmmxﬁl@@ ws@lm»ﬂw-@@ml@
| Eull envisionment w| [Path:[7,11,5] -l
Select:

4

Vl:ew:.' @

>+

o @
o+

- @
oo

C

Welcome to Dynalearn 0.0.13 4

Figure 9.4: Use level 6 — Simulate: State graph.

Page 42 /126

Project No. 231526 DynalLearn D3.1

10. Multiple simulations, saving simulations and path selection
|

In the Garp3 workbench, it is only possible to run a single simulation at a time. As such, in
Garp3 all the screens related to a simulation are closed when a new simulation is run. It is
therefore impossible to directly compare simulation results within the software.

In the DynaLearn ILE significant improvements have been made in how the software deals with
simulations. As such, it is now possible to have multiple simulations running at the same time.
This makes it possible to compare simulation results coming from different scenarios of the same
model. It also provides the ability to run simulations of different models in the background. This
particular feature is important in other parts of the DynalLearn project where, for example,
simulation results of models created by students are compared to simulation results of models
made by experts.

A further improvement upon Garp3 is the ability to save state and path selections made in the
state graph. This feature has multiple educational purposes. Firstly, a domain expert creating an
educational model can save specific paths in the state graph that reflect an important
behaviour of the modelled system. Secondly, students and teachers can have easy access to
the saved paths in the model. Furthermore, students can save behaviour paths that they do not
understand, so they can ask for feedback from a teacher (or a Virtual Character). Thirdly, the
stored selections can be used by the Virtual Characters to, for example, explain the model.

Finally, a feature that has been significantly improved since Garp3 is saving simulations. It is
possible to save simulations in Garp3, but saved simulations can get out of synchronization with
the model (i.e. a saved simulation may not reflect the correct simulation as it would be
produced by simulating the model). Furthermore, the links between the simulation and the
model are lost when a simulation was saved. In DynalLearn, these issues with saved simulations
have been remedied. Saving simulations now also saves the links between the simulation and
the model, and also saves the stored selections. As a result, in DynalLearn there is no difference
between loading a saved simulation and running a simulation (except that there can be some
stored selections).

There are multiple reasons why saved simulations are a key feature for an ILE such as
Dynalearn. Firstly, this functionality is used to enable multiple simulation support. Secondly, it
allows students to quickly inspect simulations without having to run the simulation themselves
(which for complex models may take time). Thirdly, the saved simulations allow users to quickly
switch between models made by learners and an expert model (running in the background),
which, for example, can be important when the learner is being guided towards a more correct
or more complicated model.

10.1. Multiple simulations

Multiple simulation support was implemented in such a way that there is no limit to the number
of simulations that can run in parallel. From the perspective of usability, the question was how
the functionality should be constrained in order to be understandable for the learner. In the
design, we have chosen to have a single simulation per scenario. That is, the simulation buttons
will either start a new simulation if it does not exist yet, or bring the user to the current simulation
of the scenario. Once in the simulation environment, the learner can choose to restart the
simulation. Multiple simulation support takes the multiple model support into consideration as
well. It is only possible to investigate simulations that belong to the currently active set of
models.

Page 43 /126

Project No. 231526 DynalLearn D3.1

10.2. Storing selected states and paths

In the simulate environment, the right-hand side menu will show the current state selection
(Figure 10.1). There are two types of state selections, states and path. In the state mode, both
states and all transitions from each state will be selected (which is important for the state-
transition view). In the path mode only paths can be selected (together with only the transitions
between the selected states). If the current selection is not a path then the selection is shown as
a state selection instead of a path selection. State selections are prefixed with the text ‘States?’,
while path selections are prefixed with the text: ‘Path:’.

Next to the menu there is a + and a — buttons. The + button stores the current selection in the
simulation, while the — button removes the current selection. Selecting one of the stored
selections makes this selection active in the state graph.

Note that storing a selection does not change the model itself, as a selection only makes sense
in the context of a particular simulation. Simulating the same scenario in steps might result in a
different numbering for the states (as it is controlled by the learner). As such in the new
simulation the state selection might not make sense. The simulation should be saved in the
model in order for the stored selections to be saved along with it.

N0 \ Both tanks partially filled but right is higher - Simulate
File View Display Settings

4 4 21 2

8 0 3 2 o
e io | WM DR | F@oad it
Both tanks partially filled but leftis higher w| [states:[1,3,2,4] -t :")_@_(Q_@.@.@.@.@.M
Path: [1, 2] - .
Selecti Path:[1, 3, 2
] @ @ States: 1,3,2,4

5% @%

Welcome to Dynalearn 0.0.13 »,

Figure 10.1: A number of saved state selections. State selections that make up a path in the
state graph are identified as such in the list.

10.3. Saving simulation results

In the simulate environment, the ‘save/load simulation’ button creates a dialog in which
simulations can be saved or loaded (Figure 10.2). If there is no active simulation, there is
nothing to save, so the lower part of the dialog is not shown. In that case, saved simulations can
only be loaded. When there is an active simulation, this simulation can be saved by giving it a
name and pressing the ‘ok’ button. The ‘delete’ button allows saved simulations to be removed.

Page 44 / 126

Project No. 231526 DynalLearn D3.1

A new feature in Dynalearn is the ability to simulate all scenarios and save the resulting
simulations to the model. Figure 10.2 shows the results of running and saving all simulations in a
communicating vessels model.

SO N N\ Save/Load simulations

Saved simulations:
Both tanks partially filled with equal heights

Both tanks partially filled but right is higher (@
Both tanks partially filled but left is higher

Select a saved simulation to overwrite or type a new name.
Clicking save will save the simulation state in the model.
You will have to save the model as well.

Name: Both tanks partially filled but left is higher @
b

Figure 10.2: The save/load simulations dialogue.

10.4. Implementation

DynaLearn introduces two new classes to deal with multiple simulations, saved simulations and
stored state selections: the stateSelection class and the simulation class. The
stateSelection class is used to store particular selections in the state graph. The simulation
class represents a single simulation.

The stateSelection class has the following variables:
* selection mode: either state or path mode
* state: the selected states
* path: the path that results from the selection
* selectionText: the text that should be shown in the menu
* name: a name of the selection
* remarks: the remarks belonging to the selection
The main methods of the stateSelection class are
e get and set functions for the variables

e equality check functions to compare a selection to other selections (used to check
whether a particular visualisation of the simulation is already open or should be
created)

e copy functionality, so that particular selections can be stored in a model

Page 45/ 126

Project No. 231526 DynalLearn D3.1

The simulation class has the following variables:
* name: the name of the simulation
* remarks: the remarks added to the simulation
* currentSelection: the current selection in the state graph
* selections: the set of stored selections in the state graph
* engineState: the representation of the simulation in the reasoning engine

* exportedElements: a hash table with references from the reasoning engine
representation to elements in model fragments, scenarios and expressions

* exportedObjects: a hash table with references from the reasoning engine
representation to the definitions of model ingredients in the model

e scenario: alink to the scenario that the simulation is based on

* model: a link to the model that the simulation is based on

The main methods of the stateSelection class are:
e get and set methods for some of the variables
* methods to store and delete state selections

* methods to load and save the engine representation (used when switching between
simulations)

* methods to store references from the reasoning engine representation to the model, and
methods to retrieve model ingredients from the model based on the engine

representation

Simulations are saved by copying a simulation object to the savedSimulations slot in the
model object.

Page 46 / 126

Project No. 231526 DynalLearn D3.1

11. Meta-data
N

The main reasons for adding metadata are
* Managing model versions:

* Embedding the model in its scientific or educational context. In scientific contexts: linking the
model to researchers, research articles, and research projects. In educational contexts:
linking the model to a course, educational program, or course assignment, mentioning the
reviewer, etc.

e Referring to models: authors, year of publication, and other bibliographic citation
information.

* Documenting known flaws and bugs.

The DynalLearn ILE offers four meta-data editors. In these editors, information can be stored that
pertains to the model as a whole, but that does not involve the simulation process itself. Examples of
such information categories are the title of the model, its authors, known bugs, the language in
which the model is specified, etc.

11.1. Abstract and general remarks

The abstract and general remarks meta-data view embeds the model in its scientific or educational
context (Figure 11.1). The fields are:

o Title
¢ Author

* Contributors

* Contact e-mail

e Keywords

e Domain

* Model version

* Known model limitation
e Bibliographic citation

* License

Page 47 /1 126

Project No. 231526 DynalLearn D3.1

Dynalearn

5u&ﬁﬁﬁ|@@&@m‘|f 1 G me 0%

I Qverview (Scenarios) [Overview (Model fragments) ;_l

Title: {F d duction and itive fish species (model B),

ydrop p

Author: IA, Zitek, S. Schmutz

Contributors: |

Contact email: |andreas zitek@ecoscience.at

y 3 IWater b i itive fish species, P , flow velocity, hydrop p

Domain: IRiver management

Model version:

Known model limitations:

Bibliographic citation:

License:

Welcome to Dynalearn 0.0.13

Figure 11.1: Meta-data, abstract and general remarks.

11.2. General information

This view shows general information about the model. See Figure 11.2. There are four categories:

Abstract information
* Intended audience
* Model goals

* General remarks

i ziteketal2009modelb: General information metadata - Build
Wh

s

Gomde i | B @ B Bt § |- 2 e n| B
I Overview (Scenarios) I Overview (Model fragments) ;] O—.—O—.—G—.—O—.—O—.-G

Abstract | Intended audience | Model goals | General remarks |

)Aodel B, ‘Hydropower production and sensitive fish species’, explores =
related to hydrop: use in the Kamp valley and its

effect on fish (see the causal model in Fig. 9). Additionally the

aspect of energy production, consumed energy and energy sold is

modelled together with the causal
pnnclp!e behind the tendency of the owners of hydropowel plants to
of There of

influencing a river by hydropower use: (1) water abstraction and lhe
creation of a residual orminimumflowstretchwith the related effects to
the physical environment (loss of water, loss of flow velocity,
reduction of depth and increase of water temperature), and (2) the
storage of water in a reservoir and a constant or peaking release of 1=
water from hypolimnetic parts of the reservoir leading to decreased
temperatures below the reservoir. The decreased temperatures generally
favour cold water species and repress the reproduction ofwarmwater
species. [f the water is on the one hand released at a constant rate

this destroys mainly the natural flow regime of a river, if released in

a peaking mode (‘hydropeaking') it affects fish mainly due to the

frequent changes of habitat conditions. Therefore model B focuses on

Welcome to Dynalearn 0.0.13

Figure 11.2: Meta-data, general information.

Page 48 /126

Project No. 231526 DynaLearn D3.1

11.3. Status and bug report

The purpose of this view is to add updated status reports about the model in order to keep track of
known problems and solving them. See Figure 11.3. A single model can have an arbitrary number of
such reports, identifiable due to unique report IDs. The fields are:

¢ Report ID
* Name

* Priority

* Date

* Reported by

¢ Status
e Todo
* Fixes

* Description

4 ziteketal2009modelb: General informati data - Build

$oa0e®is s | @ WM DR|BBaoiatd | itrmne|P
{Open ’ ,ed(orL

I Overview () .| Qverview (Model fragments) j OW

Report ID: [, ~|

Name: |

Priority: I

€% |©|e

Date: I
Reported by: |

Status: I

To do: |

Fixes: I

Description:

4

Welcome to Dynaleam 0.0.13

Figure 11.3: Meta-data, status and bug report.

11.4. Model data

The purpose of this view is to add version and update information about the model. See Figure 11.4.
The fields are:

Page 49 /126

Project No. 231526 DynalLearn D3.1

* Creation date

e Created in

* Creation definition version
* Last change

e Current program

¢ Current definition version

{4 Titeketal2009modelb: General informai data - Build o=

Dynalearn

y

| overview (scenarios) | overview (uoce! tragments) ~| [—o—ig—o—gp—o—w~o~w—o~w)

Creation date: IThu Apr 26 22:12:45 2007,

Created in: IGarp3 138

Creation definition version: |15

Last change: |Tue Feb 09 10:56:46 2010

Current program: |Dynaleam 0.0.13

Current definition version: |24

Welcome to Dynaleamn 0.0.13

Figure 11.4: Meta-data, model data.

Page 50 / 126

Project No. 231526 DynalLearn D3.1

12. Special features
|

Over the years, Garp3 has gained multiple special features. These features have been incorporated in
the Dynalearn software, and several other have been newly added to Dynalearn. Typical special
features of Dynalearn are: multiple language support, OWL import/export, tooltips, Garp3
compatibility, EPS export, use level switching.

12.1. Multiple languages

Multiple language support allows models to be translated from one language into multiple others.
This functionality is fully inherited from Garp3 and also works for the new ingredients introduced in
DynaLearn.

12.2. OWL export/import

The Web Ontology Language (OWL) export and import functionality allows DynalLearn models to be
exported as OWL files. This representation is used within the Dynalearn project to communicate
models (and simulation results) between different components in the software. For example, the
Semantic Repository stores the models in this format. The models in OWL format can also be
imported back into the DynalLearn application again.

The OWL functionality has been adapted to a richer representation to capture the new knowledge
representation used in Dynalearn. For example, information about use levels and new
representation such as the + and — relationships are added to the implementation.

12.3. Tooltip — Basic explanation

In order to aid the user, tooltips have been added to the DynalLearn workbench in order to
communicate information about the workings of the interface, as well as information regarding the
specific model created by the user.

The former category, giving information regarding the interface, is provided whenever the user
hovers over a Ul element, such as a button. The tooltip text then communicates the functionality
that this specific button allows. An example of this is given in Figure 12.1.

The latter category, giving information regarding aspects of the model, is provided whenever the
user hovers over a model ingredient. The user can alter this text by editing the contents of the
remarks text field inside the various editors. An example of this is given in Figure 12.2.

Page 51 /126

Project No. 231526 DynaLearn D3.1

Editor - Build

o0 0 N\ UL2-BasicCausal: Expression (Expression frag) - Model Frag

File Edit View Settings

a0 15 v | D] 0 () T | G811 | oo | B

w| [Path:(7,11,5] =t

[Overview (Scenarios)

[o2) 0
See

Water
@ Con%ner
Object ®
Tube

Welcome to Dynalearn 0.0.13 -

Figure 12.1: A tooltip for a button in DynalLearn.

[X/ uLe-C icatingVessels: Full envisi 1t - Scenario Editor - Build

-3 UL6-CommunicatingVessels ! @.1 ﬂ’, M ﬁo ﬂ
$0c0e®is | MM DR/ B @l

- ‘ Overview (Model fragments) Rl &

0O00
File Edit View Settings

DynalLearn

L

| QOverview (Scenarios)

oil*
Ma;o;lal «Lleljld< EnH Oil: An oil is any substrance thatis liquid at ambient temperatures and is
q hydrophobic but soluble in organic solvents.

warter

S
o$c1<03lalner

Tube

Entity

CIEIEREEE

Welcome to Dynalearn 0.0.13 -

Figure 12.2: A tooltip for a model ingredient in DynalLearn.

Page 52 /126

Project No. 231526 DynalLearn D3.1

12.4. Upward compatibility for Garp3 models at use level 6

During the implementation of DynalLearn we took particular care that Garp3 models can be loaded as
DynalLearn models on use level 6. As such, no modelling effort has been lost. Furthermore, users of
Garp3 can migrate to the new improved Dynalearn software.

12.5. EPS export

The diagrams created in the DynalLearn software can be exported as EPS images. These vector images
can be used in presentations, reports and publications.

12.6. Switching use levels

In the near future, we envision the possibility of migrating a model to a higher use level. The concept
map in use level 1 could be converted into entities and configurations on use level 2. From use level 2
to use level 3, quantity spaces are added to quantities. From use level 3 to use level 4, the —and +
relationships can be converted into proportionalities, and influences. From use level 4 to use level 5,
the possibility to create conditional model fragments is added. Migrating from use level 5 to use level
6 is quite complex, as use level 6 uses scenarios and model fragments, whereas use levels 2 through
5 use (conditional) expressions. A conversion algorithm has to be written to make these migrations
possible.

We do not plan to add migrating models to lower use levels, since there seems no educational
reason to have a student working on a higher use level use a lower use level with the same model.
Technically it is also more difficult, since fewer ingredients may be used on lower use levels. Unused
ingredients will have to be either converted or removed.

12.7. Screen cloning

In the Garp3 software, each workspace was shown in a separate window. Although this caused the
usability problem of having too many windows open (which is resolved by the integrated user
interface in Dynalearn), it did allow easy comparison of different diagrams or viewing multiple
diagrams at the same time. Typical use-cases are looking at the state graph and the value history
simultaneously, or looking at the differences between two dependency views of two states.

In Dynalearn, due to the integrated user interface, it has become more difficult to look at multiple
diagrams simultaneously. As such, we added the possibility of showing a diagram in a separate
window. This way, diagrams can still be easily compared.

Page 53 /126

Project No. 231526 DynalLearn D3.1

12.8. Tabs in the simulate environment

To allow the learner to see which of the workspaces in the simulate environment are currently open,
we plan to add tabs to the simulate workspace. This allows the learner to easily switch between
different screens in the simulate environment. This is useful because particular workspaces are
visualised for each state, such as the dependency view or the model fragments in state view. Quickly
switching between different workspaces improves the usability of DynaLearn.

Page 54 / 126

Project No. 231526 DynalLearn D3.1

13. Implementation details
|

This Section describes some of the implementation details of how specific functionality has been
implemented in Dynalearn. Section 13.1 describes how Change Requestors work. Section 13.2
describes how the application content is visualised. Section 13.3 describes how expressions and
conditional expressions have been represented. Section 13.4 describes how expressions and
conditional expressions are exported to the simulation engine representation.

13.1. Change Requestors

The Dynalearn ILE allows complex models to be built. Because of their inherent complexity, model
ingredients can be made to depend on one another. For instance, after adding a relationship
between two entities, neither one of the entities can be removed without affecting (1) the existence
of the relationship, and (2) the behaviour of the entity that remains.

The interdependency of model ingredients poses a technical difficulty: how do we propagate changes
made to a modelling ingredient? Because (1) there are many different interdependencies, and (2)
those interdependencies can be nested arbitrarily deep, a thorough programming solution had to be
invented to make the propagation of changes possible.

Also, some changes may have such intricate interdependencies that it should be disallowed to push
certain changes through. For instance, the user is normally free to change the values of a quantity
space. But once an inequality relation between two point values (belonging to the quantity spaces of
different quantities) has been added, it is no longer allowed to change those values. The reason for
this is that the previously instigated inequality may no longer hold for the changed value. Examples
like these, which are numerous throughout the Dynalearn ILE, necessitate the incorporation of a
method that checks whether a given change is allowed to be called or not. Moreover, in those cases
in which a change is not allowed to be pushed though for a specific reason, that reason should be
communicated to the user.

In order to encompass the above consideration, the change requestor was made (see also Figure
13.1). Change requestors are used for checking whether changes to a model are valid, for processing
the changes, and for updating the workspaces that are influenced by the change. The change
requestor objects can encapsulate complex changes. In order to be able to do this, the change
requestor object needs the following attributes:

* An identifier for each type of change, in order to keep the many different changes
apart.

e Each change is performed directly upon a single object.

* There may be (a lot of) additional objects that are affected indirectly by the change, i.e.
the route.

e The different types of change requestors have different numbers and types of
arguments. So these need to be stored as well.

Page 55/ 126

Project No. 231526 DynalLearn D3.1

e Since not all changes are allowed to be applied to all objects, specific feedback as to
why this is so must be assembled.

* For each type, there are different methods for checking, applying, and handling
changes. Therefore, the specific methods for these three operations are stored locally as
checkMethod, applyMethod, and appliedMethod.

e Since the removal of a single modelling ingredient might have repercussions for other
ingredients as well, the autoFreeList of objects that are to be freed after all changes
have been applied is kept track of.

ChangeRequestor

-type : Name

~object : Object

editor : appFrameContent
-arguments : Chain
~subChanges : Chain
-feedback : Chain
route : Chain
~-checkMethod : Name
-applyMethod - Name
-appliedMethod : Name
~autoFreelList : Chain
Lsilent : Boolean
-nofeedback : Boolean
-model

+go()
+addChangeRequest()
+appendFeedback()
+appendSubChange()
+islmpossibleChange()

Figure 13.1: Class description for the change requestor

The algorithmic heart of the change requestor consists of the go method, and all subservient
methods that are called by it (see Figure 13.2).

The go method orchestrates the routeRequest method that verifies whether the change can be
pushed through and the apply method that applies the changes (if possible). The method's sole
parameter is the content route to which the change will be applied. The content route consists of an
arbitrary number of objects and/or chains containing objects. The go method is itself called by a
model object's changeRequest method, where the content route is assembled and then passed
through to the change requestor object.

The routeRequest method checks whether the changes can be applied to the objects in the
content route. The method that is used for this verification purpose is stored as attribute
checkMethod. Every modelling ingredient has its own check method (these are defined in the view
editor object). The feedback from these check methods is assembled inside the feedback attribute
of the change requestor object. The reason for assembling the various feedback messages, is that
some of those individual feedbacks may block the changes, whereas the feedbacks taken in isolation
would not. Whether the collation of feedbacks makes the changes impossible to perform, is decided
over inside the apply method treated below.

Page 56 / 126

Project No. 231526 DynalLearn D3.1

Go
call
>
checkMethod
dre || T T |:-|
e

isimpossibleChange
FeedbackDi

isPossibleChange
1

RouteApply

for all pending changes

ApplyMethod

for all pending changes
! DoSendApplied

AppliedMethod

done
I i

Figure 13.2: Process diagram for the change requestor.

After the routeRequest method succeeds, the apply method is called. First, this method uses
isImpossibleChange in order to verify whether the changes can be applied, given the feedback
that was assembled by the various check methods executed by the routeRequest method. If the
changes are indeed deemed impossible with respect to the content route, then feedback is given as

to why this is the case. If the changes are not blocked with respect to the content route, then the
routeAplly method is called.

The routeApply method does three things:

Page 57 /126

Project No. 231526 DynalLearn D3.1

1. It applies the changes to the objects that are within the content route. This is done by
method sendApl1ly, which is run for each individual change.

2. routelApply calls method doSendApplied, again for every individual change. This
performs any operation that may be required after all of the changes have been made (by
sendApply).

3. Allthe changes are freed by method doAutoFree.

Method sendApply performs the change to a specific object. It calls the method that is locally
stored as attribute applyMethod in order to perform this change.

Method doSendApplied performs two tasks:

1. It performs the locally stored attribute method appliedMethod onto all active contents
(see section 13.2). This is necessary since there may be multiple views in which any of the
changed modelling ingredients in displayed. All views containing the changed ingredient
must therefore be updated after an update has been performed. appliedMethod makes

sure these updates are performed.

2. The locally stored attribute method changeApplied is performed on all elements within

the content route.

13.2. Application content

The Dynalearn ILE has a uniform application window in which the various views and editors for
modelling and simulation are displayed. Whenever a new view or editor is chosen, not only the view
content changes, but also the menu commands, the buttons on the left hand side of the application
window, and the keyboard commands. Because so many elements of the interface are tied together
with the notion of content switching, it becomes natural to think of interface views as modular
objects.

But there is another reason for treating of user interface content switches as modular objects. It
should be possible to clone any of the views within the Dynalearn ILE at any given time. This means
that the user can click a button in order to transfer the currently displayed content to a separate
window. But not only the content is transmitted; the menus, left hand side buttons, and keyboard
commands should be transferred as well.

Page 58 / 126

Project No. 231526 DynalLearn D3.1

AppFrameContent

~content : Device

-buttonBar : AppFrameContentButtonBar
-menuBar : AppFrameMenuBar
~commands : HashTable
-model : Model

Htitle : String

-statusText - String
~applicationWindow : AppFrame
+init_menu()

+init_buttonbar()

title()

+command()

+onDestroy()
+beforaSwitchOn()
+afterSwitchOn()
+beforeSwitchOff()
+afterSwitchOff()

+resize()

Figure 13.3: Class description of AppFrameContent.

For this purpose, the notion of application content (represented in class AppFrameContent) was
created (see also Figure 13.3). Application content consists of the following elements:

e Attribute client contains the content that encompasses the current view. This is where
the model ingredients are displayed.

* The menu for this content, menuBar.
* The left hand side button bar for this content, buttonBar.

* The commands that make the menu bar, button bar, and keyboard shortcuts all interact
with the same content displayed on the client device.

* The title text that should be displayed within the title bar of the window in which the
content will be displayed.

The menu bar and button bar are initialised by instantiating the methods init menu and
init buttonbar respectively.

In order to provide the ability to make the switching between contents seamless, various standard
methods are provided for preparing the switch to a new content, as well as methods for cleaning
stuff up after an old content has been switched from. The former are beforeSwitchOn and
afterSwitchOn. The latter are beforeSwitchOff and afterSwitchOff. In order to
incorporate additional functionality for specific contents, these methods should be instantiated by
the relevant instantiating classes (and a call to the super class is needed to incorporate the general
mechanism as defined in appFrameContent).

Another important general method that applies to every piece of content in the Dynalearn
workbench is resize. Because content is always embedded, either within the application window
or within a cloned window, resize operations will never reach the content object directly. Instead,
resize operations are put through to the content object via this method. The parameters are the
delta in width and height (in that order) that resulted from the resize operation.

Page 59 /126

Project No. 231526 DynalLearn D3.1

Now that we have described the structure and functionality of the appFrameContent object
storing application content, we now turn to the way in which the application window brings about
switches between various content objects.

In the class representing the application window, i.e. appFrame, there is a method addContent.
It takes a content object (of type appFrameContent) as its parameter, and adds this to the
internal content stack.

Because of cloning functionality, there may be an arbitrary number of contents that are all open at
the same time, i.e. that are all part of the content stack.® The local attribute activeContent
always points to the content object in the stack that is currently displayed (so that inner
representation and outer presentation are always in sync).

In addition to adding content to the application, it is possible to remove content from it. This is done
by the removeContent method. This method provided no content-specific handling mechanisms
though. This means that all operations that need to be performed when content is removed from the
stack should have been dealt with in that content's beforeSwitchOff and afterSwitchOff
methods see above).

After content has been added to the stack, it needs to be displayed within the application window.
This is done by the switchToContent method. It takes as argument a content that is already in
the application content stack. This method first erases the currently displayed content from
application window (not necessary erasing the old content object from the application content stack
though), and then populates the new content's left hand side button bar, menu bar, client content,
and title bar text (in that order).

13.3. Representation of (conditional) expressions

Figure 13.4 shows the class hierarchy starting from the model fragment class. The Static, Process and
Agent fragments (in use level 6) are model fragments in which specific types of ingredients can be
used, which were already available in Garp3. The learner can create complete hierarchies of model
fragments below these model fragments. The Scenario class is used describes a start state within the
system, and was also already available in Garp3.

New in Dynalearn is the concept of Expression, which merges aspects of scenarios and model
fragments. That is, everything is a consequence in the sense that everything in an expression always
applies, as is the case in scenarios. However, in an expression causal dependencies and
correspondences can also be used, which normally only possible in other subclasses of model
fragment. When performing a simulation, the expression is divided into a model fragment and a
scenario part (Section 13.4). Similar to the scenario class, the expression class reuses code from the
model fragment class.

® Because there can be an arbitrary number of views on the same model, the results of any changes that are made to the model must be
propagated throughout the various views. This is done by incorporating the application stack in the handling of the change requestor. See
section 13.2.

Page 60 /126

Project No. 231526 DynalLearn D3.1

In use level 5 it becomes possible to specify conditional knowledge in addition to the expression. This
knowledge is specified in conditional expressions. These conditional expressions incorporate the
expression, but allow new conditions and consequences to be added. For example to indicate that
the boiling process is only active when the water temperature is bigger or equal to the boiling point.

In the implementation, the conditional expressions are subclasses of the Agent Fragment (although
this fact is hidden from the learner). This allows learners to use the complete spectrum of ingredients
in them. The Expression is imported in these Conditional Expressions in the same way a model
fragment is incorporated into another model fragment.

When a model fragment in incorporated the colour coding makes the imported model fragment
content black (and the model fragment reference red). Since we prefer the colour coding for
inherited model fragments, a Hidden Expression is introduced between the Agent Fragment and the
Conditional Expressions (see Figure 13.4). The Hidden Expression incorporated the Expression, and
the Conditional Expressions become subclasses of this Hidden Expression. This ensures the colour
coding is correct.

Model Fragment

= /AN
Static Fragment MOl Agent Fragment Scenario Expression
Fragment
I C
Hidden
Expression
Conditional Conditional Conditional
Expression 1 Expression ... Expression N

Figure 13.4: The class hierarchy of model fragments, expressions and scenarios.

13.4. Export to reasoning engine

Since an Expression (Figure 13.4) is incorporates both aspects of a scenario and of a model fragment,
the reasoning engine in Dynalearn cannot run simulations with them without modification. In Garp3
there would always be a scenario (a particular start situation of the simulation) and a set of model
fragments (general knowledge that applies in certain situations). Garp3 checks which model
fragments applies to the scenario, introduces the knowledge in those model fragments to the
scenario, and uses this knowledge to predict the next states of behaviour.

Page 61 /126

Project No. 231526 DynalLearn D3.1

In Dynalearn (in use level 2 - 5) there is only an expression (and conditional expressions in use level
5). As such, to be able to use the reasoning engine from Garp3, the expression has to be divided into
a scenario and a model fragment part. Since the reasoning engine uses its own internal
representation, we have decided to update the export functionality that writes the model to the
reasoning engine representation.

13.4.1. Expression export to model fragment and scenario part

The following lists enumerate which ingredients are exported to the scenario part of the expression
and which parts are exported to the model fragment part. The ingredients are colour-coded. Blue
indicates that the ingredients are exported as consequences, while red means that they are exported
as conditions. By making the structure (entities, agents, assumptions, configurations and attributes)
conditional in the model fragment and consequential in the scenario we make sure that the model
fragment part always fires on the scenario part.

Scenario:
e Entities
* Agents

* Assumptions

* Configurations

e Attributes

* Quantities

* Value Assignments
* Inequalities

Correspondences and causal dependencies are not exported to the scenario.

Model fragment:
e Entities
* Agents
* Assumptions
* Configurations
e Attributes
* Quantities
* Causal dependencies

* Correspondences

Page 62 /126

Project No. 231526 DynalLearn D3.1

13.4.2. Altered export functions in model fragment class

Some of the functions that export a model to the reasoning engine representation had to be adapted
to deal with expressions.

* The exportRelations function exports correspondences, inequalities, causal
dependencies and operators (as a result of exporting inequalities). The function was adapted
to export the inequalities to the scenario part of the expression, and the correspondences
and causal dependencies to the model fragment part of the expression.

* The exportSystemElements function exports entities, agents, assumptions,
configurations and attributes. This function was adapted to export all of these ingredients as
conditions to the model fragment part of the expression, and also export all of these
ingredients as consequences to the scenario part of the expression. This makes sure that the
model fragment part will always match the scenario part of the expression.

* The exportValues function exports the value assignments. This function is only called to
export the value assignments to the scenario.

* The exportParameters function exports the quantities. This function is used to export
the quantities as consequences to both the scenario and the model fragment part of the
expression.

* The exportSystemStructures function exports model fragments inherited or
imported into a model fragment. This function is not called for expression, since to model
fragments can be imported in it, nor does it have a parent from which content is inherited.

Value assignments and inequalities are not exported to the model fragment part.

13.4.3. Exogenous behaviour constant for derivative value assignments

Due to the constrained vocabulary on the lower use levels in Dynalearn (particularly on use level 3),
it is not possible to derive the derivatives of quantities using the causal relationships. On use level 2
and use level 3 influences (the cause of change within a model) cannot be used, but only + and —
relationships (which are proportionalities in terms of the reasoning engine). As such, using the
default reasoning as done in Garp3 the derivative values set in the expression are forgotten in the
successor states of the first state (as they would have to be recalculated using causal dependencies
which are not available yet).

To resolve this issue, the value assignments in expressions (i.e. on use levels 2 through 5) are
considered constant. The exogenous behaviour constant (as can be used in scenarios in Garp3) is
added to each derivative value assignment in the expression. This assures that the derivatives
maintain their value during the complete simulation. Notice, that the other exogenous behaviours
available in Garp3 can only be used in DynalLearn at use level 6.

Page 63 /126

Project No. 231526 DynalLearn D3.1

14. Conclusion
N

The Dynalearn Interactive Learning Environment (ILE) for constructing conceptual knowledge has
been successfully completed. The main contributions of this software include:

* Multiple use levels
* Integrated interface (‘Single’ workspace)
* Support for multiple simulations
* Saved state and path selections, and saved simulation support
* Upward compatible for Garp3 models (open in use level 6)
* Entity on/off preference (in use level 1 - 5)
* Alphabetic order to simplify selection of:
o Model fragments
o Scenarios

The use levels allow teachers and learners to work on different levels of complexity, as well as to
focus on particular representational features in order to highlight and investigate specific qualitative
aspects of systems behaviour.

Having all the interactive windows integrated in a single workspace (‘single screen’) significantly
enhances the usability of the overall workbench.

Being able to run multiple simulations within a single model (albeit for different scenarios) and save
these simulation results in the model is convenient for users as it opens new possibilities for teachers
and learners to share their work within the community.

The software is available via the Dynalearn website (http://www.Dynalearn.eu).

Page 64 / 126

Project No. 231526 DynalLearn D3.1

15. Discussion
N

Further improvements of the Dynalearn software depend on the availability of resources and
requirements put forward by the user community, particularly within the Dynalearn project.
Additional features could include:

* Integration of the OWL import/export functionality

Copy/paste functionality for the new and improved data structures

Switching between use levels and support ‘upgrading’ of an expression to the next use level

Display the contents from different views side-by-side (screen cloning)
* Provide tabs to store views on simulation results and be able to quickly switch between these

In addition to implementing further details, it is expected that users of the software will provide
feedback on software bugs, if any. Following this, the stable release of the software, and its current
list of features, is expected within a few months after the release of the beta version. Once the stable
version of the Dynalearn software is available, Garp3 (http://www.Garp3.org) users may consider
moving to the Dynalearn software (http://www.Dynalearn.eu) due to its enhanced usability and

additional features.

Page 65/ 126

Project No. 231526 DynalLearn D3.1

16. References
|

(1]

(2]

(3]

(5]

(6]

(7]

Bredeweg, B. and Salles, P. Mediating conceptual knowledge using qualitative reasoning.
2009. In: Jgrgensen, S.V., Chon, T-S., Recknagel, F.A. (Eds.), Handbook of Ecological Modelling
and Informatics. Wit Press, Southampton, UK, pp. 351-398.

Bredeweg, B., Linnebank, F., Bouwer, A. and Liem, J. 2009. Garp3 — Workbench for
gualitative modelling and simulation. Ecological Informatics, 4(5-6), pp. 263-28.

Bredeweg, B. (ed.), André, E., Bee, N., Bihling, R.,, Gdmez-Pérez, J.M., Haring, M., Liem, J.,
Linnebank, F., Thanh Tu Nguyen, B., Trna, M. and WilRner, M. 2009. Technical design and
architecture, Dynalearn, EC FP7, STREP Project no. 231526, Deliverable D2.1.

Forbus, K.D, Carney, K., Harris, R. and Sherin, B.L. 2001. A qualitative modeling environment
for middle-school students: A progress report. The 15" International Workshop on
Qualitative Reasoning, San Antonio, Texas, 17-18 May

Leelawong, K. and Biswas, G. 2008. Designing Learning by Teaching Agents: The Betty's Brain
System. Artificial Intelligence in Education, 18(3), pp. 181-208.

Novak, J.D. and Gowin, D.B. 1984. Learning How to Learn. Cambridge University Press, New
York, New York.J.D.

Page 66 / 126

D3.1

DynaLearn

Project No. 231526

S[IeIap AIRIS 15| A[UO Moys

10U S199[3S I8N JT) SMOPUIM
apdnnu uado 03 1asn yse yied € 10
aqes o[3urs v Suruado uaym "GN

ydeis ageis Juarmd o)
(1oAaf-asn 1ad £1eA S[re1ap)

AIsgam
wwaeui(o)
yurpad{y TN

e paySyySny $1124a) uaaan?)

saouasajard viA Jjosuo pauim
aq ued suondo asay Jo ApIqrsip

[2A3] 1xau ayy 03 uoissaidxa ue £doo 0
SUONNG G PUE ‘SUONNG S[IAI[35N §

17. Appendix A — Interface design (intermediate from D2.1 to D3.1)

ul pajoajas yied At 235 am 1Y

(paiward Suraq
SIONIISUOD JAYIO JO 10)
OLIRUADS JULIND)
JO duReu Ay} 335 IM A

19001], pue
sasuazajard uonenug

(19Aa1-asn 1ad K1vA spei1ap)
Ju2JU0d [apow AeaId 0 suondp

(syred paearn
pue s)[nsai

UONR[NUITS ‘OLIRUDS
¥) sydeis-awis

aaeg pue uadp

([2A9]-3sn
12d A1ea sprerop)
*suondo uonenurg

[oAar-asn 1ad Lrea
S[fela(“suontuyap
Sunean 10J suody

Buiisayas apina pook

M0faq UMOYS 51 sanaloy)

2 ‘91""€ ‘2’1 yled BLWeu oleusds

aweu [apo

PAYBIYBIY st upg AL

apowr Funprom
ATIOR 12ION

(dudsyrom yaayg ¢dien
ay) woiy suondo awos)
UOTPULIOJUT [2pOW RIDJA]

fepowr pauado Apearfe 1ayjoue
193125 01 uondo ay aaey pue
*3UO JATIIE AY) 235 IM AH
‘uado aq ued [apow apdnny

Sd 01 uUdaIds
JULIND JULL]

Figure A.1: Design main interface

Page 67 / 126

D3.1

DynaLearn

Project No. 231526

wbren()

sesealou|

ainssaid O

ainjes) seH

ainjesj seH

..2«>>O

uMOys 3q 10U J[Nejap
pinoys suondo
2531 *[2A9]
SIY) I® 2ARIN I0N

[2A3] S} & PAPaU Ieq [T ON

ainjes) seH

saspealou|

u :oE<O

1onpoad eurj ur
I9[[ews)1q © 3q [[IM
asay) jo 271§

\

1

sueyuoyn

.m:_ﬂcooO

(¢dreny ur yojays 1ouLiog)
SUOIING Mau Iy,

7
DRSS

uieaqeuiq

[opow 1daouo)) * |

G

aweu [apoy

PPV pd QA
[opowr pauado Apearfe 1ayjoue

193125 01 uondo ay) aaey pue
*2UO JATIIR JU) 23§ OM AIIH
‘uado aq ued [apow adnny

Figure A.2: Use level 1 - Build

Page 68 /126

D3.1

DynaLearn

Project No. 231526

yiew uonsanb

SUDWUTISSL AN[eA ¢
Sursn umoys aq s Omiquiy
MNON

A
2
Ve&x
9

w A8

@ unouwi @

1o

sureuoy

hOC-NuCOO@
{77 sapn Suneuide se

(Qle[hulg, pue piing,
ppe pinod am Ing
**papaau jou 1eq AL
DINON

[opow JUALIND JO
uonRNWIS uny|

an[q [eads :sanea paudjuy -
N0 L2135 :sanfea pausissy -

anjq 1en3a1 mojo)) -
sanfea Surudisse uayp

‘Sunemus uayzy

OS[B 9ANB3AN :QJON

(gdeny 01 paredwoo)

uonng maN _

{3usnjuod isnl 10
AIYMILIOM ANGLIE S|
:anss|

suoniujap
Suneaid 10y suo.

2

weaqeulg

10,

uondo aoe1],

swieljepoiN’ 4 Sl f

[epOoWw Tesned Jiseq "¢

(indino uonenuurs
aaoWwaI/OpUN)

aoedsyrop
pIing 0105

U_L
N

& oee

OpoL PPV Mpd

AL

Figure A.3: Use level 2 - Build

Page 69 /126

D3.1

DynaLearn

Project No. 231526

sprew uonsanb e £q umoys st
NS JUI)SISUOIUT UY

(pPonuIIuOd) [opowW [esned dliseq '

PPV Npd

A

Figure A.4: Use level 2 - Simulate showing inconsistent result

Page 70/ 126

D3.1

DynaLearn

Project No. 231526

<
£
(=%
N
W 49

suejuoyn

._o:_mEOO/ ®

(prng nsnl 10)
JUSWUOIAUS Pling
:Aes ppnoys Ieq apiy

sped pajeard

sydeis-aes
aaeg pue uadp

puR San[eA [eniul

A
[}

Y&

e Es

Moy @

(gden o) pareduios)
uonng MaN

—/

(soweu AA1S Kewr 1asn)
ydeid aes yuarmo ap ut
paajas yed ay) 235 am arH

(JUAWUOIIAUD JR[NUITS
ay jou) K213 yIep aq pnoys
PUR 2ATIOR ST JUSWUOIIAUS P[INg
11921102 10U SUIPOd NO[O)

2ION

\ |

0§2q U

A

uieaeuiqg

(QuowuoOITAUD p[Ing)
ydei3-a1e1s M [opow [esned diseq ¢

51 f2n2)0ym 03 Burisage) 3|3 poob i

JURA[AI 218
suondo ayeuus [y

2IMON

aouds Linueng)

OpoL PPV

pd

A

Figure A.5: Use level 3 - Build

Page 71 /126

D3.1

DynaLearn

Project No. 231526

i OUﬁOuO.«OuQ Josn) saordsyIom 110

10§ asoy) se agmw|
se u:Qm uaaId§ M) S® aq [[IM suonnq

&) — T IS1] 2PIN W2]1 2]3UIS D SUlIDaLD A]qpqoad H asayy *Ajqeadjarg

"(qe1) MATA © ISO[O 01 J[qe 9q P[NOYS SIIS() ‘siy) 4of uSisap paipapap ayput 2gEvpY "
(AR oM Ued Auews MO

(¢sy1 (,doy) ¢sqer asay) Ind 03 dTAYM (e

[opoW [esne)) PUB ‘SAN[EA ‘SINNUI MOYS
ISB ONG ¢ SMITA JOYI0 AU} 9pN[OUI oM P[NoYS | & ®

:9NSS| QU

(denuuig ‘ gdreny ur ouop ApJuaiind SI se

‘SMOPUIM MAU MO[[R 0] 9Q P[NOM JATIRUId)[R) D
SMOIA U29M)9Q [DJIMS pUER 2I10)S, 0) @ e
sqe) 9sn 0 st uondo 1s9q 9y A[qeqoig suordo 95y} asn JoU O :UOISN[OUO)) O3

“UIDSD P2IDALID 2 OS]D PINOd

H YoM o[I81) 0Z ‘91~ £T°1 Wod, 2y
Ul QUIDU UIALS SN D AIPUN PLOIS 2G PINOM
M214 1YOD2 1Y) SDM DIPI 243 K p1IUL ‘ST IDY]
124 S1y1 apn)oul Jou S20p USSP AN

({SMITA TUOOM]OQ [YINIMS 0} MO € 9 -
:anss| \ @ J *
AN, 3 de[nwig @ 6

:Aes pinoys 1eq apry,

(ased ay) st yorym) a[qrssod arme
syied morAryaq uaym JuLAd[ax
ae 10151y UONISURL], PUR aN[eA

MATA

OpOL PPV

npd 9l

jo[oI10 AeYS
QuO Ay} ppy

(JUAWUOITAUD dje[NUWIS)
ydei3-oje1s yym [opows [esned JIseyq ¢

Figure A.6: Use level 3 - Simulate showing State graph

Page 72 /126

D3.1

DynaLearn

Project No. 231526

SIUQIPAIZUI IOW ISN[‘¢ [OA[O} JR[IWIS ST [OAI] SIY) :9JON

G

@ vl &
- :

syl 110
sya 110 \ 1o
1o e
surejuog |
suejuoD {

SyJ Joujejuod Sy| JourRlu0)
18URUOD 10UIR)UOD

o i :
@ Ny S @
adid

(MeIs O "Xg Op udyMm

G

[Suissruw uondunssy

peoT
8a.inos pinbi

oL

suondo uonoeIAur SWLId) Ut _\

JUDISISUOD 2IOW 2q PINOM 1]
(1w saseds-Q)
Suppe jo Apeuonoung
ayp daay [[ns am o
:anss|

BYIRHDAIBOBOOEY o

MOJPQ UMOYS 51 i2A2J0YM OF Bulisaya) (31} poob v

2

wieaqeuig

g Qg

Juepodwr awodsaq mou Lew
sasuarajard uonenuulg

(QuowruoIIAUD plIng)

UONBIIUAIALJIP [BSNBD) “§

wasaxd are suondo

uonmyap [y
2DINON

Figure A.7: Use level 4 - Build

Page 73 /126

D3.1

DynaLearn

Project No. 231526

€ 19A9[12 (€ 29 T *]) SINSSI 92§

G

:SINSS wﬁe
R

_ suondo 2say} asn J0u O(J :UOISN[OUO))

H ——Gn
JURAD[I OS] $AU0D2q O
£101517 vONENbY TR

MOJPQ UMOYS 5] N0y 0F Burisage) ajil) poob v

OpoL PPV Npd 9d

(JUWUOITAUS d)e[NUIS)
UOTJRNUAISJJIP [BSNR)) “}r

Figure A.8: Use level 4 - Simulate showing State graph

Page 74 /1 126

D3.1

DynaLearn

Project No. 231526

suondo uoNdrIAUI SWIA) Ul
JUR)SISUOD IO 3G PINOM 1]
(1] saoeds-0)
Surppe jo Sipeuonoung
oy daay [ins am o]
anss|

lusqy e

A aseyd piosl
Jow ozodi4@

.ﬂ- aseyd pinbr
log suapuo) @ @K

Q aseyd senf§
BaiysN

lm_ngEmuEm 1 @

aoueisqng
) aouejsqns

*(3UO J[NEJIP/IUALING, AY) SAW03q
uay) YIIyM) pajeard Apeale auo
JUIJJIP B 193]S 0] SMO[[R
pue JuUdWSRIJ ") WALIND SMOYS

‘papaau jou ame uondo Anuapt ay) pue
uondo g a1 1daox5 JuawSey [apow
¢dIpn) v 01 IR[IUIS ST UO [RUONIIPUOD A],
*($ [2AQ[-25N 10] S®) aN[q Ul 0§ S0P
puR ‘[[2 3pN[oul SAUO IR[NTIY "SIudWFel)
[RUONIPUOD 10] dUO puR IR[NFaI 10] U0
JPapaau 21k I NUAW Y] JO SUOISIdA T

LI L IR R i]

N IEEREREE IR

.

weaeulig

(10mpa N ¢dren ur se) jjo/uo

SN2 nd 01 2[qe 2q OS] PNOYS SIASN :DJON

Mmoraq adedsyio
AHAHDEQOHM\/QD @MMS mv ay) ur sieadde ._hw_ﬁ_ﬂuu sy .v_cow.wm__.: Sunpri)
93po[mouy [euonIpuo)) ‘¢

UM I0JIPS UONTULAP JJA Y] JO UOISIIA
payridutts v st 1ane[3y SAND JO ISI ST SHY
“JUALIND ST SHT *SAND 0 Sut03 10] suonng om

aleu Juawbely [euonipuo)

npd

RlE!

&

Mo[aq adedsyrom
ay ut yed s suado azay Suryorpd
‘ann sAemie ST IRy [ppow ay) jo wed ayy,

Figure A.9: Use level 5 - Build showing Conditional expression

Page 75/ 126

D3.1

DynaLearn

Project No. 231526

suondo nuan
:0p 0],

s

((3ou 10) 219y ur paydads ST 31 2sNELIQ)
ued ann sAeme ay) uo (Jou 10) yoyeur Jey) Jo
SN puk ‘JOU 10 WY} dARY KWl S,JIAD
peaISUI ‘S]ALIO Y} 01 _JIA an1) skemje,
Ay wouay pardod jou axe L3y ‘smels
[eroads aaey suondwnssy
9NSS|

>,

uado JIAD SIY) IM UIDS
pIIng [RI3UIT A Ul jIrq 13sn
Ay suniq ‘(YO1[2 A[gnop) Fundsag

L [eUONIPUOD B JO BLWEN

JUI [BUOIIPUOD PUOJaS Y
~N

>)

a4

WS AY) AUI0IA] [[IM SAUIRU S
‘paafas A[enoe uayp

M0j9q UMO!

(1011pa suonuyap JN2)
d3pajmouy| [ruUOIPUO)) G

Pa123[as mou
st uondo sty

<

aweu uawbely leuonipuoy

wicw BAITE T @ *civseoed

dweu [apo

OpoL PPV Mpd 9Mld

Figure A.10: Use level 5 - Simulate showing list of Condition expressions

Page 76 / 126

D3.1

DynaLearn

Project No. 231526

suondo nuan
:0p O],

JURAJ[AI OS[E SAW0Iq
2ATOR 21V R SIND

=

[9AJ[e (€ 29 T “1) SonsSI 998

:SINSS|

i

(=)
40,
5

G

ﬁ:ﬂnv®

NITEHA

MATA

v |

109108

MQ[OQ UMOYS 5] idN2I0YM 03 Burisage) ajin poob v

)W io B -

(JUOWIUOIIAUR Je[NWIS)
J3pamouy| [UOBIPUO)) *G

& & m.“oa.,.o,ﬁm.% BT @ »civsene®

dweu [apo

aweu yuawbeyy jeuoiipuo)

¥ e @ @
opoL PPV MpE At

Figure A.11: Use level 5 - Simulate showing State graph

Page 77 /1 126

D3.1

DynaLearn

Project No. 231526

‘m——ozﬁo uondevIdul sSuLd) ur
JUD)SISUOD AIOW 3Q PINOM 1]
(aae] saoeds-0)
Surppe jo Qipeuonosun,g

lusqy m

A aseyd pios
Jow ozoaii@

« « aseyd pinbr
|loq suapuo) @ @K

Q aseyd seo
BaysN

|M_®§SmQEm 7 @

2sue)sqng
5 9ouBISGnS

ay daay [[ns am o
:anss|

“I0MIP3 UOTITULAP A SN
“aoedsyrom urew ay) ur pakerdsip
*AyoIRIany ® ul AWod S LYl AON

bupesr ﬂ SMOWY SABM[E 125N) 0§) UONR[NWUIS © 10]
ndur JneJap Ay ST OLIRUAIS JUALIND, Y}

“(parwqnuurs (st 10) q [1A RYAY

AsNE23q * (N 10U pur) OLIRUAIS A[uQ)

*(3UO)[NEJAP/IUALIND, AY) SAW023q
uay) YoIym) pajeald Apeaife auo
JUIDJJIP B 193[3S 0] SMO[[R
PUR ‘OLIZUIDS JUALIND SMOYS

G

ANQ

AN

I

MOJPQ UMOYS 51 idAJDYM 0 Buisaas ajin) poob

0Z'91™ €T L Yaed

(QuowuoIIAUD p[ing)
J3p[MOUY J[eSNAI puk JLIAUL) *Q

‘uda10s urew gdien) ay) uo aaey
SUODI 253 $© FUDIOM Te[ruls

OpoL PPV

*I0)IP3 SUONIULIP OLIRUIS
110u] uf

PIROHOMNIT NN OO0

npa

BERRLREE LT

ey oueuadsg

BlLE|

Figure A.12: Use level 6 - Build showing Model fragment (in fact a subtype of MF Heating)

Page 78 /126

D3.1

DynaLearn

Project No. 231526

pinbi Ajuo yym Jsurejuon
0&.

seb Ajuo yum Jaueyuon
ainpiw seb pue pinbi yum Jsurejuon

213 UMOYS .
aq pinoys ey dwreu jo 2d£) R
aip jo apdwexa ue o1y

Jejeay Apeals aby
¥ %

m:___om SS300.d
g ™ &)
s - o

aseyd pios
aseyd pinbin §souesqns
aseyd sen
mﬂt

.:Ew
8.

BISqNS UM JaUIejuon

T~ I01IP2 SUONIUYAP JUWFRI [2POJA

B0 80808280 02'91"€ 'L ieg

Pa103[as mou
st uondo suyy,

(101Ipa SUONIUYIP JUSWTLIJ [OPOIA)

OpoL PPV Mpd

93po[Mouy 9[qesnal pue JLIdUAL) "

At

Figure A.13: Use level 6 - Build showing list of Model fragments

Page 79/ 126

D3.1

DynaLearn

Project No. 231526

suondo nuan
:0p O,

€ 19A9] 18 (€ 7 T 1) SINSSI 298

:SINSS|

G

G
@6@

i

S,
eo
&)

s[uls

MIATA

LN

199198

0O UMOYS 5] 1dN230YM 03 BUliIaS2) 31113 poob

GRS EREEES

¥

weaqeuig

(JUAWUOIIAUS J)e[NWIS)
93po[MOouY 9[qesnal pue JLIdUAL) Q

7 ‘g

€771 Yied

PDIGTBE +civceeoe®

aweu [apo

aleu oleuadg

® 6 @ @

OpOL PPV Mpd 9lld

Figure A.14: Use level 6 - Simulate showing State graph

Page 80 /126

Project No. 231526 DynalLearn D3.1

18. Appendix B — From Garp3 to Dynalearn workspaces

Below a detailed account is given of how Garp3 functionality is migrated, removed, merged or
hidden at each of use levels in the DynalLearn ILE.

18.1. Main activities

e Uselevel 6

o Build workspaces
= Showing all the buttons and ingredients
= Providing user interaction

o Simulate workspaces:
= Showing all the buttons and ingredients
= Providing user interaction

o Miscellaneous
= Greyed icons / background colour button bar (top main screen)
= Lists (Scenario / Model fragments, Paths + Saved simulations)
= Pull down menus
= Use levels as preference
= Tooltips text

= Meta-data

= Trace window
= Tab

= (Clone

e Uselevel5
o Integrating ‘definition” with ‘adding’ dialogues (level 2, 3 and 4 use the same)
o Filter
= Entity / Agent / Assumption
= Always true model fragment
= Conditional model fragments
* Use level 4 (subset of level 5)
o Filter
= Only always true model fragment
= Subset of level 5 simulation results options
* Use level 3 (subset of level 4)
o Allowing quantity spaces to be added after a quantity is created
o Filter
= Only always true model fragment (subset of level 4)
= Selection of level 5 ingredients
* Use level 2 (subset of level 3, no quantity spaces)
o Filter
= No quantity spaces
= Simulation results (derivative values) in Build workspace
* Derivatives
* Show Ambiguous / Inconsistent simulation results
e Uselevell
o Filter
= Only Entities and configurations
= Different look in terms of icons used

Page 81 /126

Project No. 231526 DynalLearn D3.1

18.2. Architecture

* appframe

* generic

o control

o helpers

o commands
* build

o definition

o elements

o workspace
* simulate

o definition

o elements

o workspace
* sketch

o definition

o elements

o workspace

i meta
* jcons
18.3. General

* New and adjusted icons

o Adjusted icons have been created (We will include them in the current version of the
software).

o New icons are now available for: delete model (close model), plus/min for paths,
simulate single state (We will include them in icons/appframe so that they can be
used).

* Greyed icons are now available for all main screen icons and can be included in the new
software. Greying works analogous to the main screen in Garp3. Candidates for greyed
options are (main screen):

o General (active after some ingredient has been created)

= Save current model to file

= Save current model to new file

= Delete current model

= Save diagram to EPS file (we may ignore this, and print an empty page)

o Uselevel 6

= Edit last changed scenario (active a scenario has been created)

= Edit last changed model fragment (active after a MF has been created)

= All 5 simulate buttons (active after a scenario has been created)

= QOpen state-graphs, initial values, and created paths (active when a
simulation is available)

= Save state-graphs, initial values, and created paths (active after at least one
simulation was saved)

o Use level 5 (note: tooltip text will have to change, see text on tooltips)

= Edit last changed model fragment (active after a MF has been created)

Page 82 /126

Project No. 231526 DynalLearn D3.1

= All 5 simulate buttons (active after a scenario has been created)
= QOpen state-graphs, initial values, and created paths (active when a
simulation is available)
= Save state-graphs, initial values, and created paths (active after at least one
simulation was saved)
o Uselevel 4 and 3 (note: tooltip text will have to change, see text on tooltips)
= All 5 simulate buttons (active after a scenario has been created)
= QOpen state-graphs, initial values, and created paths (active when a
simulation is available)
= Save state-graphs, initial values, and created paths (active after at least one
simulation was saved)
o Use level 2 (note: tooltip text will have to change, see text on tooltips)
= Simulate current scenario (active after a derivate value assignment has been
created?)
o Uselevell
= No buttons available
* ‘Save current model to file’ versus ‘Save to model’ versus ‘Save changes’. Issues:
o Does save to model still occur, or is it always referred to as ‘Save changes’? If yes,
rename to ‘Save changes’
o Can we simply these notions, by somehow circumventing ‘Save changes’
o Note: thereis also ‘Save model to disk’ (in the Build context). This should be
renamed to ‘Save current model to file’.
* Tooltips (main screen)
o General
= Reminder: Check if all are present and correct
= Print to postscript should be: Save diagram to EPS file
= Dynalearn logo should be: Open DynalLearn website
o Use level 6 (Build/Simulate icons)
= Remains as in Garp3 (seems currently correct)
o Use level 5 (Build/Simulate icons)
= Edit last changed scenario should be: Edit general model
= Open model fragments editor should be: Open condition model fragments
editor
= Edit last changed model fragment should be: Edit last changed conditional
model fragment
= Simulate current scenario should be: Simulate first step
o Use level 4 and 3 (Build/Simulate icons)
= Simulate current scenario should be: Simulate first step
o Use level 2 (Build/Simulate icons)
= Simulate current scenario should be: Simulate
o Use level 1 (Build/Simulate icons)
= No Build/Simulate buttons available, hence to tooltip texts
* Resizing main window?
o Should/can resizing main window be limited, such that greying (red to white) stays
correct? Should we?
* Dynalearn logo (main screen)
o Should Open DynalLearn website
* Use level icons (main screen)
o Hidden or Present depending on user preference
o The preference can be set in Settings (Pull down menu) using a small dialogue.
¢ Simulation preferences and Open trace window
o Keep functionality as in Garp3

Page 83 /126

Project No. 231526 DynalLearn D3.1

o Relocate buttons (already done)

o Trace window becomes integrated in new workspace

o Simulation preferences stays separate interactive dialogue

* Dependencies

o Itis expected that adding dependencies to a workspace (In/equalities,
Correspondences, Proportionalities and Influences) keeps working as in Garp3, and
that this functionality requires no specific adaptation for the DynalLearn context.
However, at the lower use levels some rewording within these dialogues will be
required (e.g. Proportionality — Effects, use level 3).

¢ Sketch (main screen)

o Only ‘meta model’ options remain (already shown in main screen Dynalearn)

* Background colour top button bar main screen (Build/Definition, Build, Simulate, and Saved
states):

o Should switch between dark (selected) and light (not selected) grey depending on
selection being active

* Extra new requirement: Editable text in all workspaces (at least in the main workspace)

o Similar to standard file-name changing etc. being able to edit a text field in
workspaces by double clicking on the text field and type new text (e.g. being able to
change the names of model fragments in the Model fragments definition editor
without having to open the properties dialogue first).

18.4. Use level 6

How to move Garp3 screens / functionality to Dynalearn?

* Save/Open state-graphs, initial values, and created paths
o Saves for an existing simulation:
= The state-graph
= Created behaviour paths with this state-graph
= Scenario with initial values (this is of particular importance for the use levels
for which the notion of a scenario is implicit for the user).
o Opens for a previously saved simulation, including
= The state-graph
= Created behaviour paths
= Scenario Initial values
o Theinteractive dialogues can remain as the where in Garp3. When a saved
simulation is opened, the software opens in Simulation mode, showing the state
graph (as currently is done in Garp3)
o OWLicon (Open help page) should be removed

18.4.1. Use level 6 — Build

* Build: Entity/Agent/Assumption hierarchy editor
o Open: Click on icon in main screen
o Close: by selecting another option in the main screen. In principle any active option is
possible.
o LHS button bar: should move LHS button bar main screen

Page 84 /126

Project No. 231526 DynalLearn D3.1

= Jssue: the order of items should be unified (new, properties, erase, ...,
‘window content organisers’)
o Menu options: see elsewhere in this document
Dialogues to Add/Delete etc. ingredients: remain as in Garp3
o Editor contents (hierarchy of E/A/A ingredients): Listed in the workspace of the main
screen
o OWLicon (Open help page) should be removed

O

* Build: Attribute/Configuration/Quantity/Quantity Space definitions editor
o Open:Click on icon in main screen
o Close: by selecting another option in the main screen. In principle any active option is
possible.
= The Close button can be removed, but when leaving the editor with unsaved
changes: present save/cancel/undo options to the user and act accordingly
(unsaved changes check). Taken what is present in Garp3, it becomes:
* Save changes to model: Save changes and go to newly selected
screen
* Cancel changes: Move to newly selected screen without saving
changes
* Edit changes: Do not go to newly selected screen
= Note possible bug: the configuration definitions editor does not seem to
have an unsaved changes check.
o LHS button bar: not applicable
= ssue: some of the in-screen buttons may be moved to the LHS button, to be
decided later.
Menu options: not applicable
Dialogues to Add/Delete etc. ingredients within the editor: remain as in Garp3
Editor contents: Listed in the workspace of the main screen
OWL icon (Open help page) should be removed

O O O O

* Build: Scenario definitions editor
o Open: Click on icon in main screen
o Close: by selecting another option in the main screen. In principle any active option is
possible.
o RHS button bar: should move to the LHS button bar main screen.
= Some options disappear:

* Simulate selected scenario (because already in main screen)

* Edit selected scenario (because already in main screen top level
options, and it can also be done by double clicking on the name of
the wanted scenario)

= Forthe buttons, small icons should be used (e.g. available from the Model
fragments definition editor)
o Menu options: not applicable
Dialogues to Add/Delete etc. ingredients within the editor: remain as in Garp3
o Editor contents (List of scenario names): Listed in the workspace of the main screen
= Future option: show the scenarios by icons
o OWLicon (Open help page) should be removed

O

* Build: Model fragment definitions editor

Page 85/ 126

Project No. 231526 DynalLearn D3.1

O

* Build:
O
O

O O O O

* Build:
O
O

Open: Click on icon in main screen
Close: by selecting another option in the main screen. In principle any active option is
possible.
LHS button bar: should move to the LHS button bar main screen.
= Some options disappear:

* Edit selected model fragment (because already in main screen top
level options, and it can also be done by double clicking on the icon
of the wanted MF)

Menu options: see elsewhere in this document

Dialogues to Add/Delete etc. ingredients within the editor: remain as in Garp3
Editor contents (hierarchy of Model fragments): Listed in the workspace of the main
screen

OWL icon (Open help page) should be removed

Scenario editor
Open: Click on icon in main screen
Close: by selecting another option in the main screen. In principle any active option is
possible.
LHS button bar: should move to the LHS button bar main screen.
= Add the Delete icon
Menu options: see elsewhere in this document
Dialogues to Add/Delete etc. ingredients within the editor: remain as in Garp3
Editor contents (Scenario ingredients): Listed in the workspace of the main screen
OWL icon (Open help page) should be removed

Model fragment editor
Open: Click on icon in main screen
Close: by selecting another option in the main screen. In principle any active option is
possible.
LHS button bar: should move to the LHS button bar main screen.
= Add the Delete icon
Menu options: see elsewhere in this document
Dialogues to Add/Delete etc. ingredients within the editor: remain as in Garp3
Editor contents (Model fragment ingredients): Listed in the workspace of the main
screen
OWL icon (Open help page) should be removed

18.4.2. Use level 6 — Simulate

¢ Simulate: ‘State-graph’

@)

Open: Click on icon in main screen (either Simulate current scenario or Full
simulation)
= |f simulation exists: open state graph view for that simulation
* Note: a simulation gets removed, when an edit action is carried out,
equal to how in Garp3 simulation results (and accompanying views)
are removed when an edit action is carried out.
= |f nosimulation exists:

Page 86 /126

Project No. 231526 DynalLearn D3.1

* Simulate current scenario: Performs a one step simulation with the
last edited scenario (as in Garp3)
¢ Full simulation: Performs a full simulation with the last edited
scenario (as in Garp3)
= Tab:atabis created in the main screen for this window, so that it can be re-
opened later on (note that also other options exist for opening, see ‘Open’
above in this section, and the general Clone option).
o Close:
= By either:
* By selecting another option in the main screen, or
* Byclosing tab, or
* By selecting an option from the LHS button bar.
= |n principle any active option is possible.
= Note: simulation gets removed when an edit action is carried out.
o LHS button bar: should move to the LHS button bar main screen.
= Buttons with adjusted size have been created for this
o Menu options: see elsewhere in this document
o ‘Dialogues’ to inspect listed ingredients
= Select:
* Select individual states (as in Garp3)
* Select a path (as in garp3)
* Select all states (as in garp3)
* Deselect all states (as in garp3)

* Show entities, configurations and attributes (see elsewhere)
* Show quantity values (see elsewhere)
* List model fragments (see elsewhere)
* Show dependencies (see elsewhere)
* Transition history (see elsewhere)
* Equation history (see elsewhere)
* Value history (see elsewhere)
= Run (all can be removed, because already in main screen)
* Open trace window (remove, because already in main screen)
* Simulation preferences (remove, because already in main screen)
* Open trace window (remove, because already in main screen)
* 5simulation options (remove, because already in main screen)
o Screen contents (state graph): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed
o Special attention should be given to the (see workspace bottom):
= Selected states
= Selected path
= Note: Discussed elsewhere in this document

* Simulate (view): Show dependencies
o Open: Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens for each selected state
* Tab: Each view becomes a tab in the main screen
* The last tab opened is actually shown
* Extra feature: if number of selected states > 1 Then ask user if the
view should be opened for all states (choice: Yes or Cancel)
o Close:

Page 87 / 126

Project No. 231526 DynalLearn D3.1

= By selecting another option in the main screen, or
= Byclosing tab, or
= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o LHS button bar (show/hide ingredients): should move to the LHS button bar main
screen.
= Notice that the button bar of ‘Simulate: State-graph’ should also be shown
(most LHS).
o Menu options: none
o Buttons below in the screen (status bar?):
= Change layout entities (move to LHS button bar, new graphics needed?)
= Change layout quantities (move to LHS button bar, new graphics needed?)
= Zoom in (move to LHS button bar, new graphics needed?)
= Zoom out (move to LHS button bar, new graphics needed?)
= Save diagram to EPS file (remove, already in main screen)
= Close this window (remove, superfluous)
o Screen contents (dependencies): Listed in the workspace of the main screen
OWL icon (Open help page) should be removed

O

* Simulate (view): Value history
o Open: Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens once for all selected states
= Tab:atabis created in the main screen for this window, so that it can be re-
opened later on

= By selecting another option in the main screen, or
= Byclosing tab, or
= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o The value history view has a set of ‘options’:
e List of quantities
* Sort by quantity
* Sort by entity
¢ Selectall
¢ Selectnone
* Draw value history
¢ C(Clearscreen
= Canthese stay in the position as they currently are?
= Notice that the button bar of ‘Simulate: State-graph’ should also be shown
(most LHS).
o Buttons below in the screen (status bar?):
= Save diagram to EPS file (remove, already in main screen)
= Close this window (remove, superfluous)
o Screen contents (values): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed

* Simulate (view): Equation history (very similar to Value history)
o Open: Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens once for all selected states

Page 88 /126

Project No. 231526 DynalLearn D3.1

= Tab:atabis created in the main screen for this window, so that it can be re-
opened later on

= By selecting another option in the main screen, or
= Byclosing tab, or
= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o The equation history view has a set of ‘options’:
* List of in/equalities
* Display equations
* Derivative equations
¢ Selectall
¢ Selectnone
* Draw equation history
* C(Clearscreen
= Canthese stay in the position as they currently are?
= Notice that the button bar of ‘Simulate: State-graph’ should also be shown
(most LHS).
o Buttons below in the screen (status bar?):
= Save diagram to EPS file (remove, already in main screen)
= Close this window (remove, superfluous)
o Screen contents (equations): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed

* Simulate (view): Transition history
o Open:Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens once for all selected states
= Tab:atabis created in the main screen for this window, so that it can be re-
opened later on

= By selecting another option in the main screen, or
= Byclosing tab, or
= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o The transition history view has two ‘options’ (bottom of window):
= Zoom in on details (move to LHS button bar, new graphics needed?)
= Close this window (remove, superfluous)
= Notice that the button bar of ‘Simulate: State-graph’ should also be shown
(most LHS).
= (Clicking on the ingredients in the window shows a new window with more
details. Let’s keep this function as it is. Notice that, closing the transition
history should also close (remove) those detailed windows (as it currently
happens in Garp3)
o Screen contents (transitions): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed

* Simulate (view): Show entities, configurations and attributes
o Open: Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens for each selected state
* Tab: Each view becomes a tab in the main screen

Page 89 /126

Project No. 231526 DynalLearn D3.1

* The last tab opened is actually shown
* Extra feature: if number of selected states > 1 Then ask user if the
view should be opened for all states (choice: Yes or Cancel)

= By selecting another option in the main screen, or
= Byclosing tab, or
= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o Menu options: none
o Buttons below in the screen (status bar?):
= Change layout entities (move to LHS button bar, new graphics needed?)
= Zoom in (move to LHS button bar, new graphics needed?)
= Zoom out (move to LHS button bar, new graphics needed?)
= Save diagram to EPS file (remove, already in main screen)
= Close this window (remove, superfluous)
o Screen contents (structure details): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed

* Simulate (view): Show quantity values
o Open: Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens for each selected state
* Tab: Each view becomes a tab in the main screen
* The last tab opened is actually shown
* Extra feature: if number of selected states > 1 Then ask user if the
view should be opened for all states (choice: Yes or Cancel)

= By selecting another option in the main screen, or
= Byclosing tab, or
= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o Menu options: none
o Buttons below in the screen (status bar?):
= Edit selected quantity (move to LHS button bar, new graphics needed?)
= Close this window (remove, superfluous)
= (Clicking on the ingredients in the window opens the quantity definitions
editor with the focus on the selected quantity. Can we keep this in place?
And when clicking the ingredients move to this editor in the main screen?
o Screen contents (quantities etc.): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed

* Simulate (view): List model fragments
o Open: Click on icon in LHS button bar of ‘Simulate: State-graph’
= The view opens for each selected state
* Tab: Each view becomes a tab in the main screen
* The last tab opened is actually shown
* Extra feature: if number of selected states > 1 Then ask user if the
view should be opened for all states (choice: Yes or Cancel)
o Close:
= By selecting another option in the main screen, or
= Byclosing tab, or

Page 90/ 126

Project No. 231526 DynalLearn D3.1

= By selecting another icon in LHS button bar of ‘Simulate: State-graph’
= |n principle any active option is possible.
o Menu options: none
o Buttons below in the screen (status bar?):
= Show model fragment in legacy mode (move to LHS button bar, new graphics

needed?)

= Show model fragment in context (move to LHS button bar, new graphics
needed?)

= Edit selected model fragment (move to LHS button bar, new graphics
needed?)

* Clicking on the ingredients in the window opens one of the 3 views
mentioned above, for the selected model fragment. Can we keep
this in place? And when clicking the ingredients move to this
view/editor in the main screen? See 3 blocks below

= Close this window (remove, superfluous)
o Screen contents (quantities etc.): Listed in the workspace of the main screen
o OWLicon (Open help page) should be removed

o Simulate (view): List model fragments: Show model fragment in legacy mode
= QOpen: happens when selected in List model fragments
* Tab: no tab is created for this view in the main screen
= C(Close:
* By selecting another option in the main screen, or
* By selecting another icon in LHS button bar of ‘Simulate: State-graph’
* Inprinciple any active option is possible.
= Menu options: none
= Buttons below in the screen (status bar?):
* Close this window (remove, superfluous)
= Screen contents (MF details.): Listed in the workspace of the main screen
= OW.Licon (Open help page) should be removed

o Simulate (view): List model fragments: Show model fragment in context
= QOpen: happens when selected in List model fragments
* Tab: no tab is created for this view in the main screen
* Note: this view is a kind of dependency view

* By selecting another option in the main screen, or
* By selecting another icon in LHS button bar of ‘Simulate: State-graph’
* Inprinciple any active option is possible.
= Menu options: none
= Buttons below in the screen (status bar?):
* Change layout entities (move to LHS button bar, new graphics
needed?)
* Change layout quantities (move to LHS button bar, new graphics
needed?)
* Zoom in (move to LHS button bar, new graphics needed?)
* Zoom out (move to LHS button bar, new graphics needed?)
* Save diagram to EPS file (remove, already in main screen)
* Close this window (remove, superfluous)
= Screen contents (MF details.): Listed in the workspace of the main screen

Page 91 /126

Project No. 231526 DynalLearn D3.1

= OW.Licon (Open help page) should be removed

o Simulate (view): List model fragments: Edit selected model fragment
= QOpen: happens when selected in List model fragments
* Opens regular MF editor for selected model fragment
o See Build: Model fragment editor

18.4.3. Use level 6 — Specials

* Pull down list for Scenarios names or Model fragment names (LHS top main screen)
o Main goal of this list is to provide an easy access to either the list of scenarios or list
of model fragments in alphabetic order.
o Topitemin the list
= QOverview (Scenarios) OR Overview (Model fragments)
o This list switches focus following the editor activated (last):
= |f user selects: Open scenarios editor
* Then show: List of scenarios, with Overview (Scenarios) selected
= |f user selects: Edit last changed scenario
* Then show: List of scenarios, with current scenario selected
= |f user selects: Open model fragments editor
* Then show: List of model fragments, with Overview (Model
fragments) selected
= |f user selects: Edit last changed model fragment
* Then show: List of model fragments, with current model fragment
selected
o When an item from either list is selected, the accompanying editor is opened in the
main screen (with the selected details from the list, thus: either a specific model
fragment or a specific scenario).
o Selecting Overview:
= |f Overview (Scenarios) is selected from the list
* Then the Scenarios editor opens in the main screen
= |f Overview (Model fragment) is selected from the list
* Then the Model fragments editor opens in the main screen

* Pull down list for paths (Middle top main screen)
o Main goal is to save references to sets of selected states (possibly paths), which can
later be reused to provide a view on the accompanying state graph.
o Given a (partial) simulation (state graph):
= Each selection of states can be saved (as part of the model, in fact as part of
simulation results)
= Default, the name is the numbers of the currently selected states, but the
user may adjust this and give a name to the selection when the selection is
saved.
= Adding or deleting a selection is done with the + and — button, on the RHS of
the list.

Page 92 /126

Project No. 231526 DynalLearn D3.1

O The saved ‘selected sets of states’ can be stored together with a simulation result
(sometimes referred to as ‘saved states’). Such a cluster can later be reopened again,
and the simulation and accompanying paths reused.

= Main screen button:
* Save state-graphs, initial values, and created paths
* Open state-graphs, initial values, and created paths
o When are saved states and/or saved selected paths deleted?
= |Fsaved selected paths exists AND saved states do not exist
THEN remove saved selected paths as soon as

* Anewsimulation is generated
* An edit activity has been carried out
® But before allowing these steps to occur, inform the user about the
planned deletion and ask the user whether to proceed (options:
Proceed OR Cancel)
= |Fsaved selected paths exists AND saved states exist
THEN remove saved selected paths AND saved states as soon as

* An edit activity has been carried out

* But before allowing these steps to occur, inform the user about the
planned deletion and ask the user whether to proceed (options:
Proceed OR Cancel)

= Note: Upon changing the ‘model’, all previously stored state-graphs should
be deleted (but ask user to confirm. If user says no, the model cannot be
changed!). How to implement this feature?

* Locate with each editor?

* Activate option upon saving model to file (users can then select to
save to a new file (Save as), and their older results will stay intact at
the original file).

o How to fill the ‘current list space’ with state numbers?
= |n principle we want to reuse the options available in Garp3, notably:
Selected states / Selected Path (bottom state-graph screen). The hope is that
we can merge these ideas and handle them as one, namely by applying the
following rule:

* If a path has been found (path list is not empty) — show path
(ignoring which states the user actually selected)

* If a path has not been found (path list is empty) — shown selected
states (if any)

o Itseems relevant to keep the Selected states / Selected Path as they currently are in
Garp3, but now listed in the main screen (bottom) when the state-graph view is
active (that is there is a simulation). But is this possible in the ‘status bar’?

* Tab (to obtain requirements, work out details after users have used DynalLearn software)
o A combination of a Path (or a set of states) and a view
o Tabs always live within a single simulation context

* Clone (to obtain requirements, work out details after users have used Dynalearn software)
o Being able to duplicate the main screen
= No limitation, allow as many copies as a user wants
= |t should be possible to close each of the clones individually

Page 93 /126

Project No. 231526 DynalLearn D3.1

* Extras
o Undo button (go X steps back in the model building task)
o Move simulation icons to button bar in main screen
= When state-graph screen opens: LHS button bar shows simulation icons
= QOther views within the simulation context do not show the simulation icons
in the LHS button bar.

18.5. Use level 5

How to adapt Dynalearn use level 6 details to accommodate use level 5?

18.5.1. Use level 5 — General

* General on dialogues for adding ingredients: a dialogue supports a single action and is
automatically closed after the user has been carried out the action.

* Concerns dialogues for ingredients: Entity / Agent / Assumption / Attribute / Configuration /
Quantity / Quantity space

* Basicidea:

o Creating and Adding: The user opens a dialogue to add an ingredient to the main
screen. While in the dialogue, the user typically provides Name and Remarks
(attributes and quantities require more). Upon added the ingredient (saving) the
ingredient is added to the main screen (and to the dialogue internal list?), and the
dialogue itself is closed.

o Keeping a list: The dialogue keeps a list of the ingredients that are created by using it.
More in general: there is a single list of ingredients which is acted up in two places: in
the main screen and in the dialogue.

o Adding existing ingredient: The user can open the dialogue and select an already
existing ingredient to be added to the main screen (obeying the general Garp3 rules
of course: e.g. all entities should have unique names, so these ingredient can be used
only once, but the same quantity can be assigned to different entities, so these
ingredients can be used multiple times, etc.)

o Delete: The user can delete an ingredient from the list. The ingredient is then also
deleted from the main screen and the dialogue is closed (note: this is different from
Garp3, which requires deleting from the main screen first). The user can also delete
an ingredient from the main screen directly. If this ingredient is the last one, the
ingredient should also be deleted from the list.

o Properties: While having the dialogue open, the properties of a selected ingredient
can be edited (Name and Remarks). This should follow by the user clicking on
‘Adding/Saving’. The changes are then saved and the dialogue closed. When
selecting another ingredient (after changing properties of some ingredient), the user
has to confirm or cancel these changes (as in Garp3). Upon confirming, the changes
are saved and the dialogue closed. Upon cancelling the changes are not saved and
the dialogue is closed. Thus, effectively no switching between ingredients while
editing the properties of an ingredient.

o Cancel: The dialogue itself can be closed without saving a performed action (or
without having done an action at all) by using the cancel option.

* Typical fields/areas in the dialogues:
o List with names of all ingredients (scrollable)

Page 94 / 126

Project No. 231526 DynalLearn D3.1

o Area with the name of the ingredient selected in the list (editable)
Remarks area for free text associated to the selected ingredient (editable)

o Note that Attribute and Quantity have ‘nested lists’, because these ingredient types
also require to an ingredient from another list (quantity space and values,
respectively).

* Opening dialogue:
o Clicking on the associated button in the button bar in the main screen (LHS) opens
the dialogue.
= Possible improvement: In Garp3 dialogues open with the top list item being
selected (in focus). It would be better if the dialogue would open with
nothing selected (similar to the status after the new button is clicked in the
dialogues in Garp3), so that the user can start typing the ingredient name
directly.

o Clicking on the associated ingredient in the main screen also opens the dialogue (in

this case with the selection in focus).
* Closing dialogue:

o Adialogue is closed after a user action is completed. These actions are: Creating new
and adding, Selecting old and adding, Deleting, Changing properties (Name and/or
Remark), and Cancel.

* Condition and Consequence:

o This distinction is relevant when creating a ‘conditional’ expression. It plays no role

when users create the ‘always true’ expression.
* Main screen top: buttons opening definition editors:
o Theicons for opening the definition editors should be removed. It is sufficient to
have:
= The Creating and adding dialogues (see also below) to handle single
ingredients while being in a model fragment editor
= The model fragment editors to open a specific type of model fragment.

O

18.5.2. Use level 5 — Dialogues for adding ingredients

How to adapt Dynalearn use level 6 details to accommodate use level 5?

* Save/Open state-graphs, initial values, and created paths (as in use level 6)

* Build: Creating and adding Entities, Agents, and Assumptions
o Details are the same for the Entity/Agent/Assumption hierarchy editors. The text
below refers to ‘Entity’
o Two dialogues are involved whose functionality should be merge into a single
dialogue:
= Entity hierarchy editor (level 6: main screen)
= Add a new entity (level 6: dialogue)
o Name composed dialogue: Add entity
o Basis idea: see general text at the beginning of use level 5 text. As a reference, note
that the new dialogue Add entity will look rather similar to the dialogue for Add
configuration (see items below)
o Open/Close: see general text.
o Issue: Entity preference is impossible (None - Instance = Instance & Type >
Instance & Type hierarchy, see D.2.1 for details). All entities have to be of a unique

Page 95/ 126

Project No. 231526 DynalLearn D3.1

‘Type’ otherwise problems may occur when simulating (looping because of multiple
unifications based on instances having equal type)
o Buttons (from old to new):
= ‘Entity hierarchy editor’ (read: top to bottom & left to right)
* Add entity to hierarchy > Add entity
* Copy selected entity (New, similar as in other dialogues of this kind
at use level 5) (Note: not present in Garp3)
* Delete entity from hierarchy - Delete selected entity (& close
dialogue!)
* Show properties (remove, superfluous).
* 3xlayout icons (remove, because not needed for list)
= Add anew entity
* Apply changes - Save changes (& close dialogue!)
* Open attribute definitions editor (remove)
* Cancel changes - Cancel (& close dialogue!)
= Note: From the two ‘Remarks’ fields only one should stay
= Note: Layout should become similar to that of the other ‘add ingredients
dialogues (roughly: local buttons on the right, global buttons at the bottom)
o Filter details
= User created Entities are all stored directly under the top node in the
hierarchy (these top nodes are: Entity, Agent, and Assumption).
= The user does not see, or have access to the top nodes. The user sees only a
flat list (in alphabetic order).

¢ Build: Creating and adding Attributes
o Basis idea: see general text at the beginning of use level 5 text.
o Two dialogues are involved whose functionality should be merge into a single
dialogue:
= Attribute definitions editor (level 6: main screen)
= Add a new attribute (level 6: dialogue)
o Name composed dialogue: Add attribute
Open/Close: see general text.
o Buttons (from old to new):
= ‘Attribute definitions editor’ (read: top to bottom & left to right)
* Add attribute definition - Add attribute
* Copy selected attribute definition - Copy selected attribute
* Delete selected attribute definition - Delete selected attribute (&
close dialogue!)
* 4icons for managing attribute values (stay as they are)
* Save changes to model - Save changes (& close dialogue!)
* Undo changes - Cancel (& close dialogue!)
* Close (remove, superfluous)
= Add anew attribute
* Open attribute definitions editor (remove, superfluous)
* Apply changes - Save changes (& close dialogue!)
* Cancel changes - Cancel (& close dialogue!) (see above)
= Note: From the two ‘Remarks’ fields only one should stay
o Filter details: none

O

Page 96 / 126

Project No. 231526 DynalLearn D3.1

* Build: Creating and adding Configurations
o Basis idea: see general text at the beginning of use level 5 text.
o Two dialogues are involved whose functionality should be merge into a single
dialogue:
= Configuration definitions editor (level 6: main screen)
= Add a new configuration (level 6: dialogue)
o Name composed dialogue: Add configuration
Open/Close: see general text.
o Buttons:
= ‘Configuration definitions editor’ (read: top to bottom & left to right)
* Add configuration definition - Add configuration
* Copy selected configuration (New, similar as in other dialogues of
this kind at use level 5) (Note: not present in Garp3)
¢ Delete selected configuration definition - Delete selected
configuration (& close dialogue!)
* Save changes to model - Save changes (& close dialogue!)
* Undo changes - Cancel (& close dialogue!)
* Close (remove, superfluous)
= Add a new configuration
* Switch arguments (stays as it is)
* Open configuration definitions editor (remove, superfluous)
* Apply changes - Save changes (& close dialogue!)
* Cancel changes - Cancel (& close dialogue!) (see above)
= Note: From the two ‘Remarks’ fields only one should stay
o Filter details: none

O

* Build: Creating and adding Quantities and Quantity Spaces
o Three dialogues are involved whose functionality should be merge into a single
dialogue:

= Quantity definitions editor (level 6: main screen)

= Quantity space definitions editor (level 6: main screen)

= Add new quantity (level 6: dialogue)

o Name composed dialogue: Add quantity
o Basis idea: see general text at the beginning of use level 5 text.

» Nested dialogue: From the 1* dialogue (Add quantity) users can open a 2
dialogue (Add quantity space). This 2 dialogue behaves in the same general
way as the other dialogues, and it has to be closed, before the action at the
guantity level (Add quantity) can be completed.

o Open/Close (Add quantity): see general text (happens from main screen)
= Open/Close (Add quantity space): see general text (happens from Add
guantity dialogue)
o Buttons:
= ‘Quantity definitions editor’ (read: top to bottom & left to right)

* Add quantity definition - Add quantity

* Copy selected quantity definition - Copy selected quantity

* Delete selected quantity definition - Delete selected quantity (&
close dialogue!)

* Delete selected quantity space definition - Delete selected quantity
space

* Open quantity space definitions editor - Add quantity space

* Save changes - Save changes (& close dialogue!)

Page 97 / 126

Project No. 231526 DynalLearn D3.1

* Undo changes - Cancel (& close dialogue!)
* Close (remove, superfluous)
= Add a new quantity

* Open quantity definitions editor (remove, superfluous)

* Apply changes - Save changes (& close dialogue!) (see above)

* Cancel changes - Cancel (& close dialogue!))

= Note: From the two ‘Remarks’ fields only one should stay
= ‘Quantity space definitions editor’ (read: top to bottom & left to right)

* Add quantity space (stays as it is)

* Copy selected quantity (stays as it is)

* Delete selected quantity space (stays as it is) (note also removes
guantity space from the Add quantity dialogue) (& close Add
guantity space dialogue!)

* 6icons for managing quantity spaces (stay as they are)

* Save changes - Save changes (& close Add quantity space dialogue!)

* Undo changes - Cancel (& close Add quantity space dialogue!)

* Close (remove, superfluous)

o Default quantity spaces (to be added in addition to Mzp)
= P Plus
= Zp: Zero Plus
= Zpm: Zero Plus Max
= Zsml: Zero Small Medium Large
= Zsmlm:Zero Small Medium Large Max
= Zlah: Zero Low Average High
= Zlahm: Zero Low Average High Max
= Zlch: Zero Low Critical High
= Zlchm: Zero Low Critical High Max

18.5.3. Use level 5 — Always True and Conditional Fragment

* Atuse level 6, four ‘view editors’ exist:
o Build: Scenario definitions editor
Build: Model fragment definitions editor
Build: Scenario editor
Build: Model fragment editor
At use level 5 they are re-organised into three ‘view editors’ (discussed below):
= Build: Conditional model fragment definitions editor
= Build: General model fragment editor
= Build: Condition model fragment editor

O
O
O
O

* To accommodate the filters at use level 5, it makes sense to introduce a new model fragment
type: Expression
o This model fragment should in principle allow for all ingredients to be created as
Conditions or Consequences (details depend on use level)
= Should it therefore be a subtype of the model fragment type Agent, which
includes all ingredients (but not all as Condition and as Consequence)?
= Orshould it be a new top-level item, next to Agent, Static and Process?

Page 98 /126

Project No. 231526 DynalLearn D3.1

o Having this additional type is essential for discriminating this fragment from other
fragments later on (e.g. for the export via OWL and repository storage), and it can
also be given unique ‘behaviour’.

o Note that if a new type is defined (as opposed to a subtype of Agent) this should be
accommodated for in the software at some places (e.g. the engine should be
augmented to also search for Expression (these adaptations are probably simple).

o Note that this new type can be used also for level 2, 3, and 4!

o The General model fragment (always true) should be of type Expression. Shall we
refer to this fragment as General?

o Each Conditional model fragment should be a direct subtype of this ‘General model
fragment’, such that these subtypes inherit the contents of the super type (and the
conditional details can be placed in the context of the always true expression). Shall
we refer to this fragment as Conditional?

* Build: Conditional model fragment definitions editor
o lIsin principle the same as ‘Model fragment definitions editor’ with the limitation
that users should only see the names of the Conditional fragments they have created
(and none of top-level model fragments nodes, such a Static, Process, Agent, and
Expression), and also not the always true expression General. Hence, it seems best to
use a simple list of names (using alphabetic order), and not use a graphical approach
with icons to show the conditional model fragments created by the user
o LHS button bar: all options stay in place, accept for:
= The 5 layout buttons (note, if we decide to keep the icons in the workspace
and not have only fragment names, then the layout buttons may be needed
partially).
= Properties button (needs use level 5 filtering)
o Pulldown menu:
= File: asin use level 6 (accept ‘Properties’ needs use level 5 filtering)
= Edit: asin use level 6
= View: layout options disappear (details to be determined)

* Build: General model fragment editor
o lIsin principle the same as ‘Model fragment editor’ with the modification that all
ingredients may be expressed, and that they are all expressed as consequences
(blue).
o If we decide to use the type General, this editor will always work with a single
instance (subtype) of this type.
o LHS button bar: has buttons to add all ingredient types as consequences (blue).
However, the notion of consequences should not be shown to the user.
o Pulldown menu:
= File: asin use level 6 (accept ‘Properties’ needs use level 5 filtering)
= Edit: as in use level 6 (accept ‘Properties’ needs use level 5 filtering)
= Conditions and Consequences - Rename: Ingredients (Single list of
consequences, blue)
= View: asin use level 6 (without ‘Show subfragments’).

¢ Build: Conditional model fragment editor
o Isin principle the same as the regular ‘Model fragment editor’.

Page 99 /126

Project No. 231526 DynalLearn D3.1

o If we decide to use the type Conditional, this editor will always work on direct
subtypes of this type.
o Note: The emphasis of Conditional fragments is on conditions of type magnitude,
derivative and in/equality.
o LHS button bar: as in the regular ‘Model fragment editor’
However, the notion of consequences should not be shown to the user.
o Pulldown menu:
= File: asin use level 6 (accept ‘Properties’ needs use level 5 filtering)
= Edit: as in use level 6 (accept ‘Properties’ needs use level 5 filtering)
= Conditions: as in use level 6
= Consequences: as in use level 6
= View: asin use level 6 (without ‘Show subfragments’).

O

* Colour coding
o General model fragment: all ingredients: Blue
o Conditional model fragment:
= Inherited ingredients: Green (as in Garp3)
= New conditions: Red (as in Garp3)
= New consequences: Blue (as in Garp3)

* Export model to Simulate
o From: General model fragment to:

= Scenario
* Entity
* Configuration
e Agent
* Assumption
* Quantity

* Quantity space
* Magnitude / Value assignment
* Derivative / Value assighnment
* In/equality
= General model fragment (subtype of Expression)
* All contents, but without
o Magnitude / Value assignment
o Derivative / Value assignment
o In/equality
o From: Conditional model fragment(s) to:
= Conditional model fragment(s) subtype of General
* All contents (as defined)

18.5.4. Use level 5 — Simulate

* Simulate: ‘State-graph’ (as in use level 6)

* Simulate (view): Show dependencies (as in use level 6)
* Simulate (view): Value history (as in use level 6)

* Simulate (view): Equation history (as in use level 6)

* Simulate (view): Transition history (as in use level 6)

Page 100 / 126

Project No. 231526 DynalLearn D3.1

* Simulate (view): Show entities, configurations and attributes (as in use level 6, but
superfluous)

* Simulate (view): Show quantity values (as in use level 6)

* Simulate (view): List model fragments (as in use level 6)

o This can be simplified by showing only the list of fragment names that have applied in
each of the states, and hiding most of the options enumerated below. On the other
hand, if the fragment types General and Conditional are imbedded correctly within
the existing MF types, all these use level 6 details should also work correctly at use
level 5. So what to do here depends on choices made earlier concerning the approach
to this use level. Ideally, everything would simply stay as it is used at use level 6,
requiring no extra work here...

o Simulate (view): List model fragments: Show model fragment in legacy mode (option:
hide, make unavailable)

o Simulate (view): List model fragments: Show model fragment in context (option:
hide, make unavailable)

o Simulate (view): List model fragments: Edit selected model fragment

18.5.5. Use level 5 — Specials

* Pull down list for Scenarios names or Model fragment names (LHS top main screen)
o This list will only show the Conditional model fragments
o The overall working stays as in use level 6

* Pull down list for paths (Middle top main screen) (as in use level 6)

* Tab(asin uselevel 6)

* Clone (as in use level 6)

18.6. Use level 4

How to adapt Dynalearn use level 5 details to accommodate use level 4?

* Save/Open state-graphs, initial values, and created paths (as in use level 5)

* Build: Creating and adding Entities, Agents, and Assumptions (as in use level 5)
* Build: Creating and adding Attributes (as in use level 5)

* Build: Creating and adding Configurations (as in use level 5)

* Build: Creating and adding Quantities and Quantity Spaces (as in use level 5)

* Issue: Entity preference (None - Instance - Instance & Type - Instance & Type hierarchy,
see D.2.1 for details) is in principle possible at this use level, particularly: None, Instance,
Instance & Type. Note: To be created if time permits.

* Atuse level 5, three ‘view editors’ exist:
o Build: Conditional model fragment definitions editor
o Build: General model fragment editor
o Build: Condition model fragment editor
o Atuselevel 4 there is only the General model fragment editor
= Build: General model fragment editor

Page 101 / 126

Project No. 231526 DynalLearn D3.1

* Build: General model fragment editor (as in use level 5)
o Note: Main screen top: buttons opening definition editors:
= The icons for opening the definition editors should be removed.
= At this use level only the general ‘Edit model’ icon is needed to open the only
model fragment in this model, namely General
= Note that the notion of model fragment is fully hidden the user at this use
level

18.6.1. Use level 4 — Export

* Export model to Simulate (as in use level 5)
o From: General model fragment to:

= Scenario
* Entity
* Configuration
e Agent
* Assumption
* Quantity

* Quantity space

* Magnitude / Value assignment

* Derivative / Value assignment

* In/equality

= General model fragment (subtype of Expression)

* All contents, but without
o Magnitude / Value assignment
o Derivative / Value assignment
o In/equality

18.6.2. Use level 4 — Simulate

* Simulate: ‘State-graph’ (as in use level 5)

* Simulate (view): Show dependencies (could be as in use level 5, but superfluous)

* Simulate (view): Value history (as in use level 5)

* Simulate (view): Equation history (as in use level 5)

* Simulate (view): Transition history (as in use level 5)

* Simulate (view): Show entities, configurations and attributes (could be as in use level 5, but
superfluous)

* Simulate (view): Show quantity values (as in use level 5)

* Simulate (view): List model fragments (not applicable, superfluous)

18.6.3. Use level 4 — Specials

* Pull down list for Scenarios names or Model fragment names (LHS top main screen)
o Not applicable

Page 102 / 126

Project No. 231526 DynalLearn D3.1

* Pull down list for paths (Middle top main screen) (as in use level 5)
* Tab(asin uselevel 5)
* Clone (as in use level 5)

18.7. Use level 3

How to adapt Dynalearn use level 4 details to accommodate use level 37

* Save/Open state-graphs, initial values, and created paths (as in use level 4)
Build: Creating and adding Entities, Agents, and Assumptions (as in use level 4)
Build: Creating and adding Attributes (as in use level 4)

Build: Creating and adding Configurations (as in use level 4)

Build: Creating and adding Quantities and Quantity Spaces
o Works in principle as in use level 4, accept with the following significant
modification:
= Quantities can be created without the user defining a quantity space
* Filter: Such gquantities are given a default quantity space (consisting
of a single interval) by the dialogue (without the user noticing).
= Quantity spaces can be adding to quantities without a user given quantity
space
* Filter: this means that the dialogue replaces the default quantity
space by the user-given quantity space
= Quantity spaces can be changed for quantities with a user given quantity
space
o Note: Probably for the default interval a special purpose quantity space should be
defined: ‘gs-default’, so that it can easily be recognised and handle throughout the
software.
o Note: The derivative quantity space is not affected by the above, and is always added
for a quantity.
o Dialogues design:
= Should the two dialogues be fully independent? Or do we implement special
purpose handling in the operation of the joined dialogues (see use level 4
and 5). From a user point of view, independent dialogues are preferred.

* Build: General model fragment editor (as in use level 4)

o Butthe scope of usable ingredients is limited (Entity, Attribute, Configuration,
Quantity, Quantity space, Value assignment (also Derivative), Correspondences and
Proportionalities).

= Filter: Proportionalities are shown as + and —. This requires adapting the Add
proportionality dialogue to ‘Add effects’.

18.7.1. Use level 3 — Export

* Export model to Simulate (as in use level 4, but less ingredients)
o From: General model fragment to:

Page 103 / 126

Project No. 231526 DynalLearn D3.1

= Scenario
* Entity
* Configuration
* Quantity

* Quantity space
* Magnitude / Value assignment
* Derivative / Value assignment
= General model fragment (subtype of Expression)
* All contents, but without
o Magnitude / Value assignment
o Derivative / Value assignment

18.7.2. Use level 3 — Simulate

* Simulate: ‘State-graph’ (as in use level 4)

* Simulate (view): Show dependencies (not applicable, superfluous)

* Simulate (view): Value history (as in use level 4)

* Simulate (view): Equation history (not applicable, superfluous)

* Simulate (view): Transition history (as in use level 4)

* Simulate (view): Show entities, configurations and attributes (not applicable, superfluous)
* Simulate (view): Show quantity values (as in use level 4)

* Simulate (view): List model fragments (not applicable, superfluous)

18.7.3. Use level 3 — Specials

* Pull down list for paths (Middle top main screen) (as in use level 4)
* Tab(asin uselevel 4)
* Clone (as in use level 4)

18.8. Use level 2

How to adapt Dynalearn use level 3 details to accommodate use level 27?

Save/Open state-graphs, initial values, and created paths (not applicable, superfluous)
Build: Creating and adding Entities, Agents, and Assumptions (as in use level 3)

o Butonly Entities can be created (Agent and Assumptions are not used)
Build: Creating and adding Attributes (as in use level 3, but maybe we don’t want it?)
Build: Creating and adding Configurations (as in use level 3)

Build: Creating and adding Quantities and Quantity Spaces
o Works in principle as in use level 3, accept with the following significant
modification:
= Quantities have no user defined quantity space
* Filter: Such gquantities are given a default quantity space (consisting
of a single interval) by the dialogue (without the user noticing).

Page 104 / 126

Project No. 231526 DynalLearn D3.1

o Note: Probably for the default interval a special purpose quantity space should be
defined: ‘gs-default’, so that it can easily be recognised and handle throughout the
software.

o Note: The derivative quantity space is not affected by the above, and is always added
for a quantity.

o Dialogues design:

= The Add quantity dialogue needs to be adapted: the quantity space details
are not available.

* Build: General model fragment editor (as in use level 3)
o Butthe scope of usable ingredients is limited (Entity, Attribute, Configuration,
Quantity, Value assignment (only Derivative), and Proportionalities).
= Filter: Proportionalities are shown as + and —. This requires adapting the Add
proportionality dialogue to ‘Add effects’.

18.8.1. Use level 2 — Export

* Export model to Simulate (as in use level 3, but less ingredients)
o From: General model fragment to:

= Scenario
* Entity
* Configuration
* Quantity

* Quantity space
* Derivative / Value assighnment
= General model fragment (subtype of Expression)
* All contents, but without
o Derivative / Value assignment

18.8.2. Use level 2 — Simulate

* Simulate: ‘State-graph’ (not applicable, superfluous)

* Simulate (view): Value history (not applicable, superfluous)

* Simulate (view): Transition history (not applicable, superfluous)

* Simulate (view): Show quantity values (not applicable, superfluous)

* Simulate result should be show in the Build context (Generic model fragment), which entails
three things:
o Derivative values
o Inconsistency (shown by a ‘?’)
o Ambiguity (shown by multiple value assignments on derivatives)

Page 105/ 126

Project No. 231526 DynalLearn

D3.1

18.8.3. Use level 2 — Specials

* Pull down list for paths (Middle top main screen) (not applicable, superfluous)
* Tab (not applicable, superfluous)
* Clone (as in use level 3, but not in fact superfluous)

18.9. Use level 1

How to adapt Dynalearn use level 2 details to accommodate use level 1?

* Build: Creating and adding Entities (as in use level 3)
o Butingredient icon is different, this requires some adaptation
= Dialogues
= Display in main screen

Build: Creating and adding Configurations (as in use level 3)

No other Build features are available
There is no Export to Simulate
None of the Simulate features is available

18.10. Menu options

Approach: Some options fixed (always present), and others change depending on the context.

18.10.1. Main menu — General items

File

Open model from file (formats: hgp, owl)

Save current model to file (formats: hgp, owl, legacy)
Save current model to new file (formats: hgp, owl, legacy)
Delete current model

Start new model

---- (horizontal line)

Save diagram to EPS file

---- (horizontal line)

Page 106 / 126

Project No. 231526 DynalLearn D3.1

Quit

Issue: can we easily change the main menu options themselves also? Thus whether ‘Edit’ as such is
sometimes shown and sometimes not? Or should the top list always be the same, and only its
contents change? Below we assume that the top categories change, therefore the order is slightly
different from Garp3/Build such that the ‘always shown options’ are listed first (accept for ‘Settings’
which is shown last, and yet always present). Settings may also be placed after Edit if that is easier
given implementation constraints.

View

Always active in Build and Simulate context.

Edit

Only active in Build context.

Ingredient (was Element in Garp3) OR Conditions & Consequences

Only active in Build context. What is shown depends only the editor that is open

Settings

Always active in Build and Simulate context. Has 2 options from Garp3/Build and the item ‘Settings’
from Garp3/Simulate (currently under Display).

Display

Only active in Simulate context.

18.10.2. Menu options — Details

Garp3 DynaLearn (main screen)

Note: Below there are options that have two versions Hide and Show. Of those cases only the default
is mentioned. Both options should be treated in the same way. It concerns: Hide/Show parent-child
relations, Hide/Show conditional relations, and Hide/Show model ingredient tooltips.

Page 107 / 126

Project No. 231526 DynalLearn D3.1

18.10.2.1. Build: Scenario editor

File: File:
Scenario properties !! same (only if Scenario editor active)
Save diagram to EPS file same (always present)
Save model to disk rename: Save current model to file (always present)
Edit (scenario ingredients): Edit: (only if Scenario editor active)
Delete same (only if Scenario editor active; new in LHS bar)
Properties same (only if Scenario editor active)
Element: rename: Ingredient (only if Scenario editor active)
Entity (items as in Garp3)
Attribute

Configuration
Quantity
Value
Plus
Min
Inequality
Assumption
Agent
View: View: (only if Scenario editor active)
Collapse (items as in Garp3, with 2 exceptions)
Expand
Collapse relations
Expand relations
Show relevant
Full redraw (show all, default placing)

Expand all

Page 108 / 126

Project No. 231526 DynalLearn D3.1

Hide
Translations Settings: Language

Hide model ingredient tooltips Settings: Hide model ingredient tooltips

18.10.2.2. Build: Model fragments definitions editor

File: File:

Properties (of ingredients) move to Edit if possible (top item, then horizontal line)

Save diagram to EPS file same (always present)

Save model to disk rename: Save current model to file (always present)
Edit (MF type ingredients): Edit: (only if MF definitions editor active)

Add child (items as in Garp3)

Edit

Delete (new in LHS bar)

Clone

Copy

Paste

Make inactive
View: View: (only if MF definitions editor active)
Default view (items as in Garp3, with 2 exceptions)
Save this view
Open other view
Hide parent-child relations
Show conditional relations
Translations Settings: Language

Hide model ingredient tooltips Settings: Hide model ingredient tooltips

Page 109 / 126

Project No. 231526 DynalLearn D3.1

18.10.2.3. Build: Model fragment editor

File: File:

Model fragment properties same (only if MF editor active)

Save diagram to EPS file same (always present)

Save model to disk rename: Save current model to file (always present)
Edit (MF ingredients): Edit: (only if MF editor active)

Delete same (only if MF editor active; new in LHS bar)

Properties same (only if MF editor active)
Conditions: Conditions: (only if MF editor active)

Entity (items as in Garp3)

Attribute

Configuration
Quantity
Value

Plus

Min
Inequality
Assumption
Agent

Model fragment

Identity

Consequences: Consequences: (only if MF editor active)
Entity (items as in Garp3)
Attribute

Configuration
Quantity

Value

Page 110 / 126

Project No. 231526 DynalLearn D3.1

Plus

Min

Inequality
Correspondence

Proportionality

Influence
View: View: (only if MF editor active)
Show sub fragments (items as in Garp3, with 2 exceptions)
Collapse
Expand

Collapse relations

Expand relations

Show relevant

Full redraw (show all, default placing)

Expand all

Hide

Translations Settings: Language

Hide model ingredient tooltips Settings: Hide model ingredient tooltips

18.10.2.4. Build: Entity / Agent / Assumption editor

File:
Save diagram to EPS file same: (always present)

Edit (entity/agent/assumption ingredients): Edit: (only if E/A/A editor active)
Add child (items as in Garp3)
Delete

Properties

Copy

Page 111/ 126

Project No. 231526 DynalLearn D3.1

Paste
View View: (only if E/A/A editor active)
Horizontal (items as in Garp3, with 2 exceptions)
Vertical
List
Collapse
Expand all
Translations Settings: Language

Hide model ingredient tooltips Settings: Hide model ingredient tooltips

18.10.2.5. Simulate: State-graph view

File: File:
Select Scenario leave out
Save simulation in model leave out
Open saved simulation leave out
Simulate all scenarios leave out (is debug facility)
Save diagram to EPS file same (always present)
View: (same as LHS button bar): View: (active when in simulate context) Window
E-R structure (items as in Garp3)

Quantity values
Model fragments
Dependencies
Transition history
Equation history
Value history
Current scenario

Scenarios (‘to scenario editor’)

Page 112 / 126

Project No. 231526

DynalLearn

D3.1

Display:
Layout
Layout states
Layout terminations

Settings

Display: (active when in simulate context)

(items as in Garp3)

Settings: State graph settings

Page 113/ 126

19. Appendix C — GIT Software version management HOWTO

Note: This manual is meant to give pointers towards using Git. The manual is provided on an "as
is" basis without warranties of any kind. We have moved our work from Subversion to Git (to use
our university infrastructure, particularly to have reliable backups), but our experience is still
young. It would therefore be helpful to get feedback to improve this HOWTO. Send comments to
J.Liem@uva.nl. The latest version of this document can be found on:
http://www.science.uva.nl/~jliem/versionmanagement/

19.1. Distributed Version Management using Git

Version management [1], also called revision or (source) code control, allows users to manage
the changes to documents, source code, or other files. Version management is often used in
software engineering, as it allows multiple authors to work on the same files simultaneously and
easily integrate their mutual changes.

In traditional version management systems (such as CVS and Subversion) there is a central
place in which the current version of the files and their change history is stored, which called a
repository. Users obtain the latest version from this repository, which is called a working copy or
checkout. After editing the files in the working copy, the changes can be committed to the
central repository.

Versioning systems also allow branching or forking of development. Conceptually, a branch is a
copy of the files under version management that allows these files to be developed
independently from other branches. As such, the initial files put in the version management can
be considered a branch. Branches are typically used to develop new features separately (so that
the new features/bug fixes do not conflict with the existing stable codebase). When
development of such a feature is done, the branch is merged back to the branch from which it
was forked.

The new version management tool available at the UVA is Git [2]. Git is used by several large
projects such as the Linux Kernel, Perl and Google Android. Git takes a more modern approach
and is a distributed versioning system. As such, each user has a personal repository (cloned from
another repository). Checkouts are made from the local repository and commits are written to the
local repository. Changes can either be pushed to, or pulled from, another repositoryg.

Due to the distributed nature of Git, two branches with the same name in different repositories
are considered two separate branches. For example, a branch feature1 in the repository of
Richard is considered a different branch than the branch feature? in the repository of Sam. If
Richard wants the latest version of the feature1 code, Richard has to fetch the latest changes
from Sam’s repository, and merge his feature1 code with the code of Sam’s feature1 branch.

19.2. Git Documentation (Linux/Windows/MacOSX)

The Git community provides excellent documentation. There is an official Git tutorial [3] and
the Git-SVN Crash Course [4] for those who already know Subversion. Furthermore, there are
lectures by Randal Schwartz [5] and Linus Torvalds [6]. The command 'git help' provides access
to the git manual pages.

® This HOWTO does not discuss ‘pull’. Furthermore note that instead of ‘clone’, ‘remote add’ + ‘fetch’ is often used, as it allows naming
the repository that is cloned.

Page 114 / 126

19.3. Setting up Git

19.3.1. Setting up Git at the UVA/FNWI (Linux/Windows/MacOSX)

To use Git, the Git executable is required. Moreover, to ‘push to’ or ‘pull from’ another repository,
the Git executable has to be available on the computer hosting that repository. To make Git
available on (mremote/sremote/owxxX).science.uva.nl and the Ivl Linux machines, the
following paths should be added to your PATH variable (ask Google how to set environment
variables). Add /usr/bin/ to be able to use Git on owxxx and Ivl Linux machines. Add
/opt/arch/git/bin/ to be able to use Git on sremote and mremote. Furthermore, in the
LD LIBRARY PATH variable the directory /opt/arch/lib should be mentioned before /lib.
Otherwise pushes will fail (due to an old 1ibz installation).

To access a repository in your FNWI home directory via SSH use
ssh://user@mremote.science.uva.nl (Or sremote.science.uva.nl if you are a student),
since direct SSH access to other computers in the FNWI network is forbidden from outside of the
FNWI.

Linux users at the FNWI can use Git by default if they changed their PATH variable
appropriately. Windows users at the FNWI can SSH (using the Secure Shell Client) to one of the
Linux machines in the network. Given that the PATH variable has been specified correctly, Git
can be run from that computer.

19.3.2. Setting up Git on Linux

Git is available as a package in most modern Linux distributions (usually git-core).

19.3.3. Setting up Git on Windows

Windows users need to install a software package to use git called msysgit [7]. This provides
them with a Git shell in which they can type the relevant commands. There is currently a
graphical layer being developed (to be used on top of msysgit), called tortoisegit [8], but
the maturity of this tool unclear (at the time of writing).

Note that msysgit automatically replaces Unix newlines to Windows newlines (or to other way
around) by default. As a result, doing a checkout action can result in modified files
immediately. To change this behaviour do:

$git config core.autocrlf false

19.3.4. Setting up Git on MacOSX

MacOSX users can install Git via MacPorts [9]. After installing MacPorts, install Git using the
following command in the terminal:

$ sudo port selfupdate; sudo port sync; sudo port install git-core

19.3.5. Setting up Git Continued (Linux/Windows/MacOSX)

Page 115/ 126

You can set your username and email address using git config. This information will be
stored with the changes you commit to repositories:

$git config --global user.name "Jochem Liem"

$git config --global user.email J.Liem@uva.nl

19.4. Version Management using Git (Linux/MacOSX/Windows)

As mentioned before, Git is a distributed version management system. It supports both the
traditional version management workflow with a “central” repository, and a distributed way of
version management (or combinations of both). Both workflows are explained below using the
use case in which Richard (staff-member) and Daniel (student) are working together on a paper.

19.4.1. Infrastructure and Permissions Basics

In order for Richard and Daniel to collaborate using Git, they must make their repositories
available to each other. Git allows multiple protocols, including SSH and HTTP.

The central repository workflow cannot normally be used over HTTP, since it does not
allow files to be written from a client. As such, Richard and Daniel do not both have
access to a single computer over SSH, they have to use a distributed versioning model
over HTTP." Note that this makes the repository public to the entire internet, unless
HTTP Basic Authentication [11] is used. However, this type of authentication is relatively
insecure. Passwords are sent as plain text over the web.

When using the distributed workflow with SSH, both Richard and Daniel have to have
access to the same computer. Furthermore, they need to set the permissions of their
repository to both read and execute (chmod -R 750 if they are in the same group, and
chmod -R 755 if they are not in the same group). Note that this also makes the
repository available to other users on the system (either everyone in the same group, or
everyone on the system).

When using the central repository workflow with SSH, both Richard and Daniel have to
have access to the same computer. Furthermore, the person running the central
repository has to give full permissions to either his entire group (chmod -R 770) or all
users on the system (chmod -R 777). Furthermore, the Git repository should be
configured so that new files are created with write permissions for either the entire group,
or every user on the system:

$git config core.sharedRepository 0775
$git config core.sharedRepository 0777

An option that is usually not plausible due to security issues is sharing a separate user
account for development. In this setup a central repository workflow can be used, and
the repository can be set to be only accessible to that specific user (chmod -R 700).

Note that in all SSH cases, the super directories of the repository directory should have read and
execute permissions.

'° Note that it is possible to write files over HTTP using WebDav [10]. However, this requires Apache2 with the WebDav module, and
permission to edit the ht tpd. conf file (which requires root access).

Page 116 / 126

19.4.2. Distributed Version Management using Git

In the distributed version management workflow, the repository should be accessible to your
collaborators. Either your collaborators have access to your system via SSH, or you make the
repository available via HTTP.

Richard wants to collaborate on his paper with Daniel. Since Daniel has no SSH access to his
system, he will make the paper available via HTTP.

Richard moves his paper to his public_html directory, and goes there:

Smv /home/richard/papers/paper312 \
/home/richard/public_html/gitroot/paper312

$cd /home/richard/public _html/gitroot/paper312

Richard creates a repository for the paper

$git init

Richard indicates that the files should be put in the repository:

$git add .

Richard commits all changed files to the repository

$git commit -a -m “I put paper31l2 in version management.”

Richard sends an email to Daniel indicating the URL of the repository and that he can start
working on the paper.

Daniel creates a directory for the paper in his public_html directory (and goes there):
$mkdir /home/daniel/public_html/gitroot/paper312

$cd /home/daniel/public_html/gitroot/paper312

Daniel creates a repository for the paper

$git init

Daniel indicates where the repository of Richard is:

$git remote add richard http://www.science.uva.nl/~richard/gitroot/paper312
Daniel fetches the changes from Richard’s repository

$git fetch richard

Daniel merges his local master branch with the remote master branch of Richard
$git merge richard/master

Daniel makes some changes and commits them to his repository

$git commit -a -m “I changed the abstract and the conclusions”

Daniel sends the URL of his repository to Richard, so he can see his changes.

Page 117 / 126

Richard indicates where the repository of Daniel is
$git remote add daniel http://student.science.uva.nl/~daniel/

Richard retrieves the changes from Daniel’s repository and merges his master branch with
Daniel’s master branch.

$git fetch daniel
$git merge daniel/master

To collaborate with another student Sam, Richard and Daniel both send their repository URLs to
Sam. Sam sends his repository URL to Richard and Daniel. To create the latest version of the
paper Richard and Sam both indicate where Sam’s repository is, they need to fetch the latest
version from both collaborators, and merge with both of their latest versions.

Note that it is possible to mix the distributed approach with the central repository approach
(below). That is, each collaborator would have a “central” (bare) repository on a web server
somewhere. A working repository (based on the “central” repository) is created on the computer
on which the versioned files are edited. The URL of the “central” repository is given to
collaborators.

19.4.3. Version Management using a Central Repository

Consider that Richard and Daniel both have SSH access. In this case they can choose to
collaborate using a central repository. Central repositories are bare repositories, which are
repositories without a checkout. This prevents conflicts (e.g. edits on the same line) in files in
the central repository. Conflicts should instead be solved locally. Therefore you can only push to
a central repository if you have the latest version of the files in the repository.

Daniel has his paper in /home/daniel/papers/paper312.

Daniel creates a repository, adds the files, and does a local commit
$cd /home/daniel/papers/paper312

$git init

$git add .

$git commit -a -m “First draft of paper 312”

Daniel creates a central repository in /home/daniel/gitroot/paper312

$git clone --mirror /home/daniel/papers/paper312/ \
/home/daniel/gitroot/paper312

Daniel makes it possible for ‘other’ to write to the repository
Schmod -R 777 /home/daniel/gitroot/paper312

$git config core.sharedRepository 0777

Daniel updates the information about this repository

$git update-server-info

Daniel sends the link to the repository to Richard.

Page 118 / 126

Richard creates a repository to work on the paper
Smkdir /home/richard/papers/paper312/

$cd /home/richard/papers/paper312/

$git init

Richard indicates the place of the central repository

Sgit remote add central \
ssh://richard@sremote.science.uva.nl/home/daniel/gitroot/paper312

Richard fetches the changes from the central repository and merges them with his local
master branch (which does not exist yet)

$git fetch central

$git merge central/master

Richard makes some changes to the paper and commits to the local repository
$git commit -a -m “Changed the abstract and conclusions”

Richard pushes the changes to the central repository

$git push central

Daniel wants to continue working on the paper.

Daniel indicates the place of the central repository:

$git remote add central /home/daniel/gitroot/paper312

Daniel fetches the changes from the central repository and merges his master branch with
the master branch on the central repository

$git fetch central

$git merge central/master

19.5. Issues with Laptops and Windows

People with Windows computers at home probably have neither SSH access nor a HTTP server
running on their computer. As such getting changes from repositories is difficult in the
distributed version management workflow. Laptops have a similar issue. Changes are difficult to
get from laptops due to their changing IP address (depending on the wireless network). As such,
repositories do not have a stable URL.

One possible solution is to have your own “central” (bare) repository to which you push your
changes. You give the link to this repository to your collaborators. They pull your changes from
this “central” repository.

Page 119/ 126

19.6. Migrating from Subversion

If you want to migrate your own repositories from Subversion to Git, heed the following advice.
Do not try to migrate using git-svn alone. Compile the latest version of Git (we had some
broken branches in our repository due to an outdated version of git-svn), and use the svn2git
script [12] to migrate the repository.

19.7. DynalLearn/Garp3 and Git"

The Garp3 codebase is versioned using Git. Depending on your goals, there are alternative ways
to interact with Git. The following three use cases should cover most goals:

1. Always have the latest version of Garp3 (or one of the development branches)
2. Develop Garp3 (or one of the development branches)
3. Develop Garp3 as a UVA employee (or one of the development branches)

UVA employees use our central Garp3 repository, while others use our “public” Garp3 repository.
UVA employees can access the repository using their normal username and password. The
“public” Garp3 repository is password protected using HTTP Basic Authentication. Git uses the
curl library to connect to repositories accessed via HTTP. To get access to the public Garp3
repository a .netrc file (Linux/MacOSX) or netrc (Windows) file has to be created in your
home directory. This file specifies the username and password to connect to the password
protected Garp3 repository. The contents of this file should be:

machine staff.science.uva.nl login developer password G3gmsw|gr
machine www.science.uva.nl login developer password G3gmsw|qr

Important: The UVA is bound by contractual agreements not to publicly disseminate
development versions of Garp3. If you want to work on Garp3, and want to make the repository
available via the web, you are required to shield the repository using HTTP Basic
Authentication [1]. Make sure to notify the UVA of the URL, username and password if you want
us to integrate your changes in our Garp3 development tree.

19.7.1. Latest Development Version of Garp3

The guidelines in this section are applicable when you want to have the latest version of Garp3,
but do not want to develop new Garp3 functionality. To make the guidelines applicable to any
user we use the HTTP protocol (since the SSH protocol requires a user on the repository
machine). We assume that a .netrc (or netrc on Windows) has been created as described
above.

Create a clone of the public Garp3 repository in your home directory:
Scd ~

$git clone http://www.science.uva.nl/~jliem/gitroot/Garp3.git Garp3.git

" The DynaLearn branch is, for legacy reasons, incorporated under the Garp3 branch. This means that accessing the Garp3 branch
means accessing the DynalLearn branch. There are no changes whatsoever.

Page 120 / 126

By default the standard development branch of Garp3 is checked out.
To update to the latest version of Garp3

$cd Garp3.git

$git fetch origin

$git merge origin/master

The steps above are sufficient for most users. However, some users might want the latest version
of a particular development branch in Garp3.

Show the remote branches
$git branch -r

Create a local branch based on a remote branch and make a checkout (in this example we
checkout origin/AutomaticModelBuilding as the local branch
AutomaticModelBuilding

$git checkout -b AutomaticModelBuilding origin/AutomaticModelBuilding

The local checkout now reflects the AutomaticModelBuilding branch. Therefore merging
now merges with this branch instead of the master branch.

Show all the branches (and the active branch)

$git branch -a

Update the AutomaticModelBuilding branch

$Sgit fetch origin

$git merge origin/AutomaticModelBuilding

To switch back to the master branch do

$git checkout master

Switching to the newly created AutomaticModelBuilding branch
$git checkout AutomaticModelBuilding

Note that it is impossible to push changes to the origin repository using this method (since it is
HTTP server).

19.7.2. Developing Garp3

If you are a researcher or student and want to further develop Garp3 (making the changes
available to us), it is appropriate to make use of the distributed nature of Git and both the HTTP
(to clone and fetch changes from the Garp3 repository at the UVA) and SSH protocol (to push
changes to your own central repository). Again, we assume that the .netrc/ netrc file has
been created. UVA uses the distributed nature of Git, which does not require write access to the
Garp3 repository. Developers can make their own repository available to UVA by putting it on the
web. By informing UVA about the URL of the repository, UVA can pull changes back to the UVA
Garp3 repository. Irrespective of whether you are a single student, or represent a group of
developers, a single bare repository should be made mirroring the UVA public Garp3 repository.

Page 121/ 126

Project No. 231526 DynalLearn D3.1

This bare repository should be made available over the web. Note again that bare repositories
do not have a checkout. This prevents conflicts in the central repository when pushing. Conflict
should be resolved locally. Therefore pushing is only allowed if you have the latest version of
each branch in your local repository.

Create a mirror of the Garp3 public repository
$cd /home/user/public _html

$mkdir gitroot

$cd gitroot

Sgit clone --mirror http://www.science.uva.nl/~jliem/gitroot/Garp3.git
Garp3.git

Make sure that other developers have write access to the repository
$Schmod -R 777 Garp3.git (or ‘770’ if you are in the same group)
Scd Garp3.git

$git config core.sharedRepository 0777 (or 0775 if you are 1in the same
group)

Note that the last step is not necessary if you are the only one developing. Also, perhaps fewer
rights are required at your university.

Update the information about the repository location
$git update-server-info

The URL of this created public repository should be made known to the Garp3 developers (if you
want your changes integrated). The URL should also be made known to the developers at your
university.

Each developer (or a single student) creates a clone of the newly made public repository (over
SSH, since they want to push back to the public repository).

Create a local repository to develop in

Sgit clone ssh://anotheruniversity.edu/home/user/gitroot/Garp3.git
Garp3.git

By default the master branch of the public repository is checked out. The other branches are
tracked as remote branches (e.g. origin/AutomaticModelBuilding).

Show the all branches
$git branch -a
Checkout a remote branch as a newly created local branch

Sgit checkout -b AutomaticModelBuilding origin/AutomaticModelBuilding
After some development the changes should be locally committed and pushed to the public
repository

$git commit -a -m “Changed A, B and C”

Page 122 / 126

Project No. 231526 DynalLearn D3.1

$git push origin

To update a few active branches based on the public repository do the following:
$git fetch origin

$git checkout master

$git merge origin/master

$git checkout AutomaticModelBuilding

$git merge origin/AutomaticModelBuilding

Note that usually there is no reason to update all branches in your repository, since you tend to
develop only a few branches.

During development your public repository may get out of sync with the UVA public repository.
By adding the UVA public repository as a remote repository to your local git repository, changes
can be pulled from it, and pushed to your own public repository.

Add the UVA public repository to as a remote repository in your local repository (requires the
.netrc/_netrc file):

$git remote add uva http://www.science.uva.nl/~jliem/gitroot/Garp3.git

Get changes from the UVA Garp3 repository and integrate them
$git fetch uva

$git checkout master

$git merge uva/master

$git checkout AutomaticModelBuilding

$git merge uva/AutomaticModelBuilding

Push the changes to your public repository

$git push origin

Developing Garp3 as a UVA employee

If you are a UVA employee with SSH access to mremote.science.uva.nl, you can use the Garp3
central repository.

Create a clone of the central repository and create a master branch
Smkdir Garp3.git

$cd Garp3.git

$git init

Sgit remote add central
ssh://user@mremote.science.uva.nl/home/jliem/gitroot/Garp3.git

$git fetch central

Page 123 / 126

Project No. 231526 DynalLearn D3.1

$git merge central/master

After making changes you can commit them locally and push them to the central repository
$git commit -a -m “Changed A, B, and C”

Sgit push central

If you like to work on another branch create a local branch with the same name first

$Sgit checkout -b AutomaticModelBuilding central/AutomaticModelBuilding

Again, you can do development and commit. To get changes made by others, merge your
master branch with the master branch on the central repository.

$git fetch central

Sgit merge central/AutomaticModelBuildin

19.8. Acknowledgements

Many thanks to Jeroen Roodhart for manually installing Git on the mremote/sremote Solaris
machines, and to Adri Bon for installing Git on all the Education/Research Linux Machines.

[1] http://en.wikipedia.org/wiki/Revision control

[2] http://git-scm.com/

[3] http://www.kernel.org/pub/software/scm/git/docs/qgittutorial.html

[4] http://qit.or.cz/course/svn.html

[5] http://www.youtube.com/watch?v=8dhZ9BXQgc4

[6] http://www.youtube.com/watch?v=4XpnKHJA0k8

[7] http://code.google.com/p/msysqit/

[8] http://code.google.com/p/tortoiseqit/

[9] http://www.macports.org/

[10] http://www.kernel.org/pub/software/scm/qgit/docs/howto/setup-git-server-over-http.txt

[11] http://maymay.net/blog/2008/08/08/how-to-use-http-basic-authentication-with-git/

[12] http://github.com/jcoglan/svn2git/tree/master

Page 124 / 126

Project No. 231526 DynaLearn D3.1

Page 125/ 126

e-mail: Info@Dynalearn.eu
website: www.Dynalearn.eu

