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Foreword

The focus of this workshop is on the issues of and methods for analyzing and gener-
ating mixed language explanations, namely, explanations that combine natural language,
symbolic (e.g., algebraic) expressions, formal domain concepts, and diagrams, in learn-
ing environments.

There are many aspects of human-human learning interactions that can contribute to
an assessment of a student’s knowledge and ability level. The equations and diagrams the
student creates while solving a problem are just one type of interaction language that can
influence an evaluation of the student. Questions and comments that the student produces
during the problem solving while deciding what equations and diagrams to generate, and
the student’s responses to questions and guidance, can be revealing as well. In learning
systems, however, student assessment has been primarily limited to interpreting equation
and diagram manipulations, and the timing and type of help requests a student makes
relative to a menu of available help.

Many efforts are under way to increase the ways in which students can communi-
cate with a learning environment. One area of exploration is the addition of both spoken
and written natural language understanding and generation capabilities to equation and
diagram manipulation interfaces. Mixing natural language with algebraic and graphical
forms of communication demonstrates that each cannot be analyzed completely sepa-
rately and then combined, since each can influence the analysis of the others. For exam-
ple, an explicit or implicit presence of equations, diagrams, and formal domain concepts
can heavily influence the content and form of the natural language used by the student
and the system, and vice versa, so that the natural language used may

• refer to algebraic, conceptual, and diagrammatic domain entities,
• describe or explain algebraic, conceptual, and diagrammatic domain entities,
• refer to or describe past/future actions or cognitive states (e.g., “I don’t understand

this equation.”),
• collapse reasoning steps that previously would have been expanded, in the absence

of NL, to demonstrate the student’s ability and understanding.

Most of these phenomena have been observed in systems that

• combine algebraic input methods with natural language textual explanations in
interactive proof environments,

• combine a diagrammatic interface with natural language,
• and even systems that deploy only natural language interfaces, but in a context

that requires building mental models of algebraic expressions, formal concepts,
or diagrams.

The analysis of student input in these mixed language systems generally aims at (1)
verifying whether the student’s input is correct and (2) diagnosing possible sources of
errors if it is incorrect. There is still the usual difficulty of verification and diagnosis being
NP-complete tasks that must rely on heuristics and additional constraints to be feasible
for implementation. But now there is the added problem of needing to reason about
entities that can be realized in multiple ways, i.e., with algebraic expressions, diagrams,
or natural language.
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Unmodified, domain independent statistical methods that are typically used for ana-
lyzing natural language in current learning environments and that are the focus of much
of today’s applied research in computational linguistics for both analysis and generation
do not provide the accuracy necessary for analyzing and generating descriptions of and
references to precise objects like diagrams, algebraic expressions, and formally defined
domain concepts. Formal methods for analyzing algebraic expressions, formal concepts,
and diagrams, on the other hand, rely on input that is assumed to be 100% accurately
recognized and this is not normally achievable with the uncertainty inherent in NLP.

The eleven papers that will be the focus of discussion in this workshop cover a wide
range of domains and mixed language phenomena and describe both works in progress
and deployed applications. The themes of the papers include

• issues involved in analyzing mixed language explanations,
• techniques for analyzing mixed language explanations,
• descriptions of learning environments and applications in which mixed-language

use arises,
• descriptions of learning environments in which permitting mixed-language usage

could be beneficial.

We thank the members of the program committee who worked under tight deadlines
to provide each paper with multiple, thoughtful reviews. We anticipate that the reviews
will also help stimulate discussions during the workshop. Further, we thank the authors
for their contributions to this workshop. Finally, we thank the AIED conference organiz-
ers and workshops chairs for their support.

Pamela W. Jordan, Maxim Makatchev, Peter Wiemer-Hastings
May 25, 2005
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Abstract. This paper presents a controlled investigation of collaborative problem 
solving in which the behavior of a confederate peer learner is manipulated in order 
to measure the impact of the confederate peer learner’s behavior on the behavior 
and learning of the student participant.  The independent variables in the 2X2 
factorial design include level of engagement (Lazy versus Engaged) and accuracy of 
problem solving contributions (High performing versus Low performing). We did 
not find evidence that the errors contributed by the confederate peer learners were 
harmful to student subjects working with them except in the case of students paired 
with Engaged Low performing peer learners.  On the contrary, we found a small but 
reliable interaction effect in which students paired with Lazy Low performing peer 
learners derived some benefit from the errors they were exposed to whereas students 
paired with Engaged Low performing peer learners were harmed by the errors they 
were exposed to. 

 
Introduction 
 
Achieving the elusive “2 sigma effect” with intelligent tutoring technology has long been 
the holy grail of the field of intelligent tutoring research (Bloom, 1984).  The search for the 
answer to this mystery has taken many forms, but one of the re-occuring trends through 
generations of investigation has been the somewhat naive belief that the answer lies in 
“humanizing” the technology, or creating analogs of human-human interaction contexts in 
which high levels of student learning have been observed.  Two such paradigms are that of 
tutorial dialogue systems, in which the technology is modeled after a human tutor, and that 
of learning companions, where the technology is modeled after a student.  
 
The rationale for learning companion technology grows out of the successful track record 
for the collaborative learning paradigm (Sharan, 1980).  However, what is known about the 
mechanisms responsible for its success are largely at the group level rather than at the 
individual level.  Even studies presenting evidence about specific effective patterns of 
interaction have largely provided correlational evidence, and thus do not offer insights on 
the causal mechanisms at work on the level of the individual student.  Thus, what is known 
is not sufficient for guiding the design of artificial agents that can interact with students in 
way that yields the same effect.  Consistent with recent arguments put forward regarding 
the debate between the situated versus cognitive perspective on learning research 
(Anderson, Reder, & Simon, 1997), we argue that what is needed as a next step is a careful 
investigation using controlled experimentation to construct a causal model of how specific 
features of an agent’s behavior influence an individual student’s behavior and learning.  We 
outline our current research agenda and present results from a recent study illustrating our 
proposed methodology. 
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1. A Historical Perspective 
The research literature investigating the construction of tutorial dialogue and learning 
companion environments present parallel experiences in attempting to emulate in 
technology what has been observed to be effective for learning in human-human scenarios. 
 
Research towards developing tutorial dialogue systems has a longer history than learning 
companion research, extending back to the late 60s.  While early efforts to emulate the 
effectiveness of human tutorial dialogue, such as the SCHOLAR system (Carbonell, 1969), 
the original WHY system (Stevens and Collins, 1977), and SOPHIE (Brown, Burton, & 
deKleer, 1982), were landmark systems in the history of intelligent tutoring research, they 
were naïve both theoretically and technologically.  With the dawn of the 21st century, when 
both the fields of intelligent tutoring and language technologies had substantially matured, 
there was a resurgence of interest in bringing these two communities together once again.  
Wielding state-of-the-art language technology, intelligent tutoring researchers have made 
great strides in building and evaluating tutorial dialogue systems with students, often in 
realistic educational settings (Graesser, Bowers, Hacker, & Person, 1998; Rosé et al., 2001; 
Graesser, VanLehn, the TRG, & the NLT, 2002; Aleven, Koedinger, & Popescu, 2003; 
Evens and Michael, 2003). However, these systems, while offering strong proof of the 
technical feasibility of supporting meaningful interactions in natural language, have not yet 
yielded the dramatic improvements over more standard forms of tutoring systems that were 
predicted.   
 
Just as tutorial dialogue system research grows out of the literature on successful human 
tutoring, work on learning companion technology grows out of the collaborative learning 
literature.  When students work with tutoring systems that offer scaffolding and help on 
demand, the scaffolding creates a situation in which the student and the system are working 
together in some sense to solve a problem, although the collaboration is not overt or 
anthropomorphized.  The idea behind learning companion technology has been to make 
that “collaboration” between the student and the machine overt by anthropomorphizing the 
help system in order to create a computer analogue of human-human collaborative learning. 
 Students are meant to solve problems with intelligent tutoring systems as independently as 
possible, with the hints and scaffolding used only as needed.  However, these passive and 
readily available resources can easily be abused (Baker et al., 2004).  Students can cheat 
themselves out of learning from their problem solving experience by “gaming” the system’s 
help functions at the places in the problem solving process that are most valuable for their 
learning (Baker et al., 2004).  One hope of learning companion technology was to counter 
this tendency by holding students accountable, and thus foster engagement and deeper 
learning with technology.  Some recent peer collaborative agents have been used 
successfully to monitor student behavior in on-line chat environments to detect when it 
becomes unproductive and explicitly offer a productive alternative (Vizcaino & du Boulay, 
2002). 
 
Previous approaches to adapting intelligent tutoring systems to simulate a collaborative 
learning setting include three paradigms: “computer as a co-learner” (Dillenbourg & Self, 
1992), “learning companion systems” (Chan & Baskin, 1988) and “learning by teaching” 
(Chan & Baskin, 1988; Palthepu et al., 1991).  Betty’s Brain (Leelawong et al., 2002; Davis 
et al., 2003) is a teachable agent designed to engage students in learning oriented activities 
such as requesting explanations and building qualitative reasoning representations.  
However, its learning oriented functions are passive in a similar way to traditional help 
systems and other collaborative agents such as (Hietala & Niemirepo, 1998), and while use 
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of them correlates with positive learning and performance outcomes, students have been 
observed to make use of them in a performance oriented fashion.    Just as a shift towards 
interaction in natural language has not been enough to yield “the 2 sigma effect” with 
tutorial dialogue systems, simply anthropomorphizing help systems has not been sufficient 
for radically reshaping student behavior with intelligent tutoring systems. 
 
2. Experimental Methodology 
A key aspect of our research agenda is to investigate previous claims about best practices in 
learning companion design that have not been subjected to rigorous evaluation. We do this 
using a particular experimental design methodology, which provides a highly controlled 
way to examine mechanisms by which one peer learner’s behavior influences a partner 
learner’s behavior and learning.  Specifically, we make use of confederate peer learners 
who are experimenters acting as peer learners but behaving in a highly scripted way. 
Building on the work of Hietala & Niemirepo (1998) contrasting high and low performing 
peer agents, we address the following questions in the study reported in this paper: (1) 
Under what circumstances do the errors that arise during collaborative problem solving 
interactions have a harmful (or helpful) effect on student learning? (2) How does the 
accuracy and the level of initiative taking of a peer learner’s contributions affect initiative 
taking in their partner?  
 
Experimental Procedure:  The experimental procedure consisted of 5 phases, consisting of 
three test phases alternating with two instructional phases.  The experimental manipulation 
took place during phase 4.  During the pre-instructional testing phase (phase 1), students 
filled out a consent form, took a pretest to assess their prior domain specific knowledge (for 
15 minutes), and read the instructions for the first instructional phase.  During the first 
instructional phase (phase 2), which was a human tutoring phase lasting 45 minutes, 
students received tutoring on the general concept of differentiation as well as 7 specific 
rules of differentiation from a human tutor.  The tutor was blind to the student’s condition 
and adhered to a rigid schedule for covering all of the content in a consistent way between 
students.  During the mid-instructional testing phase (phase 3), students took a short middle 
test to assess their learning during phase 2 (for 10 minutes).  They also read the instructions 
for the second instructional phase.  The second instructional phase (phase 4), was a 
problem solving phase where students worked through as many of 12 multi-step derivation 
problems as possible during the allotted 35 minutes.  Finally, in the post-instructional phase 
(phase 5), students took the post-test (for 15 minutes) and filled out a questionnaire.   
 
Materials: The materials for the experiments consisted of the following: (1) An 8 page web 
based lesson on derivatives provided material for the tutor and student to work through 
during Phase 2.  It consisted of an overview and individual units on each of 7 specific rules 
of derivation.  (2) 12 on-line problem solving exercises for Phase 4 requiring multiple rule 
applications. (3) 2 extensive tests (Test A and Test B) were used for the pre-test (in Phase 
1) and the post-test (in Phase 5).  These tests each consisted of 7 algebraic manipulation 
problems, 7 simple calculus problems to test knowledge of each specific differentiation 
rule, and 6 complex calculus problems requiring both multiple rule applications and 
algebra.  We counterbalanced the order of the tests.  In Phase 3, students took a middle test 
with 8 simple calculus problems, analogous to the second section of tests A and B, and 
three complex calculus problems requiring multiple rule applications.  

 
Experimental Setup:  All on-line problem solving was done using a structured problem 
solving interface designed for solving differentiation problems.  Students first select a rule 
from a menu.  Based on their selection, some explanation about the rule and slots to fill in 
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were presented to the student.  In some cases, additional menus were presented, allowing 
for embedded rule applications.  No feedback was provided by the system based on the 
students’ selections from the menu or entries in the text input boxes during the problem 
solving process.  When the student or pairs of students were satisfied with their solution, 
they submitted it.  If it was incorrect, they were then shown their incorrect derivation next 
to the correct one as a worked example including both the derivation and some explanation. 
The purpose was for them to compare and see how the problem should have been worked 
out and where their mistake occurred. In the case of a correct submission, the students 
moved on to the next problem.  Students were located in different rooms.  They could view 
and manipulate the same problem solving interface using VNC.  Students communicated 
with each other by means of an MSN like typed chat interface.  Their discussion included 
both text and equations.  In the dialogue they discussed their division of labor and strategies 
for solving the problems. 
 
Experimental manipulation: The experimental manipulation consisted of 4 conditions 
resulting from a 2X2 full factorial design with two factors describing characteristics of a 
scripted confederate peer problem solver, namely Lazy(LA)/Engaged(EN), referring to the 
frequency of the confederate problem solver’s contributions to the problem solving process 
and High(HI)/Low(LO) referring to the accuracy of the confederate peer learner’s 
contributions.  During this phase of the experiment, one member of our team acted as a 
confederate student and another kept track of score, timing, and distribution of labor. The 
confederate student acted according to the following rules:  

- LA/EN: In the Lazy condition, the confederate student contributed to solving the 
problem either by offering part of the solution in the chat window or by performing 
an action in the problem solving interface every 45 seconds.  In the Engaged, 
condition, the confederate peer learner contributed every 8 seconds.   

- HI/LO: In the High performing condition, the confederate student provided only 
correct contributions.  In the Low performing condition, the confederate student 
provided incorrect contributions 2/3 of the time.   

 
Subjects: 36 Carnegie Mellon students and staff participated in the study, randomly 
assigned to conditions: 58% male and 42% female, equally distributed between conditions.  
 
Results 
Since the purpose of the 2X2 factorial experimental manipulation was to contrast the 
instructional impact of working with peer problem solvers with specific characteristics, we 
first verified the benefit of working with a peer problem solver over working alone.  Using 
an ANCOVA with Post-test score as the dependent variable, Condition (SOL versus P2P) 
as the independent variable, and Pre-test score as a covariate, we verified that students in 
the P2P condition learned more than their peers in the SOL condition F(1,18) = 6.0, p<.05, 
MSE = 5.64, effect size = 1.1 standard deviations.  We did not use the mid-test score as a 
covariate along with pretest score because it was not reliably correlated with post-test score 
with this population of students when we first factored out the effect of pretest score. 
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Overall, we found a significant interaction effect using an ANCOVA with Post-test scores 
as the dependent variable, LA/EN and HI/LO as factors, and Pre-test and Middle-test scores 
as covariates F(1,30) = 7.47, p < .05, MSE= 7.41. In a post-hoc analysis using a Bonferroni 
test, the students in the Engaged High performing condition achieved significantly higher 
post-test scores than the students in the Engaged Low performing condition, p < .05.  There 
was a marginal trend in favor of Lazy Low in comparison with Engaged Low p < .1.  Lazy 
High was indistinguishable from the other conditions.  Overall we did not find evidence 
that the errors contributed by the fake peer learner were harmful except in the case of 
Engaged peer learners.   
 
Because the difference between Lazy Low and Engaged Low was marginal, we wanted to 
investigate further whether this effect was real or by chance.  We checked first to see if the 
difference in impact between Lazy Low and Engaged Low could be explained by the 
difference in the distribution of labor that resulted as an effect of the confederate peer 
learner's behavior.  For each student we recorded the ratio between that student’s 
contributions to the problem solving and the total number of contributions.  We refer to this 
variable as Labor.  Pre-test score was reliably correlated with Labor across the students in 
all 4 experimental conditions (R-squared=.369, p<.001; N=36).  We found a main effect of 
the LA/EN factor on Labor favoring Lazy over Engaged even with effect of Pre-test 
factored out, F(1,33)=22.45, p<.001, effect size 1.6 standard deviations).  Although we 
instructed students to keep their division of labor 50%/50%, and although the median value 
was 48%, the standard deviation was 12%.  So students did not stick rigidly to the 
50%/50% division of labor, and the frequency of the student subjects’ contributions was 
affected by the frequency of the confederate peer learner’s contributions.  If this explained 
the marginal difference in effectiveness between Lazy Low and Engaged Low, however, 
we would expect to see a correlation between Labor and learning.  Nevertheless there was 
no correlation between Labor and Post-test with effect of Pre-test and Mid-test factored out. 
 
Interestingly, taking students with below the median Pre-test scores as low ability students 
and others as high ability students, we found a trend that low ability students were more 
likely to let the Low performing peer learners take the lead than the High performing peer 
learners whereas the high ability students were more likely to trust the High performing 
peer learners than the Low performing peer learners. It's possible that low ability students 
were more likely to trust the low performing peer learners because they found them more 
confusing.  The effect was only significant within the Engaged condition.  Nevertheless, 
there was evidence that students did notice the errors contributed by the confederate peer 
learners.  We informally observed a lot of discussion surrounding the errors. Taking 
average student turn length as an indicator of how much discussion beyond minimal 
answers was part of the conversation, we also found a marginal difference in turn length 
using an ANCOVA with HI/LO as a factor and turn length during tutoring as a covariate 
F(1, 28)=3.67, p<.1, MSE=2.4. Overall average turn length was shorter during the peer 
problem solving phase than during the tutoring phase.  However, this pattern was less true 
of students working with Low performing (LO) confederate peer learners.  A greater 
proportion of student in the HI condition had shorter turn lengths during the collaborative 
learning phase than during the tutoring phases than in the LO condition.  This was true for 
88% of the students in the HI condition and only 40% of the student in the LO condition, 
which was a significant difference in proportions according to a binary logistic regression 
(P < .005). 
 
We suspected that the confederate peer learner might have contributed more errors overall 
in the Engaged condition (because of the difference in frequency of contribution), and that 
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low ability students were exposed to many more errors in the Engaged Low condition, and 
that perhaps it was the number of errors that the student was exposed to during the peer 
problem solving phase that was having the real effect on student learning.  To simplify the 
analysis, we introduced a new variable called ActualLazy/Engaged that was based on the 
division of labor (Labor) to more precisely estimate the number of errors students were 
exposed to.  However when we replaced the LA/EN variable with the ActualLazyEngaged 
variable, the interaction effect observed previously became non-significant. 
 
To further investigate our hypothesis about the number of errors students were exposed to, 
we examined the correlation between learning and on-line performance measures such as 
solutions submitted, correct solutions, and incorrect solutions.  We found that the strongest 
predictor of student learning was the number of correct problems the pairs managed to 
submit during the problem solving phase (CorrectProb).  We computed this with a linear 
regression between CorrectProb and Post-test score with effect of Pre-test score factored 
out. R-squared=.70, p<.001, N=36.  There was a main effect of the HI/LO factor on the 
number of correct solutions contributed, with the effect of Pre-test and Mid-test scores used 
as covariates, F(1,30) = 49.1, p < .001, MSE=.93, effect size = 2.4 standard deviations.  
Students in both High performing conditions contributed significantly more correct 
solutions that students in either Low performing condition.  Since there was a strong 
correlation between Mid-test score and correct problems contributed, we replaced mid-test 
with correct problems submitted as a covariate in the original ANCOVA with LA/EN and 
HI/LO as factors.  We used Pretest score and Correct Problems submitted as covariates.  
While Pretest and CorrectProb submitted together explain about 71% of the variation in 
post test scores across our student population, we still found a significant crossover 
interaction effect explaining an additional 4% of the variance that provided some weak 
evidence that the errors contributed by the fake peer learners sometimes had a positive 
effect on student learning.  F(1,30) = 4.96, p<.05, MSE=10.68.  On the continuum between 
High and Low performing peer learners, students in the Lazy condition learned more when 
the peer learner contributed more errors, whereas the trend was the opposite with Engaged 
peer learners.  This is consistent with findings reported about “troublemaker conflicts” 
reported in (Aimeur, Frasson, & Lalonde, 2001). 
 
Conclusions and Current Directions 
The results of this investigation contribute insights towards a detailed causal model of how 
environmental factors influence student perceptions, attitutudes, behavior, and learning.  
An understanding of where errors can be used strategically to stimulate cognitive conflict 
and student learning may enhance the effectiveness of existing well-established approaches 
to scaffolding in intelligent tutoring systems.  Nevertheless, this is an issue that requires 
more investigation.  Because the majority of the observed learning in this study is explained 
by correct problem solving, these results do not argue that errors play a large role in student 
learning relative to correct examples.  The weakness of this effect might be explained by a 
paucity of what is referred to as “high level” explanation and help seeking behaviors found 
in our corpus of collaborative problem solving interactions (Webb et al., 2002).  Webb et 
al. found, for example, that high ability students only benefited from their interactions with 
lower ability peers when their group engaged in high level explanation and help-seeking 
behaviors.  
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Simulations
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Abstract. This paper presents an approach to generate structured explanations of
system behaviour based on qualitative simulations. This has been implemented in
WiziGarp, a domain-independent interactive learning environment. The main issue
addressed here is how to manage the complexity of a simulation in order to generate
adequate explanations. These are presented to the user in the form of different kinds
of diagrams, accompanied by explantory dialogue.

1. Introduction

In many domains, such as physics, biology, chemistry, and ecology, learning about
dynamic phenomena is essential. Learners must be able to recognize, predict and explain
the behaviour of systems in relation to their structure [6]. This requires having an ade-
quate conceptual model of behaviour, which can relate a particular state of the system to
previous states (for explanation) or future states (for prediction). Qualitative simulations
explicitly represent the kinds of knowledge that can support learners in building their
own conceptual model of dynamic phenomena [12]. The GARP framework [3], which is
used in this work, includes knowledge about entities, relationships, quantities, and causal
and mathematical dependencies. This knowledge is organized in scenarios, model frag-
ments, and transition rules, and is used to generate a state-transition graph of all possible
behaviours of the system.

The main problem in using qualitative simulations for educational purposes is that
due to the amount of detail included, a simulation can be very complex, i.e., containing
a large number of states and transitions, and a large amount of information within each
state. Some approaches to this problem try to simplify the model and the resulting simu-
lation beforehand, based on specific questions that the simulation should address [5, 10].
However, this is often not possible, because it is in general unknown in advance which
questions the simulation should answer.

Therefore, the approach described in this paper takes a simulation as a given and
performs aggregation afterwards. This enables automatic generation of the questions that
the simulation can answer, and filtering of the most important information, while still
allowing full access to the details of the original simulation.
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Figure 1. An overview of WiziGarp’s system architecture, showing the main data and control flow

2. WiziGarp and Domain Example: Cerrado Ecology

The context of this work is the development of an interactive learning environment called
WiziGarp, which extends its predecessor VisiGarp, described in previous work [2]. In
figure 1, an overview of WiziGarp’s system architecture is shown, including the main
data and control flow. Based on a generic domain library and a particular simulation,
WiziGarp generates diagrams and textual explanatory dialogue for specific topics, which
are either selected directly by the learner, or specified in a didactic plan, provided by a
human teacher or a curriculum planner.

The test domain used in the remainder of this paper is the ecology of the Brazilian
Cerrado vegetation, as modelled qualitatively in the GARP framework [11]. The model
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Figure 2. The original state-transition graph for the CSH simulation

Level Contents

0. GARP Output from the simulator
1. System state Current state of the system
2. Local event Events at time point/interval
3. Path segment Necessary behaviour (sequence w.o. branching point)
4. Path Possible behaviour (may include branching points)
5. Global Alternative behaviours (multiple paths)

Table 1. Levels of aggregation

includes a classification of vegetation types, ranging from Campo Limpo, consisting of
mainly grassland, to Cerradão, a vegetational state with mainly trees and shrubs, and
(almost) no grass population. One of the simulation scenarios models the Cerrado Suc-
cession Hypothesis (CSH), which suggests that a Campo Limpo may develop towards
a Cerradão under the right circumstances, in terms of natural conditions and human ac-
tions, such as fire management. The state-transition graph for this simulation is shown in
figure 2. it contains 19 states and 47 transitions, which can be combined into 869 differ-
ent paths. Each of the states contains on average 72 entities and relations, 32 quantities,
99 dependencies, and 50 model fragments. This combination leads to a total number of
4800 facts contained in the simulation. It would be practically impossible to communi-
cate such a high number of facts to a user, and presenting them in chronological order
poses a problem because there are so many different paths possible.

The aggregation techniques described in the next section are therefore used to reduce
the amount of information to be communicated, both in terms of the number of states and
the amount of information within states. The output of the aggregation methods is then
utilized by WiziGarp to generate structured explanations. The goal of these explanations
is to provide insight in the simulation results and the causal mechanisms involved.

3. Aggregation of Qualitative Simulations

The approach to aggregation presented in this paper is to organize the information in a
qualitative simulation in ways which support the simplification, interpretation and selec-
tion of interesting information. In order to do this, levels of aggregation are introduced,
which correspond to different views on system behaviour. The five levels are shown in
table 1, together with their mapping to the corresponding notions in the state-transition
graph of a simulation.

For each of these levels, aggregation techniques have been implemented which re-
duce the amount of information to be communicated. These techniques are based on
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Figure 3. A screenshot from WiziGarp: dependencies for the grass population and an exercise
question

four generic principles: selection (focusing on certain elements), chunking (combining a
sequence of information elements into a new element), generalization (abstracting from
minor differences between information elements to form a new element), and grouping
(adding a label to a group of similar elements).

On the system state level, the status of causal dependencies is analyzed to arrive at a
classification of causal effects, as inactive, submissive, balanced, or effective. This allows
grouping and selection of those dependencies which have an actual effect, while dis-
carding dependencies whose effect does not contribute to the outcome of the simulation.
The classification refines work by De Koning et al. [4], who distinguish only between
submissive and effective dependencies, and work by Mallory [9], who attributes similar
labels directly to quantities instead of to their effects. Compared to both these efforts, our
classification enables better explanations of why a causal influence may not have the ex-
pected effect, especially in cases where a particular quantity is involved in multiple (pos-
sibly competing) dependencies. Figure 3 shows an example screenshot from WiziGarp
with a subset of dependencies for the grass population in the Cerrado, including sub-
missive dependencies (the positive influences from born3 and immigrated3), as well as
effective ones (the negative influences I- from dead3 and emigrated3 and the positive
proportionalities P+, which further propagate the decrease of number_of3).

On the local event level, recognition of events is performed. Information from ad-
jacent states is selected and combined to form larger chunks of information, specifying
meaningful events of various types, such as value and derivative events (e.g., Qx starts
to increase), inequality events (e.g., Qx becomes larger than Qy), causal effect events

14



(e.g., the influence from Qx on Qy becomes inactive), and model fragment events (e.g.,
the model fragment for a particular process or situation becomes active). To be able to
present an appropriate number of events, in an orderly fashion, WiziGarp allows selec-
tion and grouping of events by topic. As shown in figure 1, a topic contains a specific
time-frame (particular states or paths), subsystem (the entities and quantities of interest),
and information types (the kinds of events of interest).

On the next two levels, the state-transition graph is divided into path segments or
paths, respectively. A path segment is a state sequence without (outgoing) branching
points. Conceptually speaking, a path segment specifies behaviour that necessarily takes
place. A path, on the other hand, may extend beyond a branching point. When a path
contains branching, the events after the branching point do not necessarily occur. Paths
are also analyzed for the existence of cycles to recognize repetitive behaviour. On the
path segment level and path level, additional value and derivative events are recognized
on this level by selection and chunking of lower level events (e.g., the highest value of
Qx that is reached in the path (segment) P is V , or Qx fluctuates between V1 and V2,
respectively).

Finally, on the global level, transitive reduction decreases the number of transi-
tions (selection), and aggregation of alternative orderings decreases both the number
of transitions and states in the state-transition graph by generalizing over reuniting
branches. Transitive reduction, as known from graph theory, abstracts from all transitions
T (= Sx → Sy) for which holds that there is a path P from Sx to Sy which does not
contain transition T, with the extra condition that P contains the same events as T. Aggre-
gation of alternative orderings abstracts paths which divert and reunite, if they include
the same events, albeit in a different order. This technique is defined by the following
algorithm:

Algorithm 1. Aggregation of alternative orderings in the state-transition graph:

Find a group of paths P1 to Pn with the same begin-point (Sx) and end-point (Sy), for
which holds: P1 to Pn contain the same events, or events which can be abstracted into
the same higher level events, and do the following:

1. Add a shortcut edge from Sx to Sy , to represent an aggregated transition, con-
taining all (aggregated) events (of all, or selected event types) occurring in paths
P1 to Pn.

2. Delete every edge from the original paths P1 to Pn, unless:

(a) the edge appears after an incoming branching point, OR
(b) the edge appears before an outgoing branching point.

3. Delete states which have no incoming and outgoing edges anymore.

Repeat this process until no more alternative paths can be found.

Both of these techniques are based on the idea that it is useful to abstract from the tem-
poral order if the general story is the same, and it does not matter for later developments
in the simulation. After transitive reduction (see figure 4(a)), the state-transition graph
still contains 19 states, but the number of transitions is reduced from 47 to 26, and the
number of paths from 869 to 24, compared to the original state-transition graph. After
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Figure 4. The state-transition graph after transitive reduction (a), and after aggregation of alternative orderings
(b)

aggregation of alternative orderings, the graph is reduced to 6 states, 6 transitions, and
only 2 paths (see figure 4(b)). It is clear that without these forms of reduction, it would
be impractical to discuss what happens in all paths of the simulation.

4. Generating Interactive Explanations

The generation of explanations is done based on a didactic plan. The didactic plan speci-
fies which topics should be presented in what form (i.e., the didactic means: diagrams,
textual descriptions, causal explanations, contrastive explanations, queries or exercise
questions), as well as the desired level of aggregation. In the CSH domain, the sequence
of topics in the didactic plan starts with the entity-relationship structure, followed by
the development of values and derivatives. Then, the dependencies are treated, first for
individual entities (the grass, shrub and tree populations), and later for interactions be-
tween multiple entities (e.g., the effect of the manager on the populations, mediated by
vegetational factors such as humidity and soil temperature).

The different didactic means can be used to support didactic styles from system-
initiated tutoring to student-initiated exploration. WiziGarp can take the initiative by
asking exercise questions that are automatically generated by a separate module called
QUAGS, which uses heuristics, or specific input from the didactic plan [8]. An exam-
ple was shown already in figure 3, with a question about the grass population. Wizi-
Garp incorporates heuristics to determine the most interesting quantities, based on which
quantities are involved in the highest number of events for the selected time-frame, such
as quantity number_of3. In many cases, it is useful to hide submissive (and inactive)
dependencies, as they do not contribute to, and may therefore distract attention from the
actual behaviour. In this case, however, the four basic processes in population ecology
are an important topic to learn about. Therefore, the status of their effects is taken into
account in the exercise question.

Figure 5 shows how a learner can also take the initiative and ask for specific in-
formation to be answered by WiziGarp. The diagram in the figure shows an overview
of the main developments for a particular path in the simulation. In order to do this,
events on the local level and path (segment) level are determined for the quantities of
interest. Within the boxes depicting states, the model fragments are displayed which
specify the vegetation types according to the CSH. These model fragments are defined
in terms of the values of three quantities: number_of1(trees), number_of2(grass),
and number_of3(grass). For example, the model fragment climax_cerrado is associ-
ated with a maximum number of trees. The learner has selected transitions 1 → 4 and
15 → 18 to see which value and derivative events occur. The learner can ask queries
about a particular event by selecting it and choosing a query from a popup menu that
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Figure 5. An overview of the main developments in terms of model fragments for the CSH

arises. Here, the learner asks why the number of trees has started to increase, which is
causally explained by the introduction of the effect of immigration.

In addition, contrastive explanations can be generated which list the differences be-
tween states, e.g., the end states 17 and 18: only in the latter case, the tree population
reaches its maximum size, and the grass population starts to increase again due to immi-
gration, after dying out first.

5. Conclusion

The main research goal addressed in this paper was how to deal with the complexity of
qualitative simulations in order to generate structured explanations of system behaviour.
A set of aggregation techniques has been implemented which select, chunk, generalize,
or group information elements, so that the result contains less states and transitions, as
well as less information within them. This was done by focusing on events of various
kinds, at different levels of abstraction. These aggregation techniques have been incor-
porated into a prototype interactive learning environment called WiziGarp. Based on the
output of the aggregation mechanisms, explanatory dialogue is generated including sev-
eral didactic means: textual descriptions, causal explanations, contrastive explanations,
queries, and exercise questions, complemented by diagrammatic representations of sim-
ulation results and the underlying model. An example of explanatory interaction has been
presented which shows that for the domain of Brazilian Cerrado ecology, the aggrega-
tion mechanisms provide a large reduction in the amount of information. This makes
it feasible to communicate such information to learners, which is considered especially
useful for students of ecology and future decision makers in the field of sustainable de-
velopment. Our approach is generic and has also been tested on other domains, such as
physics and biology. Several parts of the WiziGarp architecture have been evaluated by
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potential users and domain experts, such as the the question generation module [8], and
the diagrammatic representations [1]. The results of these evaluation studies are encour-
aging and have led to several improvements from predecessor VisiGarp (which included
only the diagrammatic representations, without aggregation mechanisms and textual ex-
planatory dialogue) to the design of WiziGarp.

Compared to related work that addresses explanations for simulations [7, 9], Wizi-
Garp encompasses a more extensive taxonomy of events, more flexible aggregation
mechanisms, and a richer set of didactic means. Future work will address an automated
reactive curriculum planner, based on learner answers to exercise questions, thereby fur-
ther increasing the level of interactivity to support learning about dynamic phenomena.
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Abstract. RMT (Research Methods Tutor) is a dialog-based tutoring system cur-
rently being used in conjunction with university-level courses on research methods
in psychology. RMT has a web-based interface and uses a talking head to to present
its dialog acts to the student. The student types in unconstrained natural language
responses. Although RMT currently focuses on natural language-based interaction
with students, the use of the talking head brings in other modalities of interaction
which must be integrated with the textual “message”. This paper describes the basic
architecture and approach of the RMT system, and its evaluation in the context of
recent research methods classes. Our experiments compared the agent-based tutor
to a text-only version of the system, and compared tutoring to a computer-aided
instruction control. Due to technical difficulties with the agent software and some
compliance issues with the students, we got no significant results that validated the
usefulness of the system as a learning aid. We did however see consistent trends
of additional learning in conjunction with the use of the tutor that warrant further
investigation. This paper concludes by describing our current efforts for integrating
graphical visual aids with dialog-based tutoring.

Keywords. Dialog-based tutoring, Interactive pedagogical agent / talking head,
Graphics and text

1. Introduction

In the past decade, advances in natural language processing techniques have made it pos-
sible to create intelligent tutoring systems which interact with students more and more
like human tutors do: via dialog about some content material. In some cases this interac-
tion is appropriately entirely linguistic. In most cases, however, tutor-student interactions
can and should include other types of shared information. This paper describes Research
Methods Tutor (RMT), a dialog-based intelligent tutoring system for research methods
in psychology. RMT is intended as an adjunct to a college-level course to be used by the
student at their convenience to strengthen their understanding of the concepts discussed
in class.

1This work was supported by a grant to the first author from DePaul University’s Quality of Instruction
Council.

2Correspondence to: Peter Wiemer-Hastings, School of Computer Science, Telecommunications and
Information Systems, 243 South Wabash Avenue, Chicago, IL 60604, United States. Tel.: +1 312 362 5736;
Fax: +1 312 362 6116; E-mail: peterwh@cs.depaul.edu.
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 RMT is embodied by an animated agent which uses text synthesis to present its
questions, feedback, and other dialog moves. The tutor can also operate in text-only mode
where its utterances are printed on the screen. The latter approach is much simpler from a
technological viewpoint. On the other hand, there is evidence that students may pay scant
attention to textual information in an ITS setting [6]. Furthermore, if graphics or other
visual aids are presented simultaneously with explanatory text, the student’s cognitive
and perceptual resources for processing visual input may become overburdened [2]. In
addition, the use of a “talking head” provides the possibility for utilizing another type of
“mixed language”, namely the intonation and facial gestures which human tutors often
use to give graded feedback.

The RMT project has 3 major goals:

1. to explore the requirements for and benefits of a web-based tutoring system as an
adjunct to classroom education,

2. to learn more about tutoring in an abstract, relatively informal domain as com-
pared to science or math-oriented tutoring, and

3. to serve as a workbench for evaluating different aspects of dialog-based tutor-
ing, for example how the use of a talking head might help students learn when
compared to text alone.

This paper gives a high-level description of the RMT architecture and its approach
to tutoring. Next, we present the results of our initial evaluations of the system with stu-
dents in research methods courses at DePaul University. Finally, we discuss the direc-
tions which we are currently exploring for incorporating mixed-language explanations to
help improve student learning.

2. RMT Basics

Psychology students at DePaul, as at most universities, are required to take one or more
courses in research methods. These courses address the basic methodology required to
do experimental psychology, including topics like variables, reliability and validity, dif-
ferent types of experimental designs, and ethics. Although the courses normally include
many examples of aspects of experimental design, it is not the specific examples that the
students must learn, but rather the processes for creating successful designs. This level
of abstraction makes the courses especially difficult. When students interact with RMT,
they have the opportunity to discuss additional examples and get direct feedback on their
understanding and use of the relevant concepts. From a constructivist viewpoint, this ac-
tive processing should increase the number of connections that they can make to related
material and deepen their understanding.

RMT is a web-based system. Students log in to the system at their own convenience,
typically during a window of time set by the instructor for each topic module, and typ-
ically from their own computers at home. The agent is implemented using Microsoft
Agent software with its accompanying text-to-speech engine. The tutoring sessions start
when the student has chosen one of the available topics. The tutor is normally “in con-
trol” of the dialog. The tutor asks questions, and the student types in his or her responses.
The tutor evaluates each response using Latent Semantic Analysis [4,7] by comparing it
to a set of one or more expected answers. The tutor then gives positive or negative feed-
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Figure 1. The basic RMT interface

back and either tries to get the student to add more information in response to the current
question, or summarizes and moves on to a new question. RMT uses a transition network
to control its dialog decisions, including responding to questions and certain requests or
commands (e.g. asking the tutor to repeat its last utterance). All tutor and student ut-
terances are logged in a database along with the tutor’s evaluations of student response
quality. Figure 1 shows a screenshot of the (agent-based) tutoring interface. The interface
was intentionally kept as simple as possible, avoiding anything that might distract the
student from the tutoring interaction.

Currently RMT uses entirely linguistic interactions with the student. For most tutor-
ing items, the tutor simply asks a question, evaluates the the student’s response, and fol-
lows with another question or prompt to keep the dialog moving. Even within this limited
paradigm, there is an aspect of mixed language. As human tutors do [5], RMT avoids the
use of direct negative feedback which might cause the student to become embarrassed
or “lose face” and subsequently reduce their level of participation in the dialog. Instead
RMT uses intonation and facial and hand gestures to suggest that something is not quite
right without explicitly telling the student that they’re wrong. Thus the use of an ani-
mated agent automatically brings in multiple modes of communication. In RMT, these
modes are coordinated by its feedback mechanism which is invoked with an utterance
and an affective stance like “positive” or “confused.” The feedback mechanism will then
choose an intonation pattern and animation to express this affect. A random component
in the feedback mechanism keeps the agent from acting too “robot-like”.

RMT has three different levels of tutorial material: conceptual, analytic, and syn-
thetic [1] which roughly correspond to the student learning the basic concepts, how to
apply them to analyze example experimental designs, and how to create new experimen-
tal designs. Many of the analytic and synthetic items include a fairly detailed description
of a particular experimental scenario which is then referred to over the course of an ex-
tended discussion. It would be unreasonable to expect the students to maintain the details
of these examples in their working memory while the discussion goes on. To provide an
external memory device, RMT always presents these scenarios on the screen as shown in
Figure 2 during the related dialog. The tutor refers to the scenario when asking the initial
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Figure 2. RMT with a scenario

question and gives the student the opportunity to read the scenario while coming up with
their answer.

This relatively simple architecture allows RMT to engage students in extended con-
versations about a wide range of topics in research methods. We have currently devel-
oped modules for five topics: validity, reliability, variables, experimental design, and
ethics. The next section discusses our initial evaluations of the RMT in conjunction with
research methods courses at DePaul.

3. Evaluation

The motivation behind our goal of integrating RMT with classroom education was to en-
able us to fill a gap in the current understanding of dialog-based tutoring. Previously such
systems have been evaluated in the context of laboratory experiments where participants
take a pre-test, use the system intensively for a significant amount of time, then take a
post-test [3, for example]. This protocol certainly highlights the potential effectiveness
of these systems, but may be lacking in external validity. The fundamental question is
whether such systems can help students learn on an ongoing basis. Our “real-world”,
class-linked evaluation of an ITS is challenging since the students are using the tutor
for significantly less time than they are sitting in class throughout the course of a term.
Furthermore, as we describe below, other aspects of the real world have complicated our
evaluations. Nevertheless, our results were encouraging if not conclusive.

Pilot data from two classroom studies of the current version of RMT supported the
feasibility and usefulness of our approach. During the Winter and Spring quarters of
2004, 101 students from multiple sections of Research Methods courses at DePaul Uni-
versity volunteered to use the tutor throughout the quarter for extra credit. A few of
them actually did use the tutor for one or two sessions. One of our main research ques-
tions focussed on whether the use of an animated agent helped or hurt student learning
when compared to the text-only version of the tutoring system. Unfortunately, because
the agent-based modules required the installation of additional software, very few stu-
dents actually completed these modules. Those who were able to install the software
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 were greeted by an agent with no animations (except for blinking and lip movements)
and a rather high, squeaky voice. Thus, we were not especially surprised when the agent
version failed to help students learn the material.

In the Fall quarter of 2004, 28 students in a single section of Research Methods II
(the second of the two-course methods sequence taken by all psychology majors at De-
Paul) who were required to use the tutor as a course assignment consented for their data
to be analyzed for research purposes as well. The architecture of the system had been
extended to support automatic and dynamic assignment of students to different condi-
tions for the different modules. This second experiment tested the following hypothe-
ses: First, that the RMT system would lead to greater learning gains than a computer as-
sisted instruction (CAI) control1; and second, that an animated agent would be superior
to text-only presentation.

Across the three classes in our sample (one section of Research Methods I, and two
sections of Research Methods II) a total of 43 students completed both the pre-test and
post-test and were thus included in the analysis (18 from RM I, and 25 from RM II).
Of these, 15 were unable to install the agent software at all, leaving a relatively small
number of observations per condition.

The design was a 2x2 within-subjects factorial, with presentation (text-only vs.
agent) and instruction type (RMT tutor vs. CAI) as the independent variables. For each
student, one module was assigned to each of the four conditions. Because there were
five modules and four conditions, one of the conditions was assigned to two modules for
each subject, with the pairing of modules and conditions counterbalanced across groups
of four subjects.

Unfortunately, many subjects failed to complete one or more modules, with the result
that the design was no longer counterbalanced across modules. We therefore analyzed
each module separately, with pre-test to post-test gain score for proportion correct on
questions related to that module as the primary dependent measure, and pre-test score
included as a covariate. The design of the analysis of each module was therefore a 2x2
ANCOVA, with both presentation and instruction type as between-subject factors. Only
students who had installed the agent software and had completed at least one session on
that module were included in each analysis (N = 12, 12, 26, 25, and 24 for the validity,
reliability, variables, experimental design, and ethics modules respectively). There were
no reliable main effects or interactions in any of these analyses, probably due to the low
Ns and variability associated with technical problems with the agent software reported by
students. The only significant effect in the analyses was that of the pre-test covariate —
not surprisingly, lower pretest scores were generally associated with higher gain scores.

Although one of our aims had been to compare the effectiveness of the agent to text-
only presentation, our data was uninformative on this point, revealing no significant main
effect of presentation type in any analysis, and no consistent qualitative pattern (three
modules had higher covariate-adjusted mean gain scores for text-only presentation and
two for agent presentation). Because of the lack of presentation effects, and the fact that
over a third of our sample failed to install the agent software at all, we then collapsed
across presentation type and re-analyzed the data, focusing instead on instruction condi-
tion.

1In the CAI control condition, students were presented with a series of static texts (in either text-only form
or “read” by the animated agent) which covered the same general content material as the tutoring sessions, and
they were given a multiple choice test at the end of each module to ensure that they attended to the text.
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None CAI Tutor

Validity .05 .08 .22

Reliability .07 .05 .13

Variables .13 .08 .12

ExptDes .00 .09 .13

Ethics .08 .16 .19

Table 1. Gain scores by Module and Condition

In the re-analysis, we focused on two questions: (1) Is there any evidence that RMT
produces greater learning gains than the CAI, or that either produces greater gains than
those found for students who did not complete that module at all (none). (2) Does apti-
tude (as measured by overall pre-test scores, not separated by module) interact with in-
struction type? Our intuition based on student comments was that high-aptitude students
may learn more effectively from the CAI, which allows them to control the pacing and
presentation themselves, while lower-aptitude students may learn better from the tutor,
which provides more active, tutor-directed instruction.

We re-analyzed the gain scores from all 43 students for each module in separate
one-way ANCOVAs, with instruction condition (CAI, RMT, or none) as the between-
subjects factor and module pretest score as the covariate. There was no significant effect
of instruction in any of the analyses; again the only significant effects were those of the
pretest covariate. Qualitatively, however, a fairly consistent pattern emerged. The mean
covariate-adjusted gain score for the RMT condition was higher than that of the CAI
condition for all five modules (p < .05 by a sign test) and higher than the baseline “none”
condition for four of the five modules. The CAI condition was not consistently above
baseline, however, with only two modules having a higher mean gain score for CAI than
“none.” Table 1 lists the average gain scores for the five modules by instruction condition.

This is consistent with the qualitative pattern of the overall unadjusted mean gain
scores. Averaging across all modules, the mean gain scores were .10 for CAI, .15 for
RMT, and .06 for uncompleted modules. Thus we have a trend that suggests that the
use of RMT increases learning, although no solid statistical evidence from our limited
sample.

To test our hypothesis of an aptitude by instruction-type interaction, we entered the
module gain scores into separate 2x2 ANCOVAs, with instruction condition (CAI vs
RMT) and aptitude (low vs. high, as defined by a median split of overall pretest scores)
as between-subjects factors, and module-specific pretest score as the covariate. (Uncom-
pleted modules were excluded from these analyses). The predicted aptitude by instruc-
tion interaction was not confirmed. There were no significant main effects or interactions
in any of the analyses, with the only significant effects being those of the module pre-
test covariates (significant in 4 of the 5 analyses). Qualitative examination of the mean
gain scores revealed no consistent pattern of interaction either. To make sure the lack of
interaction was not simply an artifact of reducing the variability in the aptitude measure
by making it categorical, we also conducted regression analyses with aptitude (overall
pretest score), instruction type, and the aptitude*instruction type interaction as predic-
tors. No significant interactions were found in any of these analyses either. Thus we have
no evidence at present to support our hypothesis that the RMT tutor is more effective for
low-aptitude students, compared to a CAI.
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Figure 3. Average gain by instruction type and aptitude

Despite the fact that the differences were not significant, the data trends did come
out in the right direction. Figure 3 shows the differences in gain scores for the low and
high pretest groups for the different types of instruction. In this chart, the average gain
scores for the modules which students did not complete (i.e. the learning gain due to the
coursework alone) were also included for comparison and are marked as “None.” Again,
we make no claims based on this outcome other than that this question of an aptitude by
treatment interaction in RMT warrants further study.

4. Mixed Language Explanations

Research on e-learning systems shows that including graphics with textual explanations
can produce a cognitive synergy in the learner that leads to more effective processing
of the material and deeper understanding [2]. Unfortunately in an abstract domain like
research methods, it is relatively easy to create graphics that illustrate a particular ex-
ample (e.g. participants in an experiment drinking coffee before taking a test), but such
graphics will do little to improve the student’s far transfer. It is much more difficult to
create graphical materials that illustrate the important concepts related to the processes,
and there is still the question of how much they will help the students.

Figure 4 shows one graphic that we developed to explain the concept of statistical
validity, i.e. that the changes in the dependent variable in an experiment are caused by
changes in the independent variable, and not due to chance. The graphic includes some
aspects that should be familiar to the students, like a basic 2-dimensional graph and
frequency distributions. We still don’t know, however, if such a graphic is too abstract to
be beneficial to the students. Another issue is the method of presentation of the graphic.
Should we start with a blank slate and add components as the discussion progresses, or
should we present the entire graphic and center the discussion around getting the student
to understand it? A further complication is related to the use of talking head along with
the graphics. The animated head might distract the student from attending to the graphic.
A solution might be to either have the head disappear or wander off-screen, or to have it
look at the graphic, “inviting” the student to do the same.

Another mixed-language explanatory technique could be used when the tutoring
topic calls for the student to list a number of items, for example, possible confounds for
an experiment. Using simple HTML commands, the tutor could jot the items down in
a “notepad” area of the screen as the students names the items in order to reduce the
student’s working memory load.
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Figure 4. A graphic for explaining statistical validity

To evaluate RMT’s graphical elements (including the talking head), we have started
to use an eyetracker to analyze where and for how long a student’s gaze is directed. We
hope to correlate this data with eyetracker-based measures of the student’s cognitive load
[6] to identify aspects of the interaction that may be confusing to the student.

In this section we have presented a few ideas and a lot of questions. The use of
mixed-language explanations has the potential to be extremely beneficial to students by
helping them process and integrate new information, but significant research must be
done to understand how it can best be deployed.
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Abstract. Making effective use of communicating by natural language and formal
expressions is demonstrated in a number of text books in formal domains. For tu-
torial systems, using such communication means would also be desirable, but this
is substantially hindered by the inherent difficulties associated with interpreting
these mixed language forms. In order to improve communication in tutorial sys-
tems, we have examined a corpus on teaching mathematical theorem proving in ele-
mentary set theory, in terms of functionalities required for handling the phenomena
observed. Techniques required include an increased interactions between analysis
components, extra knowledge needed for communication, and specific interpreta-
tions for imprecise terms and referring expressions. Although our case study only
concerns a rather restricted domain, we are convinced that the findings carry over
to other subareas of mathematics and related domains, such as naive physics.

1. Introduction

Text books in formal domains, such as mathematics, are characterized by a mixture of
natural language and formal expressions. Communicating in this mixed language form
turns out to be quite effective, combining the preciseness of formal expressions with
occasional sloppiness in natural language descriptions. For tutorial systems, a prevailing
trend has been to make the communication with the automated tutors as close to that of
human–human tutoring as this has been proved to be the most effective in supporting the
student’s conscious learning process [4]. Hence, in formal domains, such communication
means would also be desirable, but making use of them is substantially hindered by the
inherent difficulties associated with interpreting natural language, not to mention further
complications arising from the mixed language forms.

In this paper, we report on issues involved in interpreting mixed symbolic and natu-
ral language student utterances in the context of a student-tutor discourse on mathemati-
cal proofs and present strategies for the interpretation process. We examine a corpus on
teaching proving skills in elementary set theory, in terms of functionalities required for
handling the observed phenomena. The required techniques include an increased inter-
actions between analysis components, extra knowledge needed for communication, and
specific interpretations for imprecise terms and referring expressions.

The paper is organized as follows. First, we characterize the discourse phenomena.
In the main part of the paper, we describe interpretation techniques for analyzing them,
in particular, the role of external knowledge sources. Finally, we discuss future activities.
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2. The language of mathematical proofs

In contrast to text books in formal areas such as mathematics, there is hardly any material
on dialogs in such domains. To investigate the use of language in written dialogs on
mathematical proofs, we have conducted an experiment with a simulated tutoring system
for teaching proofs in naive set theory. In this section, we briefly present the setup of our
corpus collection experiment and discuss the language phenomena.

2.1. Corpus collection

In a Wizard-Of-Oz (WOz) setup, we have asked 24 subjects, with varying educational
background and little to fair mathematical knowledge, to solve proofs in naive set the-
ory. The subjects were asked to prove three theorems: 1. K((A ∪ B) ∩ (C ∪ D)) =
(K(A) ∩ K(B)) ∪ (K(C) ∩ K(D)), 2. A ∩ B ∈ P ((A ∪ C) ∩ (B ∪ C)), and
3. If A ⊆ K(B), then B ⊆ K(A); K stands for set complement and P for power set.
To encourage dialog with the system, they were instructed to enter proof steps, rather
than complete proofs at once. Neither the subjects nor the tutor were restricted in the
linguistic expression in formulating their turns. The dialogs were conducted in German
(cf. [9] for details on the corpus).

2.2. Language phenomena

To illustrate the characteristics of the language used in our setting, we present an
overview of the prominent language phenomena observed in our corpus. Examples are
given in the original German version, accompanied with English glosses.

Semi-formal expressions One of the most prominent characteristics of informal proofs
in our setting is that (semi-formal) mathematical expressions and natural language are
tightly intermixed, e.g. (1), (3). However, utterances may also be worded entirely in nat-
ural language, (2). In a sloppy notation, mathematical expressions (or parts thereof) may
lie within a scope of quantifiers or negation expressed in natural language, as in (4).

(1) K(A ∪ B) ist laut DeMorgan-1 K(A) ∩ K(B)

According to DeMorgan-1 K(A ∪ B) equals
K(A) ∩ K(B)

(2) A enthaelt keinesfalls Elemente, die auch in B sind.
A contains no elements that are also in B

(3) A ∩ B ist ∈ von C ∪ (A ∩ B)

A ∩ B is ∈ of C ∪ (A ∩ B)

(4) B enthaelt kein x ∈ A

B contains no x ∈ A

Ambiguity Imprecise and informal descriptions formulated by students may frequently
be associated with ambiguity. In (5), a structural ambiguity is introduced by an ambigu-
ous coordination.1 In (4), above, and (6), a multiply-ambiguous relation of Containment
is introduced by predicates “contain” and “be in”: on the one hand, possibly referring to
STRUCTURAL COMPOSITION, on the other, to INCLUSION (in naive set theory still am-
biguous between the relations of super-/subset or element), with both readings possible

1The alternative readings are: “[x ∈ B and therefore x ⊆ K(B)] and [x ⊆ K(A) given the assumption]”
and “[[x ∈ B] and therefore [x ⊆ K(B) and x ⊆ K(A)] [given the assumption]]”
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in case of (4).2 Finally, (7) and (8) exemplify ambiguities at the proof structure level.
Both were uttered as first dialog turns on the part of the student in response to the first
problem (see 2.1). In the former case, it is not clear whether the provided formula is to
be interpreted as an instantiation of the DeMorgan rule or as a consequent of the formula
to be proved. In (8), the point of application of the DeMorgan rule is not indicated.

(5) x ∈ B und somit x ⊆ K(B) und x ⊆ K(A) wegen Voraussetzung
x ∈ B and therefore x ⊆ K(B) and x ⊆ K(A) given the assumption

(6) wenn A vereinigt C ein Durchschnitt von B vereinigt C ist, dann müssen alle A und B in C sein
If the union of A and C is equal to intersection of B union C, then all A and B must be in C

(7) S1: nach deMorgan-Regel-2 ist K((A ∪ B) ∩ (C ∪ D)) = (K(A ∪ B) ∪ K(C ∪ D))
by deMorgan-Rule-2 it holds that . . .

(8) S1: deMorgan-Regel-2
deMorgan-Rule-2

Incompleteness In domains with formal expressions, references frequently exploit im-
plicit metonymic relations, several examples of which are also found in our corpus. For
instance, “left side”, (9), refers to a part of an equation that is not explicitly mentioned
in the utterance. The expression “inner parenthesis”, (10), requires a metonymic inter-
pretation as referring to the expression enclosed by that pair of parentheses. Similarly,
the term “complement”, (11), does not refer to the operator per se, but to an expression
identifiable by this operator, that is, where “complement” is the top-level operator. A
type clash triggers the interpretation involving a metonymic extension. In (12), the ex-
pressions “smaller” and “larger” in relation to sets refer to the sets’ cardinalities rather
than the sets themselves. Another form of incomplete specification is the use of inten-
sifiers, which may require pragmatically-motivated interpretations. For example, the use
of “entirely”, in (13), is intended to percolate the difference from the sets themselves to
all their elements, as also indicated by the following explanatory remark.

(9) Dann gilt für die linke Seite, wenn C ∪ (A ∩ B) = (A ∪ C) ∩ (B ∪ C), der Begriff A ∩ B dann
ja schon dadrin und ist somit auch Element davon

Then for the left hand side it holds that..., the term A ∩ B is already there, and so an element of it
(10) Distributivität von Vereinigung über Durchschnitt: A∪ (B ∩C) = (A∪B)∩ (A∪C) Hier dann

also: C ∪ (A ∩ B) = (A ∪ C) ∩ (B ∪ C) Dies für die innere Klammer

Distributivity of union over intersection: A∪ (B∩C) = (A∪B)∩ (A∪C) Here: C ∪ (A∩B) =
(A ∪ C) ∩ (B ∪ C) This for the inner parenthesis

(11) K((A ∪ B) ∩ (C ∪ D)) = K(A ∪ B) ∪ (C ∪ D) de morgan regel 2 auf beide komplemente
angewendet

K((A ∪ B) ∩ (C ∪ D)) = K(A ∪ B) ∪ (C ∪ D) de morgan rule 2 applied to both complements
(12) Der Schnitt von zwei Mengen ist kleiner gleich der kleineren dieser Mengen, also ist das Komplement

des Schnitts größer gleich das Komplement der kleineren Menge

The intersection of two sets is less or equal to the smaller of these sets, hence the complement of the
intersection is larger or equal to the complement of the smaller set

(13) dann sind A und B vollkommen verschieden, haben keine gemeinsamen Elemente
then A and B are entirely different, have no common elements

Finally, there are also errors, specifically in formulas, which require dedicated treat-
ment – for example: If A ⊆ K(B) then A 6∈ B. For details about this issue cf. [1].

2If in the previous context there is an assignment of B to a formula in which x ∈ A is a sub-expression, the
STRUCTURAL COMPOSITION reading may be intended. The INCLUSION reading might be possible if B is a
set whose elements are formulas.
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3. Input interpretation

Our goal is to design an input interpretation strategy for a natural language discourse on
mathematical proofs. In this section, we present the basic architecture and indicate how,
it must be extended to support analysis of an increasing number of phenomena.

3.1. Baseline processing strategy

The basic processing pipeline involves four processing stages: (i) mathematical expres-
sion identification and parsing, (ii) syntactic and semantic sentence parsing (for more
details cf. [8]), (iii) step-wise domain interpretation, (iv) formal representation.

Formula parsing The formula parser uses knowledge on domain relevant operation and
identifier symbols. Identification of formula within natural language text is based on:
single character tokens (including parenthesis), multiple-character tokens consisting only
of relevant characters, mathematical symbol unicodes, and new-line characters.

The parser converts the infix notation used in the input into an expression tree based
on which dedicated functions retrieve information on surface sub-structure (e.g., “left
side” of an expression, list of sub-expressions, list of bracketed sub-expressions) and type
(given the top level operator; e.g., CONSTANT-SYMBOL, VARIABLE-SYMBOL,
TERM, FORMULA, 0_FORMULA (formula missing its left argument), etc.).

Syntactic and semantic analysis Linguistic analysis is conducted with OpenCCG3, a
parser for lexically-specified Combinatory Categorial Grammars, capable of composi-
tional construction of linguistic meaning representations. Categorial Grammars are par-
ticularly useful for our purposes since they support analysis of coordinated structures.
Moreover, mathematical expressions lend themselves to a categorial treatment in that,
depending on their type, they occur in specific syntactic contexts. In particular, incom-
plete mathematical expressions may be represented as functional categories. For exam-
ple, a formula missing a left argument (0_FORMULA, see above), is of category S\NP,
that is: of a sentence expecting an NP category in the left context.

To account for mathematical expressions embedded within the natural language,
the parser’s lexicon encodes “generic” lexical entries for each mathematical expression
type, together with plausible syntactic categories. The choice of syntactic categories was
guided by a systematic study of syntactic contexts in which mathematical expressions
are used, based on analysis of the corpus as well as course book mathematical texts.
For example, the syntactic categories for a lexical entry FORMULA (corresponding to
mathematical expressions of type FORMULA) are S, NP, and N.

The output of the parser is a relational structure representing a dependency-based
deep semantics of the utterance. In our implementation, we use the Praguian set of depen-
dency relations of the Functional Generative Description’s tectogrammatical level [6].

Domain interpretation Domain interpretation of the of the linguistic meaning of the ut-
terances is obtained using a SEMANTIC LEXICON, a collection of lexical semantic map-
ping rules that associate tectogrammatical frames with general concepts by indicating
functor to role-filler mapping. Domain interpretation is subsequently obtained by inter-
preting the general concepts within the given task and the domain using a DOMAIN ON-

3http://openccg.sourceforge.net
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TOLOGY. An example of a lexical rule is one that specifies that the Norm dependent, ex-
presses a Justification for a proof-step. Another example is a procedural interpretation
of the word gemeinsam (“common”); see Figure 1.

3.2. Context-specific processing requirements

The basic analysis architecture only covers the simplest cases of mathematical discourse
in our context (e.g. (1), (5), (13)). Hence, extensions are required, regarding:
parsing issues: incomplete mathematical expressions used as short-hand for natural lan-

guage (3), use of spoken-language syntax while verbalizing mathematical expres-
sions (6), scope phenomena involving parts of mathematical expressions (4);

lexical semantics and domain modeling: verbalizations (2), informal natural language
formulations (12), imprecision and ambiguities introduced by natural language (6);

domain-specific reference resolution: modeling typographical properties of mathemati-
cal expressions (9), identifying referent candidates within mathematical expres-
sions (11), domain-specific metonymic references (10), (11);

pragmatic disambiguation: relevance of domain reasoning in interpreting linguistically
non-ambiguous, but contextually ambiguous proof step specifications (7), (8).

3.2.1. Parsing

Incomplete mathematical expressions Both the formula and the natural language
parsers are adapted to support incomplete and/or malformed mathematical expres-
sions and their interactions with the surrounding natural language text. In particu-
lar, the formula tagger and parser recovers information about incomplete expres-
sions, using the knowledge on syntax and semantics of formal expressions in a
given domain. For example, the operator ∈, in (3), is tagged and, based on domain
knowledge, identified to require two arguments where one is of type inhabitant
and the other set. Accordingly, it is assigned a symbolic type 0_FORMULA_0 to
indicate the missing left and right arguments. Furthermore, a corresponding lexical
entry 0_FORMULA_0 of category S/PP_LEX:VON\N is included in the lexicon
of the parser (sentence missing a pp to the right and an n to the left).

Interactions with natural language To account for interactions between mathematical
expressions and the surrounding natural language text, as in (4), we identify struc-
tural parts of mathematical expressions that may be identified as part of or lie
within the scope of a natural language expression. For mathematical expressions of
type FORMULA, we split the expression at the top node (obtaining two alterna-
tive readings: “TERM1 O_FORMULA1” and “FORMULA_02 TERM2”) and
re-interpret the resulting expressions in the context of the surrounding natural lan-
guage text. The lexical entry for 0_FORMULA is of syntactic category S\N (and
its semantics is SUCH THAT TERM HAS PROPERTY FORMULA), while the en-
try for FORMULA_0 is of category S/N. This re-interpretation of a mathematical
expression allows us to obtain the intended reading of (4) (cf. [8]).

Domain-specific language syntax With (6), we illustrated the use of domain-specific
syntax wording a formal expression in natural language. Vereinigt (Past Partici-
ple form of unify) is normally used with a prepositional phrase (vereinigen mit
+Dat.), however, the presented construction is commonly used when formulas are
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(1) MAP ((containpred, xact, ypat), (CONTAINMENTpred, containeract, contentspat))
(2) MAP ((containpred, xact:formula, ypat:formula),

(STRUCTURAL COMPOSITIONpred, structured objectact, substructurepat))
(3) MAP ((common, ppred,sem==have, xact:coord(x1,x2,...,xn), ypat:Pred),

(Pred(x1,y1) ∧ Pred(x2, y1) ∧ . . .∧ Pred(xn, y1)))
(4) MAP ((common, ppred,sem:Pred, xact:coord(x1,x2,...,xn), ypat),

(Pred(x1, y) ∧ Pred(x2, y) ∧ . . .∧ Pred(xn, y)))
(5) MAP ((common, ppred,sem:Pred1, xact:coord(x1,x2,...,xn), ypat:Pred2),

(Pred1(x1, y1) ∧ Pred1(x2, y1) ∧ . . .∧ Pred1(xn, y1) ∧
Pred2(x1, y1) ∧ Pred2(x2, y1) ∧ . . .∧ Pred2(xn, y1)))

Figure 1. Example entries from the semantic lexicon

verbalized. To account for domain-specific constructions, we introduce domain-
specific lexica in the parser’s lexicon: the lexical entry for vereinigt first translates
the item into its domain interpretation: 0_TERM_0 (similarly to the treatment
of ∈) with the syntactic category S\NP/NP.

3.2.2. Domain-specific anaphora

To resolve references to parts of mathematical expressions, first, the formula parser in-
cludes functions to recover parts of mathematical expressions in specific PART-OF rela-
tions to the original expression. The selection of identified formula parts is motivated
by systematic reference in natural language to those parts and notably includes: typo-
graphical features, such as “sides” of terms and formula, linear orders (e.g. “first”, “sec-
ond” argument), structural groupings (bracketed sub-expressions). Second, the entities
are represented in an ontological representation of the domain objects (cf. [2]).

3.2.3. Domain modeling

The ontological domain model is extended to include representation of imprecise and/or
ambiguous concepts evoked by natural language descriptions as generalizations of math-
ematical relations in the considered domain. To mediate between ambiguous linguistic
realizations of domain concepts, we use a linguistically-motivated SEMANTIC LEXICON
that provides a mapping from dependency frames to domain-independent conceptual
frames. The input structures are described in terms of tectogrammatical valency frames
or specifications of relative heads/dependents of concept-evoking lexical items. The out-
put structures are the evoked concepts with roles indexed by tectogrammatical frame ele-
ments or interpretation scripts. Where relevant, sortal information for role fillers is given.
Figure 1 shows some lexicon entries explained below.

Containment The CONTAINMENT relation in its most common domain interpretation
specializes into relations of (strict) SUBSET or ELEMENT. (1) It also has a spe-
cific interpretation in the context of STRUCTURED OBJECTS (such as FORMULA),
where it expresses a relation of STRUCTURAL COMPOSITION between parts of the
structure (SUBSTRUCTURE vs. the embedding STRUCTURED OBJECT). (2) It can
be linguistically realized, among others, with the verb enthalten (contain). The
tectogrammatical frame of enthalten involves the relations of Actor (act) and Pa-
tient (pat) that fill the CONTAINER and the CONTENTS roles respectively in the
first reading, while in the second reading, Patient fills the SUBSTRUCTURE role.
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Common property The semantics is derived using interpretation scripts based on the
evoking lexical item gemeinsam (common). In Figure 1, Pred is a meta-object
that can be instantiated with a relational noun (3), or a relational predicate (4). (5)
is the most general case. Interpretation of (13) is instantiated with the first read-
ing: MAP ((common, ppred,sem==have, xact:coord(A,B),ypat:Element), (ELEMENT(A,y1) ∧

ELEMENT(B, y1)))

In order to interpret student utterances and to meet communication purposes, we
manually constructed a DOMAIN ONTOLOGY, an intermediate representation that links
concepts from the semantic lexicon with logical definitions represented in the domain
knowledge base. The design and the role of the ontology is motivated in more detail
in [2]. The core extensions include: 1. representation of imprecise and general concepts
that need to be interpreted in domain-specific terms; 2. typographical properties of math-
ematical objects, including substructure delimiters (e.g. parentheses) and linear order-
ings, e.g. argument positions. The most interesting feature of the intermediate represen-
tation is incorporation of ambiguous and general concepts, such as CONTAINMENT, as
SEMANTIC RELATIONS. For example, a CONTAINMENT holds between two entities if
one includes the other as a whole, or all its components separately. This is a generaliza-
tion of SUBSET and ELEMENT relations in naive set theory (see examples (4) and (6) in
section 2.2). Moreover, as part of domain model, we encode polysemy rules for treat-
ment of metonymic references. Examples of such rules in the mathematics domain are:
FORMULA-SIDE : TERM-AT-SIDE, as in (9), BRACKET : BRACKETED-TERM, as in (10),
OPERATOR : TERM-UNDER-OPERATOR, as in (11).

3.2.4. Disambiguation

In addition to the ambiguities discussed above, a proof-statement may yield different
meanings according to its contextual interpretation. This interpretation comprises the rel-
evance of the utterance as a contribution to the task goal and the likelihood that the most
sensible interpretation is (1) indeed intended, (2) consciously specified by the student.
Concerning the relevance of a proof-statement, we are able to test correctness and also
coherence in terms of a partial solution built so far in the tutorial session. This is done by
building and maintaining a representation of a proof constructed by the student.

A student may start to construct one proof, but in the course of the session, abandon
it and attempt another proof, in which case, the system keeps track of the alternative
solutions. It evaluates the appropriateness of the student’s contributions with respect to
a valid proof by attempting to incorporate the alternative interpretations of ambiguous
statements into the proof state representation. For each alternative, the evaluation is one
of the following categories: relevant (the contributed proof step is correct and brings the
proof forward), (only) correct (statement true, but does not bring the proof forward),
and incorrect (the contributed step is false). The current and preceding evaluations, pro-
vided the proof-steps relate to the same problem solution, direct a hinting algorithm for
choosing an adequate system response in a socratic tutoring style [7].

In addition, the decision on which interpretation is intended is pragmatically influ-
enced by other factors, such as: the student’s knowledge of the domain concepts and their
correct use, correct usage of domain terminology (student model) or contextual prefer-
ence for one reading over the others. So far, we do not evaluate these factors. In the most
“accommodating” approach, ambiguous statements evaluated as correct in one of the
readings could be accepted without clarification, making dialog progression smoother.
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4. Discussion and Conclusion

In this paper, we discussed phenomena related to communication by natural language
and mathematical formulas in elementary set theory and elaborated on functionalities
required to handle these phenomena. Several systems addressing subfields of formal do-
mains, e.g. geometry (PACT [5]), electrical engineering (BEETLE [10]), and physics
(Why2-Atlas [3]), also offer natural language based interaction, all with some degree
of interaction with formal expressions. In comparison to these approaches, we can han-
dle a tighter mixture of portions of natural language and parts of formal expressions.
Moreover, the strict separation of knowledge sources enables us to treat varying forms
of incompleteness and sloppiness in accordance with chosen tutorial strategies.

As dialogs in our corpus demonstrate, functionalities described in this paper are not
sufficient to analyze and understand several of the students’ statements which a human
tutor would be able to do without much effort. Among the most severe problems are
recognition of formula resp. natural language parts, which may sometimes be very tricky,
determination of sometimes missing sentence boundaries, and dealing with recoverable
errors in specifications. We intend to address these issues in the near future.
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Abstract. When dealing with a natural language interaction about a formal do-
main, a number of phenomena occur. They include interspersing natural language
with formulas, various degrees of formality, and conveying the logical structure of
an essay. Capturing these phenomena, to some extent, is necessary for providing
relevant tutoring feedback. In this paper we discuss these phenomena, the extent to
which we process each of them in the Why2-Atlas tutoring system and directions
for future work.
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1. Introduction

The Why2-Atlas tutoring system [10] is designed to encourage student’s self-explanation
via a natural language (NL) dialog. After a problem from the domain of qualitative me-
chanics is presented to the student, she is asked to write an essay containing her answer
and explanation (Figure 1). The essay is analyzed for its correctness and coverage [7]
and based on the found errors or missing facts or justifications the system starts a dialog.
After the points are discussed in the dialog the student is asked to update her essay and
the cycle continues until the essay is considered satisfactory.

When is the essay good enough? There are two tutoring objectives that are aimed at
by Why2-Atlas. First, the student should use appropriate language to describe domain
concepts. Second, the student should develop an understanding of relationships between
mechanical concepts represented by laws and formulas and apply these relationships to
generate an admissible logical argument that leads to the correct answer. These require-
ments imply the following criteria for evaluating an essay:

• proper use of physics terms,
• correctness of statements,
• correctness of justifications, namely laws and relationships,
• a significant overlap of the logical structure of the essay with the ideal solution

graph (a “proof”).

1Correspondence to: Maxim Makatchev, LRDC, 3939 O’Hara Street, Pittsburgh, PA 15260, USA. Tel.: +1
412 624 7498; Fax: +1 412 624 7904; E-mail: maxim@pitt.edu.
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Problem: A heavy clay ball and a light clay ball are released in a vacuum from the same
height at the same time. Which reaches the ground first? Explain.
Explanation: Both balls will hit at the same time. The only force acting on them is gravity
because nothing touches them. The net force, then, is equal to the gravitational force. They
have the same acceleration, g, because gravitational force=mass*g and f=ma, despite having
different masses and net forces. If they have the same acceleration and same initial velocity of
0, they have the same final velocity because acceleration=(final-initial velocity) elapsed time.
If they have the same acceleration, final, and initial velocities, they have the same average
velocity. They have the same displacement because average velocity=displacementtime. The
balls will travel together until the reach the ground.

Figure 1. The statement of the problem and a verbatim student explanation.

All of these evaluation criteria, except for the last one, apply also to the analysis of
some of the student turns during the dialog stage. Analyzing an essay or a dialog utter-
ance with respect to these criteria requires dealing with the following language phenom-
ena:

• symbolic expressions: e.g. “a is constant,” “f=ma”;
• numeric expressions: e.g. “acceleration is 9.8 m/s^2”;
• formally and informally described physics terms: e.g. “speeding up” versus

“speed is increasing,” “move side by side” versus “have equal positions”;
• generic and instantiated versions of the physics laws and formulas: “force on the

ball equals its mass times g” versus “force is mass times acceleration.”
• logical relations being expressed in natural language and omission of logical re-

lations: “provided there is no air resistance. . . ,” “if it was true that the balls fall at
the same acceleration, . . . ”

Similar language phenomena have been reported in tutoring systems for other formal
domains, e. g. mathematical dialogs [1,11] and qualitative process theory [4].

In this paper we describe the extent to which each of these language phenomena are
dealt with in the Why2-Atlas tutoring system. In Section 2 we discuss the representation
and processing that we use for each of the language phenomena outlined above. Section 3
is dedicated to our the techniques for analyzing the student’s essay and dialog turns with
respect to the evaluation criteria we listed above. We summarize our current progress and
outline possible directions for future work in Section 4.

2. Recognizing and representing mixed language expressions

2.1. Symbolic and numeric expressions

Some examples of the expressions that fall into this category are:

a. “acceleration is final velocity minus initial velocity over elapsed time”
b. “net force is mass times acceleration”
c. “9.8 m/s^2”
d. “a = 9.8 m/s^2”
e. “the equation <net force = m * a>”
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Formulas can be expressed in natural language (a), (b), in algebraic form (c), (d),
or in natural language mixed with algebraic symbols (e). In all cases these expressions
are treated as semantic units and are marked in the student input by an equation identi-
fier. The equation identifier matches the student’s text with the stored representations of
commonly occurring correct and erroneous formulas.

One of the observed differences between explanations in the subdomain of qualita-
tive physics and the domain of mathematics is that much of the reasoning consists of
application of a small number (37) of physics principles (10 of which are vector relations
between physical quantities, 12 are their derivatives, including qualitative relations, and
the rest are rules of idealization, e.g. “Possible forces are either contact forces or the
gravitational force”). This allows us to match directly against the representations rele-
vant to the correct and most common buggy formulas corresponding to the physics prin-
ciples, as opposed to compositional representations of formulas as presented in [1]. In
all, twelve legitimate and seven buggy (including “unrecognizable”) mathematical forms
are identified. The identifier is implemented as a series of regular expressions applied to
the student input after spelling correction, but before invocation of any of our language
understanding modules. The resulting text, with formulas replaced by tags can be passed
through a parser such as CARMEL [8] or MINIPAR/Rappel [5,3] since both parsers are
robust enough to skip unknown words (CARMEL), or treat them as nouns (MINIPAR),
without significant anticipated performance loss. The equation identifier is currently be-
ing tested as a part of the evaluation of the Why2-Atlas system.

Since fragments of algebraic expressions can be interspersed with text, as in (e),
some degree of flexibility is needed in defining an acceptable syntax for formulas. The
use of angle brackets as an enclosure for algebraic forms is implicitly suggested by in-
corporating this convention into the tutoring materials presented to the student. These
grouping characters, together with parentheses, are recognized but optional (and need not
even be balanced). Since mathematical forms in prose would tend to omit them even if
the result was mathematically ambiguous, as in (a), the equation identifier must tolerate
this type of ill-formedness for all modes of expression. Currently lower and upper case
distinctions are also ignored, even though it means losing the distinction between “G”
(universal gravitational constant) and “g” (acceleration due to gravity).

The equation identifier is not entirely forgiving of ill-formedness, however; it detects
a small set of common buggy formulas: for example, “a = m / f” instead of the correct “a
= f / m.” The idea is to identify common algebraic errors, and errors of omission such as
“velocity” instead of “average velocity.” The final step is a catch-all pattern to identify
strings like “x = y * z” in which one or more of the variables cannot be recognized,
as a generic buggy equation or perhaps more accurately, “unrecognizable mathematical
form.”

Example (c) is identified as a synonym for “g” gravitational acceleration, by virtue
of both its numeric value and its units – the expression “9.8” on its own would not be
given such privileged status. Such a numeric expression can, of course, be embedded in
an equation proper, as in (d).

Once the correct or buggy formula is identified, it is represented as an atom in the
first-order predicate logic-based knowledge representation, for example
(math-form mf1 a-equals-f-over-m) and
(math-form mf2 buggy-a-equals-f-over-m-inverted),
where mf1 and mf2 are the atom identifiers used for cross-referencing.
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Category Example of natural language expression

relative position “keys are behind (in front of, above, under, close, far from, etc.) man”

motion “move slower,” “slow down,” “moves along a straight line”

dependency “horizontal speed will not depend on the force”

direction “the force is downward”

interaction “the man pushes the pumpkin,” “the gravity pulls the ball”

Table 1. Categories of informal physics expressions.

2.2. Formal and informal physics

As with many other domains, some terms from the domain of mechanics have a much
less formal use in everyday language, for example “this will force the objects to move
at constant speed.” This problem can normally be handled by filtering of syntactic cat-
egories. Conversely, many mechanics phenomena may be described in an informal lan-
guage, for example “speed up” instead of “accelerate,” “push” instead of “apply a force,”
“the force is downward” instead of “the force is negative.” This type of informality has
proven to be a significant problem.

The difficulty is partially in defining the boundaries of equivalence classes for in-
formal expressions about physics concepts. Consider the example “The object will slow
down.” The correctness of this statement with respect to a particular context can be eval-
uated, despite its somewhat informal language, by representing it as a velocity with a de-
creasing magnitude, a decreasing speed, or a negative acceleration. When evaluating the
coverage of this statement, however, it may not be desirable to represent this statement
in terms of formal physics, since this may attribute to the student more knowledge than
she has actually expressed.

We address this problem by adopting representations for different levels of formal-
ity. The formal physics concepts are represented by predicates for vector quantities (po-
sition, displacement, velocity, acceleration, force, total force, momentum), scalar quanti-
ties (mass, speed, distance, duration), states (for example contact state, being in vacuum,
freefall), relations (comparison of magnitudes and directions) and a predicate defining
the order of the time instants [6]. Informal expressions can be grouped into categories,
some of which are shown in Table 1.

In the current version of our system we use a dedicated predicate for representing
each of these informal categories, except for the interaction category which we are con-
sidering implementing at a later stage. Below we include the somewhat abridged repre-
sentation of the sentences “there is a downward force of gravity”
(force f1 ?body1 ?body2 ?comp1 ?d-mag1 ?d-mag-num1

?mag-zero1 ?mag-num1 ?dir1 ?dir-num1 ?d-dir1 ?time1 ?time2)

(due-to dt1 f1 gravity)

(coordinate-system cs1 ?dir1 down)

and “the keys are behind the man”
(rel-position rp1 behind keys man ?time3 ?time4)

In the former example arguments that are equal across predicates are represented via
shared variables.
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2.3. Generic and instantiated physical laws

The qualitative rules of physics can be described in a generic form, e.g. “for two objects,
if the acceleration, initial velocity and duration are the same, so is final velocity,” or in
an instantiated form “the balls have the same initial velocity and acceleration so their
velocity will be the same at all times.” Formulas (both in algebraic and NL form) can
also be generic “a=(vf-vi)/t” or specific (for example, “a1=vf1-vi1/t1,” “acceleration of
the heavy ball equals to final velocity minus initial velocity over t.”)

Generic formulas are recognized and represented using the framework described in
Section 2.1. While we have not seen many specific algebraic expressions in our corpus,
there are cases when formulas expressed in natural language refer to specific bodies. This
imbalance can be explained by two facts: first, there are no examples of specific algebraic
expressions used by the tutor; second, specific algebraic expressions require introducing
new notations, while specific formulas expressed in NL do not. Due to the small number
of observed examples in our corpus, currently we do not attempt to represent or recognize
instantiated formulas in either algebraic or NL form.

However we do represent to a certain degree both generic and specific versions of
the qualitative relations that are consequences of the formulas. Consider the examples of
a generic and its respective specific relation from the beginning of the section: “For two
objects, if the acceleration, initial velocity and duration are the same, so is final veloc-
ity,” and ‘the balls have the same initial velocity and acceleration so their velocity will
be the same at all times.” The difference between these two expressions is in the speci-
ficity of the subject of the sentence: a ball is a subclass of an object. This nuance can
be represented by appropriate type restrictions on the corresponding variables and con-
stants, and by using a universal quantifier. Our current knowledge representation, while
allowing for typing of variables, does not allow quantifiers or Skolem constants, for the
sake of efficiency of reasoning. Instead, all the variables in standalone atoms are assumed
to be existentially quantified and all variables in the rules (except for variables present
only in the consequent of a rule) are assumed to be universally quantified [6]. Therefore
currently we settle for an imprecise representation of the generic propositions, via an
existentially quantified variable of a generic type. While this would lead to ambiguity,
in that an existentially quantified version of the statement would have a representation
that is identical with that of the universally quantified version, lack of the existentially
quantified expressions in our corpus (of the sort “there are two objects that have the same
velocity”) alleviates the potential problem. Incorporating a syntax for both quantifiers is
planned for a future version of the knowledge representation.

2.4. Recovering the logical structure

Ideally, we would like to treat an essay not as a set of unordered propositions about the
domain, but to capture and represent the causal and dependency relations between these
propositions. Representing causal relations is complicated by the fact that there are po-
tentially multiple causes for a particular consequence. Aside from the difficulty of rec-
ognizing the causes from the text, there is the problem of representing the cause-effect
relation in a form that (1) can be flexible enough to account for a variable number of
causes, (2) can be efficiently processed. One solution that satisfies both of these criteria
would require a predicate of variable arity:
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(cause c1 cause1 cause2 cause3 ...causeN effect1) .
This representation is considered superior to one with N binary predicates of the form
(cause c1 causei effect1)
that increases the number of cross-referenced atoms to be matched against stored repre-
sentations. Matching cross-referenced atoms is an expensive procedure: the time com-
plexity of the algorithm is O(2nn3), where n is the number of input atoms [9].

Another nuance of cause-effect representation is asserting versus non-asserting con-
ditions. Consider the following examples, “if there was air resistance, the larger ball
would fall faster,” and “since there is no air resistance, the balls fall at the same speed.”
Clearly there is a difference in the speaker’s belief about whether the condition actually
holds or not. The logical structures corresponding to these sentences can be represented
as A→ B and A ∧ (A→ B) respectively.

Currently we do not recognize this type of logical structure in an essay, and instead
match the unordered set of cross-referenced atoms with the stored representations for
facts and physics rules and analyze the intersection of the matched facts and rules with
the statements in the nodes of an ideal “proof” graph (more details are in Section 3.1).

One aspect of essay structure that we do represent is dependencies between physi-
cal quantities. This is relevant for representing such physics statements as “the freefall
acceleration does not depend on mass,” “the horizontal velocity does not depend on the
vertical force,” etc., and was discussed in Section 2.2. We are considering implementing
a more sophisticated mechanism for reasoning about the logical structure of an essay in
a future version of the system.

3. Evaluating essays and dialog turns

3.1. Coverage

Each of the four physics problems implemented in the system has an ideal “proof” de-
signed by expert physics tutors that contains steps of reasoning, i.e. facts and their jus-
tifications, and ends with the correct answer. A fragment of the proof for the Clay Balls
problem stated in Figure 1 is given in Figure 2. This proof is represented in the system
by a graph such that an edge (a, b) is in the graph if a is a justification rule or a fact that
is used as a premise (antecedent) of a rule that derives b. The justification in the ideal
proof corresponds to the generic physics rules, in their algebraic form and/or qualita-
tive form. The representation of a student essay as a set of cross-referenced first-order
predicate logic atoms is matched against the nodes of the ideal graph, some of which
are marked as required. Based on the overlap with the required nodes and taking into
account the structure of the graph, the system initiates a dialog to elicit the remaining
required points [10].

In addition to the manually generated ideal proof graph, each problem has a corre-
sponding automatically generated assumption-based truth maintenance system (ATMS)
that includes a large set of possible correct and buggy facts that can be derived from the
problem givens using correct and buggy rules. This allows us to compute the inferential
proximity metric between the student utterance and a required fact [7]. If the utterance is
within a single inference step from a required fact the student may be given partial credit
and appropriate feedback to help bridge the gap between the two statements. Providing
this kind of a feedback is being considered for a future version of our system [2].
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Step Proposition Justification

1 Both balls are near earth Unless the problem says otherwise, assume
objects are near earth

2 Both balls have a gravitational force
on them due to the earth

If an object is near earth, it has a gravitational
force on it due to the earth

3 There is no force due to air friction
on the balls

When an object is in a vacuum, no air touches
it

4 The only force on the balls is the
force of gravity

Forces are either contact forces or the gravita-
tional force

5 The net force on each ball equals the
force of gravity on it

[net force = sum of forces], so if each object
has only one force on it, then the object’s net
force equals the force on it

6 Gravitational force is w = m*g for
each ball

The force of gravity on an object has a mag-
nitude of its mass times g, where g is the
gravitational acceleration

...
...

...

18 The balls have the same initial ver-
tical position

given

19 The balls have the same vertical po-
sition at all times

[Displacement = difference in position], so if
the initial positions of two objects are the same
and their displacements are the same, then so
is their final position

20 The balls reach the ground at the
same time

Figure 2. A fragment of an ideal “proof” for the Clay Balls problem from Figure 1. The required points are in
bold.

3.2. Correctness

Domain statements that are recognized from the student input, namely facts (including
instantiated rules) and generic rules, are also analyzed for correctness. This is done via a
two step process: first, the statements are matched against known common buggy state-
ments; second, they are matched against nodes of the ATMS. The latter match allows us
to determine that a statement is buggy even when there is no corresponding bug in the list
of common bugs, because the only ATMS environments in which it holds true include
buggy assumptions. More details on this, including preliminary evaluation results, can
be found in [7].

4. Conclusion and future work

Natural language interaction with a student about a formal domain produces a number
of interesting natural language phenomena that need to be processed to generate ade-
quate tutoring feedback. In our system we demonstrated the feasibility of capturing those
phenomena that require limited knowledge about the domain and are undamaged by our
treatment of an essay as a set of individual sentences. This already provides the system
with useful information for generating richer tutoring feedback. Among the challenging
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phenomena that we hope to tackle in future versions of the system are the logical struc-
ture of an essay and more complete treatment of informal statements about the domain.
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Abstract. In this paper we focus on text analysis issues and describe the linguistic
problems we have encountered in working with an ideal two-column proof as the
pedagogical foundation for the tutoring system. We discuss how the student’s ex-
planation is challenging to assess relative to an ideal two-column proof since in the
explanation (1) parts of the proof can be skipped and may not necessarily reflect a
gap in the student’s knowledge and (2) parts of the proof can be merged. We hy-
pothesize that skipping and merging are due to efficiency of expression and begin
to examine the implications for assessing the depth of a student’s understanding of
the domain. Finally we outline the solutions we have attempted and are considering
for these issues.

Keywords. Text analysis, Mixed-language explanations

1. Introduction

One goal of the Why2 project has been to experiment with and evaluate the effectiveness
of a variety of NLP techniques for tutoring. We selected qualitative physics as the tutor-
ing domain as it required students to generate extended natural language explanations.
To facilitate this experimentation we divided the interaction into two phases, (1) entry of
an essay by a student that answers and justifies the answer to a qualitative physics prob-
lem and (2) a follow-up dialogue that over an extended interaction will help the student
remedy flaws in his essay. In this paper we will focus on how the Why2-Atlas system
addresses the first phase.

In the most recent version of Why2-Atlas we adopted a goal of eliciting an essay
that covers a subset of an ideal two-column proof, where physics principles in the right
column are used as justifications of the facts in the left column. Previous versions of the
systems elicited a subset of the facts in the left column [11]. A hypothesized advantage
of requiring discussion of justifications is that it encourages deeper learning because
physics principles are now explicitly exercised. Although so far we have collected 48
problem interactions between students and the current version of the system, we have not
yet started any formal studies of students’ language use. Instead, we show some excerpts

1This work was funded by NSF grant 0325054 and ONR grant N00014-00-1-0600.
2Correspondence to: Pamela Jordan, Tel.: +1 412 624 7459; Fax: +1 412 624 7904; E-mail:

pjordan@pitt.edu.
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Question: Suppose a man is in an elevator that is falling without anything touching it (ignore
the air, too). He holds his keys motionless right in front of his face and then lets go. He neither
tosses them up nor throws them down; he just releases his grip on them. What will happen to
them? Explain.

Prescribed Explanation: (18f) The keys remain in front of the man’s face the whole way down.
We can show this by analyzing forces and motions along the vertical dimension. (12f) Be-
fore the release of the keys the man and the keys have the same velocity because they are
moving together. (4f) After the release, the only forces on the man and the keys are gravi-
tational. (6f) Thus, their net forces are equal to their gravitational forces. (5jv) Now because
<gravitational force = mass * g> and (8jv) <net force = mass * acceleration>, we know that
(10f) <acceleration = g> for both the man and the keys. (13) Because their accelerations are
the same, and their initial velocities are the same, the man and the keys have the same final
velocity in accordance with <acceleration = (final velocity - initial velocity) /elapsed time>.
(14) Because their acceleration is constant and they have the same initial and final velocity,
we know that the man and the keys have the same average velocity as well. (15) This implies
that they have the same displacements at all time, because <average velocity = displacement /
elapsed time>. (16f)(17fjq) Because the man’s face and the keys start at the same height, and
they have the same displacement at all times, they have the same vertical position at all times.
(18) Thus the keys remain in front of the man’s face during the whole trip down.”

Figure 1. The statement of the problem and its prescribed essay. The numbered codes are insertions we have
added that relate a sentence or clause to parts of the ideal proof.

from the corpus to illustrate the linguistic problems we have encountered in working with
the two column proof as the pedagogical foundation for the tutoring system. We will
discuss how the student’s explanation is challenging to assess relative to the ideal proof
since in the explanation (1) parts of the proof can be skipped and this may not necessarily
reflect a gap in the student’s knowledge and (2) parts of the proof can be merged.

First we will give an overview of Why2-Atlas. Next we describe the issues involved
in evaluating a student essay relative to the ideal two-column proof in which steps may
have been omitted or merged due to efficiency of expression. Finally we outline the
solutions we have attempted and future work we are considering.

2. The Why2-Atlas System

Why2-Atlas covers four qualitative physics problems on introductory mechanics. When
the system presents one of these problems to a student, it asks that he type an answer and
explanation and informs him it will analyze his final response and discuss it with him.
One of the problems Why2-Atlas covers is shown in Figure 1 along with the prescribed
ideal response1, which the student is shown before moving on to a new physics problem.
An initial verbatim student response is shown in Figure 2 and the response from the same
student after several follow-up dialogues with Why2-Atlas is shown in Figure 3. Each
of the essays shown has numbered codes inserted for exposition purposes that we will
explain at the end of this section.

1The domain experts simplified some aspects of the explanation and made others more complicated in order
to balance exposure to principles during evaluations of the system.
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(18) They will’hang in the air’in front of him. (12f-14f) Both he and the keys are falling at the
same velocity, And no force is being exerted on the keys by the man, (17f) so they’ll be right
next to one another as they fall.

Figure 2. An initial verbatim student explanation for the problem in Figure 1. The numbered codes are inser-
tions we have added that relate a sentence or clause to parts of the ideal proof.

(4f) The only force acting on both man and keys is gravity. (5f) The magnitude of the force of
gravity on the man and the keys is its mass times g. (7f) The magnitude of the net force on each
body equals its mass times g.
(8jv) <net force = mass * acceleration>. (8f) Therefore, the magnitude of both accelerations
is f/m. (10f) This is equal to g.
(13jv)<Acceleration = (final velocity - initial velocity)/elapsed time>. (12f) The initial velocity
of the keys is the same as the initial velocity of the man. (13f) The final velocities are also the
same. The time is the same. (13jq) If the acceleration, initial velocity, and time are the same,
then the final velocity is too. (15jv) <Average velocity = displacement / elapsed time> (14f)
The average velocities are also the same. (17jq) If two things have the same v and t, then they
have the same d.

Figure 3. A verbatim subsequent explanation from the same student in Figure 2 for the problem in Figure 1.
The numbered codes are insertions we have added that relate a sentence or clause to parts of the ideal proof.

During the essay analysis phase, each sentence entered by the student is first sub-
jected to a pre-processor that segments complex sentences, marks up equations, such as
<average velocity = displacement / elapsed time>, and corrects spelling errors. Each
corrected, marked-up sentence segment is then competitively analyzed by three differ-
ent sentence-segment analysis techniques and a final interpretation is heuristically se-
lected [6]. The final output of the sentence segment analysis is a function-free first-order
predicate logic (FOPL) representation for each sentence segment.

Our intent in applying multiple sentence-segment analysis approaches is to use each
to its best advantage relative to a particular time-slice in the life-cycle of the knowledge
development effort for the tutoring system. At a given time-slice one approach may be
functioning better than another for certain types of sentence segments. But since the
knowledge development is on-going, we anticipate that the performance may change
over time.

The selection heuristics for choosing which result to use depend on the FOPL repre-
sentation language but not on the analysis techniques. The heuristics filter and rank each
output representation using an estimate of whether a resulting representation either over
or under represents the segment. The estimate combines counts of matches between the
root forms of the words in the natural language segment and the constants in the FOPL
representation returned by each method.

While any number of analysis approaches could be incorporated into the system in
this way, we are currently using three that represent a range of approaches: symbolic,
statistical and a hybrid. The statistical approach uses classes defined relative to the two-
column proof and thus the FOPL representation for each class is stored and accessed
when needed by the selection heuristics. The other two approaches directly produce an
FOPL representation.

As the final step in analyzing a student’s essay, an assessment of correctness and
completeness is performed by matching the final FOPL representations of the student’s
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essay to nodes of an augmented assumption-based truth maintenance system (ATMS)
[8].2 An ATMS for each physics problem is generated off-line. Both good and buggy
physics rules are applied to the givens specified in the problem statement. Each antic-
ipated student misconception is treated as an assumption (in the ATMS sense), and all
conclusions that follow from it are tagged with a label that includes this assumption along
with any other assumptions needed to derive that conclusion.

Completeness in Why2-Atlas is relative to an ideal two-column proof generated by
a domain expert. The ideal proof for the problem in Figure 1 is shown in Figure 4 where
facts appear in the left column and justifications that are physics principles appear in the
right column. Justifications are further categorized as vector equations (e.g. <Average
velocity = displacement / elapsed time>, in step (15) of the proof), or qualitative rules
(e.g. “so if average velocity and time are the same, so is displacement” in step (15)).
A two-column proof is represented in the system as a directed graph in which nodes
are facts, vector equations, or qualitative rules that have been translated to the FOPL
representation language off-line. The edges of the graph represent the inference relations
between the premise and conclusion of modus ponens.

Matches of input representations against the ATMS and the two-column proof do not
have to be exact. Further flexibility in the matching process is provided by examining an
inferential neighborhood of radius N (in terms of graph distance) from matched nodes in
the ATMS to determine whether it contains any of the nodes of the two-column proof.
This provides an estimate of the inferential proximity of a student’s utterance to nodes
of the two-column proof. Details of the analysis of correctness and completeness of the
essay are provided in [8] and will not be covered further in this paper.

To determine which nodes are minimally required to be covered in a student essay,
initially, our pedagogical expert for the domain estimated that for the four problems ad-
dressed by the system, a minimally acceptable essay should include all the facts (left col-
umn) and a subset of the justifications (right column). In the case of the problem shown
in Figure 1, the minimum required subset of justifications is the three justifications in
bold in Figure 4. The decision to require just a subset of the justifications was motivated
by the purely practical need to limit the time that a student would have to spend in the
worse case on a particular problem (i.e. schedule and budget constraints). Thus for this
selection process we used a rule of thumb to select only those justifications that involved
the most fundamental physics principles. The intuition is that not all justifications are of
equal importance in the learning process.

In the remainder of the paper, we will refer to an entire proof step using its step
number but to refer to parts of a step we will append to the step number “f” for the fact,
and “j” for the justification. To refer to the parts of a justification we will append after
the “j”, “v” for the vector equation and “q” for the qualitative statement. For example,
(15) refers the full step 15 in the proof, (15f) refers to just “The keys and the man have
the same displacements at all times”, (15jv) refers to just “<Average velocity = displace-
ment / elapsed time>”, (15jq) to just “so if average velocity and time are the same,so is
displacement”, and (15j) to the combination of (15jv) and (15jq).

2This matching step is skipped for any sentence-segment result that is a product of the statistical approach.
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Step Fact Justification

1 The keys and the man have a gravitational
force on them due to earth

If an object is near earth, it has a gravitational
force on it due to the earth

2 There is no force on the keys due to air fric-
tion

The force due to air resistance is zero when there
is no relative motion between air and the object

3 There is no force on the man due to air fric-
tion

The force due to air resistance is zero when there
is no relative motion between the air and the ob-
ject

4 The only force on the keys and the man is the
force of gravity

Forces are either contact forces or the gravita-
tional force

5 The magnitude of the force of gravity on the
man and the keys is its mass times g

The force of gravity on an object has a magnitude
of its mass times g, where g is the gravitational
acceleration

6 The net force on each body equals the force
of gravity on it

¡net force = sum of forces¿, so if an object has
only one force on it, then the object’s net force
equals the force on it

7 The magnitude of the net force on each body
equals its mass times g

Transitivity: if A=B and B=C, then A=C; if A=B
and B<C, then A<C, etc.

8 The magnitude of each body’s acceleration
equals its net force divided by its mass

<net force = mass * acceleration>, so the mag-
nitude of the net force on an object equals its
mass times the magnitude of its acceleration

9 The magnitude of each body’s acceleration
equals its mass * g divided by its mass

Transitivity: if A=B and B=C, then A=C; if A=B
and B<C, then A<C, etc.

10 The magnitude of each body’s acceleration
equals g

Canceling out: If A=B*C/C then A=B

11 The key and the man have the same accelera-
tion

Transitivity: if A=B and B=C, then A=C; if A=B
and B<C, then A<C, etc.

12 Because the man was holding the keys ini-
tially, and he moves along with the elevator,
the keys and the elevator have the same initial
velocity

If an object moves along with an agent, they have
the same velocity, acceleration and displacement

13 At every time interval, the keys and the man
have the same final velocity

<Acceleration = (final velocity - initial veloc-
ity)/elapsed time>, so for two objects, if the
acceleration, initial velocity and time are the
same, so is final velocity.

14 The man and the keys have the same average
velocity while falling

If acceleration is constant, then <average velocity
= (vf+vi)/2>, so if two objects have the same vf
and vi, then their average velocity is the same.

15 The keys and the man have the same displace-
ments at all times

<Average velocity = displacement / elapsed
time>, so if average velocity and time are the
same, so is displacement.

16 The keys and the man have the same initial
vertical position

given

17 The keys and the man have the same vertical
position at all times

<Displacement = difference in position>, so if
the initial positions of two objects are the same
and their displacements are the same, then so is
their final position

18 The keys stay in front of the man’s face at all
times

Figure 4. The ideal “proof” used in Why2-Atlas for the Elevator problem in Figure 1. The prescriptively
required justifications are in bold.
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3. Issues in Relating Text to Proofs

Note that while the prescriptive and subsequent student essays do include both facts and
justifications, relative to the ideal proof many facts are skipped, parts of justifications are
skipped and parts of multiple steps are merged. Looking at the numbers that we have
inserted in the prescribed essay, note that proof parts (1f)-(3f),(7f),(9f),(11f) and (16f)
are missing from the essay. Note too that some of these facts are also missing from both
of the student’s essays. In (13)-(15) of the prescriptive essay, the qualitative part of a
justification and the fact that it helps justify are merged so that only the specific fact
is mentioned. In the case of (5jv),(8jv) and (10f) in the prescriptive essay, these step
components are merged into one sentence.

We will start first with skipped facts. We claim that fact (1f) is skipped in both the
prescriptive and student essays, because saying the fact (4f) pragmatically presupposes
the fact (1f). Although there is no settled formal definition of a pragmatic presupposition,
loosely, it is any background assumption that arises for a statement [7]. For example, a
presupposition of (4f) is “there exists a force due to gravity on the keys” because the
definite noun phrase is thought to act as a presuppositional trigger [7].

Furthermore, we claim that explicitly stating both (4f) and (1f) in natural language
is in violation of Grice’s Maxim of Quantity (say no more than is necessary) [4] and
thus it should be unlikely for both to appear together in a written explanation. Grice
hypothesized four Maxims of Conversation: (1) Quality; say only what you believe to be
true and have evidence for, (2) Quantity; say just the right amount relative to the purpose
of the exchange, (3) Relevance; be relevant, (4) Manner; be brief, orderly and avoid
obscurity and ambiguity.3 He also hypothesized that seeming violations of these maxims
would lead a hearer to seek an interpretation that would resolve the violation, thus leading
to conversational implicatures. We claim these maxims and responses to violations are
relevant for text as well given that text can be viewed as a variant of conversation [2].

We see that students do clearly violate some of these maxims. For example, dur-
ing dialogues with Why2-Atlas, we saw many cases of students violating the Maxim of
Quality. When the system requested that they provide evidence for an answer they just
gave, students sometimes admitted they guessed at the answer. But what, if any, useful
conversational implicatures the tutor should make for seeming violations remain to be
determined. In the case of a violation of the Maxim of Quantity, in which more than is
necessary is said, it may be a helpful diagnostic of the student’s grasp of the material.
Including what is typically viewed as unnecessary redundancy could be interpreted as
the student failing to see the obvious connections or failing to know the premises for a
rule. So it may be best to treat what should be pragmatic presuppositions as optional and
their inclusion in a text is perhaps indicative of a student who needs help in achieving a
more coherent picture of the reasoning process.

Facts (2f) and (3f) are also typically left out of student essays because both are givens
and explicitly indicate that a force is to be ignored. Because this is near the beginning of
the problem, saying (4f) means it is likely the given information was still salient for the
student and that if the student considered all types of forces then (2f) and (3f) were used
in reasoning. Another given (16f), appears in the prescriptive essay as part of (17q). Here
the problem statement is no longer as salient as at the beginning of the text. Finally, we

3Although the maxims provide insight into why particular content is made explicit or not, they offer little
guidance for implementation.
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note that (7f), (9f) and (11f) each are conclusions of simple math manipulations and thus
their inclusion could be a signal that the student believes these are of equal or greater
importance than the other steps. Work in natural language generation operationalizes
related omissions of intermediate reasoning and parts of rules used during reasoning by
appealing in part to a model of the user’s knowledge and attention [5].

Looking next at merged parts of the proof, we claim that this is related to Grice’s
Maxim of Manner (brevity) and again appeal to work in natural language generation to
explain why this efficiency of expression is a possible display of brevity. A goal-directed
view of sentence generation suggests that speakers can attempt to satisfy multiple goals
with each utterance [1] and thus the same form can opportunistically contribute to the
satisfaction of multiple goals [10]. But there are trade-offs across linguistic levels so that
an intention which is achieved by complicating a form at one level may allow the speaker
to simplify another level by omitting important information. (E.g. a choice of clausal
connectives at the pragmatic level can simplify the syntactic level [3]).

Within a language generation system overloading is accomplished in part during the
sentence aggregation process [9]. Sentence aggregation optionally combines simple sen-
tences into more complex ones and often improves coherency of a text. So we claim that
aggregation may reflect coherency in the mind of the student and that short, choppy, non-
aggregated sentences may indicate the student is having trouble grasping the material.
However, the student may avoid aggregation if text analysis frequently fails to understand
his aggregated sentences. Note that the initial student essay is more aggregated than the
subsequent one and that the short sentences are very similar to the corresponding part
of the two-column proof. The system often bottoms-out and explicitly tells the student
what is was trying to get him to add to his essay.

We also see semantic aggregation as well, in that specific and generic content are
frequently merged so that we see the more specific content more than just generic (as in
(17jq) in Figure 3) or a combination of generic and specific (as with (5jv),(8jv) and (10f)
in Figure 1).

4. Initial Solutions and Future Work

With respect to which parts of the proof can be skipped in students’ explanations, all
parts of the ideal two-column proof are represented within the system but just those parts
that are minimally required are marked as required. Thus the student is permitted to skip
any part of the proof that is not marked as required. The dialogue then only addresses the
marked nodes of the proof that could not be linked to the student text. While deciding
what to mark as required, we made judgments about when steps are presupposed and
only marked facts that are not presuppositions or salient givens. We did still mark simple
math conclusions such as (10f) as required but in retrospect perhaps should not have.

With respect to parts of the proof being merged in the student essay, the system must
handle one-to-many mappings between a sentence and parts of a proof. We currently
have no mechanism to distinguish acceptable and unacceptable aggregations and perform
only an assessment of completeness by matching representations of what the student
said to an ideal proof and the ATMS. A problem with this matching process arises if
the selected sentence-segment analysis is a product of the statistical approach. Recall
that the statistical approach classifies a sentence-segment according to classes that are
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the nodes of the proof graph representation. But the statistical approach currently returns
just the single most likely class. Thus when sentence segmentation fails and steps are
merged in the sentence, part of the content of the sentence will be missed and will not
be matched to the proof. This is not a problem for the other two sentence-segmentation
approaches. However, currently the output of the statistical approach is the result that is
most frequently selected by the heuristics. Thus it is worthwhile investigating whether
we can automatically recognize contexts in which this approach should return multiple
classifications in order to see if it will improve the accuracy of linking sentences to the
two-column proof.

Further, while the sentence-segmenter may break sentences into clauses appropriate
to parts of the proof representation, it was not specifically developed to support segmen-
tation particular to the two-column proofs. It was instead developed to improve pars-
ing efficiency by breaking complex sentences into simpler ones. We are considering re-
training the sentence-segmenter relative to the parts of the proof as this should still ac-
complish its original purpose and potentially improve the ability to handle one-to-many
mappings.

Finally, we will consider the extent to which proof transformation methods used in
NL generation [5] can be effectively reversed for analysis purposes.
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Abstract. Researchers acknowledge the difficulty faced by children in understanding 

new concepts. We propose a Schema Activation and Interpersonal Communication 

(SAIC) approach where a traditional multimedia system is extended with a 

pedagogical agent that explains new concepts to a child in one-to-one dialogue that 

promotes schema-based cognitive tasks. This paper describes the design of the SAIC 

agent based on both principles derived from the schema theory and dialogue 

strategies derived from a WoZ study. We also present a prototype that implements 

the agent in a learning system for teaching children basic Astronomy. An 

experimental study in real settings with primary school children validated the design 

of the agent. Initial results of the study suggest that the agent was effective in 

supporting improvement of the children’s schematic knowledge. 
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1- Introduction   

 

In classroom settings, teachers support students when they have problems to understand 

new concepts in a lesson. Helping children is different from helping adults. Explaining new 

concepts to young children requires supporting the reasoning at their cognitive development 

stage based on concrete objects and ideas [15]. The support is normally through some 

dialogue where teachers introduce new concepts by tailoring the explanations to the 

reasoning ability and the prior knowledge of the children. Studies, e.g. [2], show that 

computer generated explanations may fail to communicate successfully the meaning of 

words to children, and miscommunication may occur due to deficiency of appropriate 

teaching strategies or incapability to address the needs of each individual child. As pointed 

out by Woolf [18], there is a lack of interactive pedagogical agents that adapt to the 

children’s cognitive development stage. The design of such agents can be based on learning 

theories that explain how children understand new concepts, as well as on studies of how 

human teachers support the children’s conceptual understanding [5].  

The aim of our research is to develop a pedagogical agent capable of engaging in a 

dialogue to help young children understand new concepts. To inform the design of the 

agent, we have referred to schema theory [4], [16] that explains how meaning-making 

occurs and stresses the importance of prior knowledge. Although the schema-based 

reasoning has been extensively studied and the suitability of the schema theory for the 

design of learning systems has been acknowledged [14], to the best of our knowledge there 

are no computational architectures of intelligent tutors based on schema theory. We have 
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proposed an approach for Schema Activation and Interpersonal Communication (SAIC) to 

support cognitive tasks that occur when a child is learning new concepts through one-to-one 

interaction with a computer agent [8].  

Schema theory is one possible model of the human learning. Other researchers have 

examined different theories, e.g. ACT* [11], Zone of Proximal Development [13] and 

constructivism [3]. In this line, our work contributes to computational approaches of 

intelligent tutoring systems that are derived from learning theories.  

There are a number of successful examples of interactive tutors capable of engaging 

in effective pedagogical dialogue, e.g. [6], [7], [12], to mention a few. However, they have 

been designed to support university students, while the SAIC approach presented in this 

paper shows how a pedagogical agent can use dialogue to support children’s conceptual 

understanding by following strategies based on schema theory. 

 This paper describes the design of the SAIC agent based on both principles derived 

from the schema theory and dialogue strategies derived from an empirical study with human 

teachers (Section 2). We also outline the architecture of the agent and describe briefly its 

implementation in a prototype for teaching Astronomy to children aged seven to eleven 

(Section 3). An empirical study was conducted to validate the design and examine benefits 

of the approach. Initial results of the study are discussed in Section 4. Finally, in the 

conclusions, we point out the contribution of this work to AIED. 
 

2. The Design of the SAIC Pedagogical Agent 

 

Following the methodologies for capturing pedagogical expertise in intelligent tutoring 

systems (ITS) outlined in [5], to design the behaviour of the SAIC agent we have looked at a 

theory that explains how people learn new concepts, namely the schema theory, which has 

been combined with empirical investigation of what dialogue strategies human teachers use to 

support children’s conceptual understanding. 

  

2.1 Deriving design principles from the schema theory  

The major claims of the schema theory are examined here to derive principles for the design 

of the SAIC agent. According to the theory, the knowledge structures in a person’s mind are 

represented in schemas, which are used to understand new information by connecting it to 

previous knowledge. Learning will be successful when new information is appropriately 

related to prior knowledge or existing schemas [14]. Hence, the first claim followed is:  

Theoretical claim 1: The understanding of a new concept is based on existing 

schemas. 

Based on this claim, the first design principle for SAIC was formulated as: 

SAIC design principle 1: During the interaction with the child, the agent has to 

activate prior knowledge and use this knowledge to introduce new information.  

Rumelhart and Norman [16] have proposed three learning processes to account for 

human reasoning based on schema modification: accretion - an existing schema from the 

prior knowledge is directly used to interpret a new concept, tuning - an existing schema has 

to be slightly changed in order to understand a new concept, and restructuring - when 

existing schema has to be significantly modified to create a new schema that will 

accommodate the new information. In addition to these, Rumelhart and Norman discuss the 

creation of a new schema when appropriate schema in the prior knowledge cannot be 

found. Creation is based on stating the definition of the schema and, although very 

straightforward, rarely leads to meaningful learning. These processes represent a continuous 

retrieval from the long-term memory, application of previously acquired schemas in new 
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situations, and construction of new schemas [10]. We will call these processes cognitive 

tasks to emphasise that people (children in our case) undertake some cognitive activities to 

understand new concepts. Therefore, the second theoretical claim we have followed is: 

Theoretical claim 2: The interpretation of a new concept is performed using one of 

the learning modes: accretion, tuning, restructuring, or creation. 

Based on this claim, the second design principle for SAIC was formulated as: 

SAIC design principle 2: The agent should promote the cognitive tasks proposed by 

the schema theory. 

 Children at the concrete operational stage (mainly aged 7 to 11 years old) think based on 

concrete objects or ideas [15], as opposed to adults who think based on both concrete and 

abstract objects or ideas. This nature of children’s thinking needs to be considered to 

effectively support their conceptual understanding. Therefore, the third claim followed is: 

Theoretical claim 3: Children at the concrete operational stage reason based on 

concrete objects and ideas. 

This led to the third design principle: 

SAIC design principle 3: The agent should provide concrete examples and should 

avoid the use of abstract concepts. 

 While the schema theory provides general guidelines of how to design the agent, it does 

not give sufficient understanding of what dialogue strategies should be used by a pedagogical 

agent to promote schema-based cognitive tasks. We, therefore, conducted a Wizard of Oz 

(WoZ) study to capture strategies employed by human teachers to explain new concepts. 

 

2.2 Deriving dialogue strategies from a Wizard of Oz study 

The study was aimed at deriving patterns of dialogue strategies to promote schema-based 

cognitive tasks. Nine Malaysian primary school teachers, all with significant teaching 

experience, were asked to explain new concepts to a geographically remote child (in the 

UK) via a chat-like interface added to a conventional hypertext learning system teaching 

Astronomy. The child was simulated by a wizard who “created” conditions in which, 

according to the schema theory, certain cognitive tasks would be required (e.g. schema is 

known/unknown, schema is created but some properties are unknown, schema is created 

but the values of some properties are unknown). These conditions triggered dialogue 

episodes (modelled in SAIC as dialogue games) that corresponded to schema-based 

cognitive tasks. 

Table 1: Dialogue episodes and dialogue strategies 
Dialogue episode Strategies 

Activation Asking property value of a schema 

Asking name of the schema with a property value 

Showing picture of a schema 

Informing the ISA category and its instance  

Accretion Asking an instance of the new concept 

Informing the ISA of the new concept 

Comparing the new concept with its ISA instances 

Informing an instance of the new concept ISA 

Asking whether the student can see the similarity between the new concept and its parent 

Tuning Adding a new property to the new concept which has just been created 

Informing a wrong property value of the new concept 

Contrasting the new concept with schemas under the same ISA category 

Informing the ISA category of the new concept 

Restructuring Comparing and contrasting the new concept with an existing schema  
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Creation Informing the property of the new concept 

Showing a picture of the new concept 

Informing its ISA category 

Introductory Informing that the lesson is new 

Informing that the lesson is interesting 

Informing what the student will learn 

Informing how the student will learn 

Diagnose Asking whether the student is familiar with the new concept 

Asking whether the student knows properties of the new concept 

Summarizing and 

confirmation 

Confirming the knowledge of the student 

Informing the properties of the new concept and confirming the knowledge of the 

student 

The dialogue strategies were derived based on an analysis of the dialogue 

transcripts. The results from the study are discussed in detail in [9], due to space constraints 

we only present a summary of the dialogue strategies here, see Table 1. These strategies 

were simulated with the SAIC agent, whose architecture is discussed next. 

 

3. The SAIC Prototype 

 

We propose an architecture (see Fig 1) that extends a traditional multimedia system with a 

SAIC pedagogical agent which interacts with a student using text or a combination of text 

and a picture to explain new concepts via one-to-one dialogue with a child.  

 

 
Figure 1: Integration of the SAIC pedagogical agent 

within a multimedia learning system. 

 

A multimedia learning system 

presents a sequence of lessons 

using several media, such as text, 

pictures, or videos. In addition, 

the proposed architecture 

implements the metaphor of an 

interactive reading session 

where the child goes through 

some multimedia resources and 

can ask someone (in this case a 

computer agent) for an 

explanation when he/she faces 

problems to understand new 

concepts. The SAIC agent is an 

integrated part of the learning 

environment.  

The SAIC pedagogical agent uses a template-based interface to guide the student 

reasoning during the interaction (see example in Fig 2). The agent engages the child in a 

dialogue that employs a student cognitive model that represents the prior knowledge of the 

student. The cognitive model contains schemas that are learned by the student and is 

dynamically updated through the interaction with the system. It also contains default 

assumptions of concrete objects and ideas that correspond to the age group and relate to the 

abstract domain concepts (e.g. in the study presented in Section 4, the children were 

assumed to have knowledge of vehicles, animals, seasons, etc. that could be related to basic 

Astronomy concepts).  

The dialogue is organised as a series of dialogue games that trigger corresponding 

schema-based cognitive tasks. Based on the student cognitive model, the agent selects 

relevant schemas that have to be activated in order to interpret the new concept. It follows a 

methodology for assessing schematic knowledge [10] and probes for function (the main 
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action of the concept, e.g. astronaut function: goes to the moon), structure (“part-of” relations, 

e.g. astronaut-has: protective-cloth), and process (how the action is performed, e.g. astronaut-

process: pilot-space-shuttle-to-the-moon). It then selects a suitable schema mode (accretion, 

tuning, restructuring or creation) and an appropriate explanation strategy (see Table 1). A 

domain ontology with frame-based descriptions of the main concepts to be learned is used 

to decide what properties and relationships to include in the dialogue.  

A prototype system Going to the Moon was implemented to demonstrate the 

architecture with the SAIC agent
1
. Basic Astronomy was chosen as a tutoring domain, 

which contains both concrete and abstract objects and is suitable to illustrate our schema-

based approach. A screen shot from the prototype is given in Fig 2. The prototype is 

implemented in Lingo
2
 and follows client-server architecture. The student cognitive model 

and the domain ontology (built using Protégé
3
 and converted to frame-based representation 

followed in the SAIC agent) are stored on the server. A copy of the system prototype is run 

on the server to register the child’s activities and to record the dialogue.  

 

 
Figure 2: A screen shot from SAIC and its components. 

 

To illustrate the interaction with the SAIC agent, we will show an example of how 

the agent explains the new concept ‘space shuttle’. In the example, the student cognitive 

model indicates that the schemas ‘space shuttle’ and ‘airplane’ have been created in 

previous interactions and from default assumptions, respectively. The domain ontology 

indicates that, like ‘airplane’, ‘space shuttle’ is a ‘vehicle’ and has a property-value ‘has: 

wings’ which is already in the child’s cognitive model. However, the destination property 

of ‘space shuttle’ is not in the child’s cognitive model. The ‘airplane’ schema has a 

property-value ‘destination: airport’ and can be used to tune ‘space shuttle’. Hence, the 

tuning explanation mode is chosen. A contrasting explanation strategy is initiated that 

triggers several dialogue games (episodes), as shown in the following dialogue extract. The 

child is guided by the agent and chooses suggested options (indicated in {}). 

Confirmation game 

SAIC 1 - “Do you know what the word space shuttle means?” //The agent probes the schema. 
  {“Yes”, “No”} 

Student - “Yes” 

SAIC 2 - “You think you know what a space shuttle is. Good” //Confirmation that the schema is created. 

Activation game 

SAIC 3 -  “A space shuttle is a kind of: …”, 
{“Fruit”, “Animal”, “Vehicle”. - “I don’t know”, “I don’t understand”} 

/ / Previous knowledge is activated to probe the relevant group. The interface at this point is shown in Fig 2 

Student -  “Vehicle”  //The right category is confirmed. 

                     
1 The system is available on-line at http://csw2k017.soc.leeds.ac.uk/saic/ 
2 Lingo a scripting language for multimedia authoring. 
3 http://protege.stanford.edu/ 

The student clicks 

on a highlighted 

concept to get 

explanation. This 

invokes the SAIC 

agent. 

The window where 

the SAIC agent 

appears. The 

dialogue is guided 

by the agent and 

conducted via a 

template-based 

interface. 

Navigation 

buttons to go the 

next or previous 

pages. 

The learning 

material is 

composed of text 

and pictures, and 

is organised in 

sequential pages. 
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SAIC 4 -  “Brilliant. Space shuttle is a kind of vehicle. Examples of vehicles are: car, bus 

and bicycle.”   // Confirm-praise and activate relevant schemas. Car, bus, and bicycle are chosen as the student cognitive 

model indicates that they are the most familiar vehicles to this child. 

SAIC 6 - “Space shuttle has wings.”  // The agent activates the structure of space shuttle from the previous knowledge. 
{“ Yes”, “ No”. - “I don’t know”, “I don’t understand”} 

Student - “Yes” 

Tuning game 

SAIC 7 - “The destination of an airplane is an airport but the destination of a space shuttle 

is the moon.”  // Tuning space shuttle by contrasting with airplane. 
  {“Continue”} 

During the one-to-one interaction, the student can ask for explanations of new 

concepts, make a selection from the suggested options, and inform the agent when he/she 

does not know the answer or does not understand the question. Note that the agent avoids 

directly telling the answer but guides the child’s reasoning to reach that answer through 

schema-based cognitive tasks. 

 

4. Using SAIC in Real Classroom Settings 

 

In order to validate the proposed design architecture and show the effectiveness of the SAIC 

agent, we conducted an experimental study in real classroom settings. The main objective of 

the study was to test whether interactions with the SAIC agent in the Going to the Moon 

system would improve the children’s conceptual understanding.  

 

4.1 Experimental Design 

An experimental study was performed with 32 students and 5 teachers of Chapeltown 

Harehills Computer Assisted Learning School (CHALCS
4
) at Leeds. A control group 

design [1] was chosen where the children were equally distributed according to their 

reading and writing abilities (as assessed by the teachers) into two groups. The control 

group used Going to the Moon as a traditional multimedia system without the SAIC agent, 

while the experimental group used the system with the agent. The study took part in several 

literacy classes and was organised as a group reading session. Prior to each session the 

children’s schematic knowledge was assessed using word association pre-test. Then, each 

child was allocated a computer for the reading session. The children with SAIC were 

briefed that there was an agent that would help them if they needed more explanation. The 

pre-test scripts were used to assess the students’ previous knowledge and initialise the 

student cognitive models (by hand). A week after the sessions, the children were asked to 

answer a post-test that was in the same format as the pre-test. Group interviews were 

conducted to gather the children’s opinions about the SAIC agent. The teachers were 

interviewed about the usefulness and potential of SAIC. 

 

4.2 Results and discussion 

Qualitative and quantitative data collected during the study is being analysed. Initial results 

are presented here. The pre-test and the post-test scripts of each child were compared to 

examine if there was any improvement in that child’s schematic knowledge in terms of 

function, structure and process (see Section 3). An improvement of the knowledge of a 

specific concept was indicated if the explanation of that concept in the post-test was more 

specific, elaborated or complete than in the pre-test. As shown in Figure 3, the students in 

the experimental group made more schematic improvement than the students in the control 

group. There was only one child from the group with SAIC who did not make any 

                     
4 CHALCS is a community based activity to provide after school activities for children most of whom come 

from minority groups. The computers are widely used to assist learning and communication activities are 

encouraged. In this respect, the SAIC agent was considered favourably by CHALCS staff who fully supported 

the study and integrated it in their classroom activities.  
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improvement as opposed to 4 children from the control group who did not improve their 

schematic knowledge. Some children from the experimental group improved their 

knowledge of 5, 6 and 7 concepts which was not observed within the control group. This 

suggests that the SAIC agent can help students explain new concepts presented in a 

conventional multimedia system. However, a Mann-Whitney test of the improvement 

numbers of the two groups does not indicate statistically significant difference (U = 87.000, 

N1 = 16, N2 = 16, p = 0.128).  

To analyse whether the improvement with SAIC was dependent on the students’ 

abilities, we classified the students of the experimental group into three categories 

according to their reading and writing skills (low, middle, and high). The results are 

presented in Table 2. A one-way ANOVA test showed that there was statistically significant 

effect of ability group on schematic improvement in the children who used SAIC (F(2,13) = 

7.276, p < 0.05). This shows that the SAIC agent is more effective for different ability 

groups at supporting their conceptual understanding. 
 

 
 
Figure 3: The number of improvements made by the 

control and experimental groups. Each improvement 

indicates better schematic knowledge of one domain 

concept. 

 

 
Table 2: The number of improvements for each 

ability category in the experimental group 

(numbers in the table indicate how many students 

have demonstrated improvement for 0, 1, 2, 3, 4, 5, 

6 and 7 concepts, respectively). 

 

 
 

 

We also noted that students with higher number of improvement of schematic 

knowledge engaged in longer dialogues with the pedagogical agent. The analysis of the 

dialogues with SAIC showed that most students in the experimental group followed all the 

explanation steps guided by the agent. During these interactions the agent combined the 

dialogue strategies, as defined in section 2. This gives some indication that the strategies 

might have been effective in promoting schema-based cognitive tasks, while further 

analysis is being undertaken to properly examine this claim. 

We have analysed the pre-test and post-test scripts to count correct statements made 

about isa relation, function, structure and process of each concept. The results show that the 

students from the control group have indicated more isa links than the students in the 

experimental group (mean rank 17.53 in control group and 15.47 in the experimental 

group). At the same time, the group with SAIC could identify more processes of concepts 

compared to the control group (mean rank 19.28 in experimental group and 13.72 in control 

group). We noted that the explanations of the experimental group were at a deeper 

conceptual level but concerned less number of concepts, while the control group wrote 

about more concepts but included mostly isa relations and functions. These observations 

correlate with other evaluative studies of pedagogical agents, e.g. [17] that show that 

dialogues lead to improvement in depth rather than increase in breath.  

The students said that they enjoyed working with the SAIC agent and would like to 

use it in other lessons. They felt that the agent was helping them and was guiding their 

learning. The teachers supported the use of the pedagogical agent and considered it as 
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helpful to give individualised explanations to each child. However, they also expressed 

concerns about the effort needed to develop the domain ontology and the initial cognitive 

model. They were also sceptical about the lack of parental and teacher control. These issues 

are valid for most intelligent tutoring system and refer to the need of flexibility and 

learner/teacher control, which can be incorporated in future improvement of SAIC. 

 

5. Conclusions 

The SAIC pedagogical agent is an implementation of a novel ITS design architecture based 

on the principles of schema theory to support children’s conceptual understanding by 

guiding their reasoning in terms of schema activation and modification. We have shown 

how the claims of schema theory can be followed into the design of pedagogical agent. We 

also used a Wizard of Oz study to derive teaching strategies of how to effectively perform 

schema activation and modification in one-to-one interaction with children. A prototype 

system was developed to demonstrate the approach. An experimental study in real settings 

with primary school children validated the design of the agent. Initial results of the study 

suggest that the agent was effective in supporting improvement of the children’s schematic 

knowledge.  
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Text Classification Rule Induction in the
Presence of Domain-Specific Expression

Forms 1

Adam Carlson a, Steven L. Tanimoto a,2

a University of Washington, Department of Computer Science and Engineering

Abstract. We describe a new method for learning text-classification rules from ex-
amples. The text consists of messages written by students in an online learning en-
vironment, and it may contain ungrammatical expressions as well as specialized
expressions such as formulae. The method is based on the version-space machine
learning technique. Experiments show that our method successfully generalizes
over certain classes of embedded numerical expressions involving ranges of values
in RGB triples that represent colors in an image processing system.

Keywords. text classification, learning, numerical expressions, domain-specific
terms, rule induction

1. Introduction

When students interact with online learning systems, they generate events sequences that
express patterns of activity. Learning environments such as the INFACT system [7] at the
University of Washington capture these event sequences and record them in a database
where they are available to a suite of tools for analyzing them.

Student activity data collected by systems such as INFACT fall into three categories:
(1) textual messages posted by students in dialogues and in response to assignments, (2)
sketches drawn to accompany textual messages, and (3) user-interface events that occur
as students operate tools such as calculators and programming environments. In this pa-
per, we discuss a pattern recognition problem related to data in category 1. The problem
is to take textual content, labeled with categories and induce rules that can classify these
and additional, unseen messages correctly into the categories to which they belong.

The text classifications rules we induce are used for two purposes. One is to con-
struct “diagnoses” of misconceptions that teachers can inspect in order to monitor the
progress of their students. The other is to automatically construct feedback that can be
given to students to help them overcome obstacles and learn more effectively. The IN-
FACT system already includes a facility for manual construction of text classification
rules[8]. This works adds the capability to automatically learn the rules.

1Research supported in part by the US National Science Foundation under grant EIA-0121345.
2Correspondence to: Steven Tanimoto, Box 352350, Dept. of CSE, University of Washington, Seattle, WA

98195, USA. Tel.: +1 206 543 4848; Fax: +1 206 543 2969; E-mail: tanimoto@cs.washington.edu.
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Several systems have addressed conceptual classification of general student writing[1,
6,2]. This paper describes a particular variation of the problem of inducing text classifi-
cation rules. In some cases, natural-language text will include formal or semi-formal rep-
resentations of structured information, often of a domain-specific nature. For example,
program snippets can be viewed as textual representations of parse trees and mathemat-
ical equations use a well-defined formalism with a domain-specific interpretation. We
call such textual representations notational text. We present an architecture for learning
textual classification rules that can be specialized to handle notational text. The architec-
ture can be extended to incorporate different kinds of notational text and allow different
learning biases. We describe a particular extension of the architecture that learns to rec-
ognize expressions that we call RGB color specifications. These expressions represent
color values in the RGB color space.

We present the learning algorithm in section 2. In section 3, we motivate and describe
RGB color specifications as a form of notational text. Section 4 explains the extension
to the rule language that allows us to learn RGB color specifications. We describe some
initial tests and results in section 5. Finally, we discuss possible sources of error and the
potential for broader applicability in section 6.

2. Learning Notational Text Classifiers

Our rule learner uses a variation of the Version Space algorithm [5]. It also uses an ar-
chitecture inspired by the Version Space Algebra [4,3]. The version space algebra allows
for a hierarchically composable rule language. The version space algebra uses multiple
components called primitive version spaces to learn characterizations of different parts
of each training example. For example, there may be a primitive version space that learns
to identify keywords in textual input, and another one that looks for textual representa-
tions of numbers. These primitive version spaces are then combined by compound ver-
sion spaces that use the primitive version spaces to form more complex stuctures, such
as phrases or, in our case, notational text. Compound version spaces can, in turn, be
combined, resulting in a rule language tree.

2.1. Non-notational example

We begin by explaining how we use the version space algebra to handle simple sequences
of text and numbers and then describe how this mechanism is used to learn RBG color
specifications. The version space algorithm maintains the set, Scons, comprised of all
hypotheses consistent with all training examples. Because Scons may be exponential or
infinite, it is represented implicitly. This is done using a partial order, ⊆, to induce a
lattice over possible hypotheses. Frequently the “is more general than” relation is used.
Given this lattice, the set Scons can be represented by two boundary sets. The specific
boundary set BS contains all the maximally specific hypotheses that are consistent with
all training examples and the general boundary set BG contains all the maximally general
hypotheses that are consistent with all training examples. The set Scons is the set of all
hypotheses that are at least as general as all members of BS and no more general than all
members of BG.

If a new labeled training example is already consistent with all hypotheses in the BS

and BG sets, then it is necessarily consistent with all hypotheses in Scons and no action is
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taken. However, if the example is inconsistent with any hypotheses in the boundary sets,
then those hypotheses must be modified to account for the new example. If a positive ex-
ample is classified as negative by any hypothesis in BS then that hypothesis is removed
from the set and replaced with the maximally specific generalization of the hypothesis
that classifies the example as positive. Similarly, a negative example might require that
inconsistent hypotheses in BG be specialized to correctly classify the example as nega-
tive. If any member of the specific boundary set is at least as general as any member of
the general boundary set, then the version space is said to collapse. This happens when
the data are inconsistent. Our system handles a collapsed version space by removing the
example that caused the collapse and using it to start a brand new version space. We
call this mechanism lazy disjunction, because it creates multiple version spaces, each of
which represents a separate disjunct.

Our architecture includes two primitive version spaces. The term version space rec-
ognizes arbitrary words (i.e. whitespace separated sequences of alphanumeric charac-
ters) and the numeric range version space recognizes numbers within a range. We use
the convention of referring to hypotheses as X(y) where X denotes the version space and
y denotes the specific hypothesis, so Term(foo) is a hypothesis of the Term version space
that requires the word “foo” to occur in a string. When it is unambiguous, we use initials
to denote the version space, so this could also be written, T(foo).

In the version space algebra, the hypotheses of a particular version space can be seen
as imposing constraints on examples. A hypothesis of the term version space will classify
as positive any string that contains that particular term. Compound version spaces im-
pose the constraints of their constituents and possibly additional constraints. Our system
includes the compound version space, sequence, which requires that all its constituents
appear in a particular order. For example, the hypothesis h = S(T (foo) ≺ T (bar))
is a hypothesis of the sequence version space that includes two hypotheses of the term
version space, T (foo) and T (bar). The hypothesis h requires that these terms occur in
the specified order in any example that it classifies as positive.

The version space algorithm begins with the general boundary set equal to {∪}, a
set containing just the universal hypothesis and the specific boundary set equal to {∅}, a
set containing just the empty hypothesis. Consider a positive training example, “A 10 by
20 rectangle.” Because the empty hypothesis fails to correctly classify this example as
positive, it must be generalized. The terms that are found in this string are, T(A), T(10),
T(by), T(20) and T(rectangle). In addition, the numeric ranges NR(10) and NR(20) are
also present. However, the positions matching T(10) and NR(10) overlap, as do T(20)
and NR(20). As a result four sequence version spaces are created:

S(T (A) ≺ T (10) ≺ T (by) ≺ T (20) ≺ T (rectangle)), (1)

S(T (A) ≺ NR(10) ≺ T (by) ≺ T (20) ≺ T (rectangle)), (2)

S(T (A) ≺ T (10) ≺ T (by) ≺ NR(20) ≺ T (rectangle)), (3)

S(T (A) ≺ NR(10) ≺ T (by) ≺ NR(20) ≺ T (rectangle)). (4)

Suppose a new positive example, “the square is 15 by 15”, is presented to the system.
This example only shares one non-numeric term with the previous one, that being “by”.
However, it does have numbers, and the numeric ranges in sequences (2), (3) and (4)
can be generalized to include them. Thus each of the version spaces above is generalized
below (in the same order):
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1 Red: 255 Green: 255 Blue: 0 to make yellow

2 Gray is made with (200, 200, 200)

3 One can make purple by combining the colors, red and blue

4 Grey can be made by the combination of 200 of red blue and green.

5 150 red, 200 blue, 0 green.

Table 1. Examples of students’ definitions of colors

T (by), (5)

S(NR(10− 15) ≺ T (by)), (6)

S(T (by) ≺ NR(15 − 20)), (7)

S(NR(10 − 15) ≺ T (by) ≺ NR(15− 20)). (8)

The system also provides a compound version space called a conjunction, which requires
the non-overlapping presence of each of its constituents, but imposes no ordering con-
straint. While the sequence and conjunction compound version spaces are quite general,
the idea of composable version spaces allows us to craft learning components that can
identify specific forms of notational text. Next, we describe one such form.

3. RGB Color Specifications

One of the settings in which we use INFACT and our text classification system is a
class that teaches mathematical concepts using image processing. In this class, students
apply mathematical transformations to images and see the results using a calculator-like
learning environment called PixelMath. For example, the students may enter a formula
like src(x,y)*2 into the calculator. This formula will double the pixel value of each
pixel in a source image to produce a contrast-enhancing effect in the destination image.

The PixelMath class uses online discussion in a web-based forum. Students discuss
how they would construct formulae to accomplish various image processing tasks and
predict what certain formulae will do to an image. One of the early units in the class
is a color matching exercise in which students are asked to describe what red, green
and blue pixel values they would use to produce certain colors. This unit is intended
to familiarize students with the standard representation of images as a two-dimensional
array of numeric triples. It is in the context of this exercise that we first encountered RGB
color specifications as a notational form that we wanted our text classifier to recognize.

Some examples of student response are shown in table 1. Students use several for-
mats to describe RGB colors. Example 1 shows a format using a sequence of labeled
values. Each color value is preceded by the color name. When this format was used, the
order of the colors varied, and sometimes one or more of the colors would be missing.
In some cases the letters “R”, “G” and “B” are used instead of the full words, “red”,
“green” and “blue”. The second format, seen in example 2, is a simple numeric triple,
such as “(100, 250, 200).” This format always included all three numbers and invariably
represented the values in the order red, then green then blue. Finally, some students use
prose to describe RBG colors, as seen in examples 3 and 4. Finally, some students use a
format similar to that of example 1 but in which the color channel names came after the
values. We return to this format in section 5.
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NCV NCV NCV

  all colors differ

term
(e.g. red)

color term

(named color value)

RGB disjunction
values kept consistent

KF (keyword format)

NR (numeric range) NR NR

NR (numeric range)

NT (numeric ntriple)
sequence, up to 3 sequence of

length 3

Figure 1. Compound version space tree for RGB color specification. Italicized notation indicates additional
constraints imposed by a compound version space on its constituents.

It is important to note that our goal is not to learn the format of RGB color speci-
fications, but rather to learn misconceptions students may have about RGB colors. For
example, we wanted to know if students thought that the RGB values were percentages,
which would result in them always using values between 0 and 100.

4. RGB Color Specification Version Space

The idea of compound version spaces farming out some of their work to other ver-
sion spaces and then imposing additional constraints is used in the handling of RGB
color specifications. Color specifications may occur in two formats, each having its
own compound version space representation. The numeric triple (NT) version space is
simply a sequence version space that requires that there be exactly three constituents,
all of which are numeric ranges. The keyword format is a sequence of three instances
of an intermediate compound version space, the named color value (NCV). The NCV
version space, in turn, recognizes a single “colorname numeric-value”, and is imple-
mented as a two-element sequence in which the first element is a term matching one
of, “red”, “blue”, “green”, “r”, “g” or “b”. The second element must be a numeric
range. The keyword format (KF) version space imposes the additional constraint that no
color name is repeated. Finally, the RGB color specification compound version space
is a disjunction between one keyword format version space and one numeric triple ver-
sion space. The RGB color specification enforces the further constraint that the numeric
ranges for each color value are identical between the two formats. Thus the hypothesis
RGB(0−10, 100, 200−255) is a disjunction between the hypotheses KF(NCV(red, 0−
10), NCV(green, 100), NCV(blue, 200− 255)) and NT(0 − 10, 100, 200− 255). The
version space algebra tree for RGB color specifications is shown in figure 1.

5. Tests and results

To test the system, we collected data from the online discussion group software, INFACT-
FORUM, consisting of student responses to an additive color-mixing assignment. Stu-
dents were asked to describe what color values they would use to obtain particular target
colors, such as yellow, pink and grey. Each example was manually classified as positive
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True+ True− False− False+ Precision Recall F-Score

Yellow 22 0 0 43 0.338 1.000 0.506

Purple 12 12 3 38 0.240 0.800 0.369

Pink 19 12 3 31 0.380 0.864 0.528

Grey 6 0 0 59 0.092 1.000 0.169

Total 59 6 6 171 0.257 0.908 0.400

Table 2. Results for RGB only unpruned data sets.

True+ True− False− False+ Precision Recall F-Score

Yellow 6 2 2 18 0.250 0.750 0.375

Purple 0 3 2 23 0.000 0.000 0.000

Pink 16 12 0 0 1.000 1.000 1.000

Grey 0 26 2 0 0.000 0.000 0.000

Total 22 43 6 41 0.349 0.786 0.484

Table 3. Results for Term only pruned data sets.

or negative for the color requested depending on whether the color values the student
chose produced a reasonable shade of the requested color. It turned out that almost all
examples were positive, so we use positive examples of each color as negative examples
of every other color.

Because the data were sparse, we used a leave-one-out testing regime. For each
color, we considered each example ei in turn. We trained on all other examples to learn
a classification rule and then tested the classification of example ei. This can be thought
of as k-fold cross-validation with k = n. Two kinds of data were used: pruned and
unpruned. The pruned data consisted only of examples including RGB terms in the two
formats handled by the RGB recognizer. The unpruned examples also included other
patterns. The data were pruned by hand.

With the unpruned data, the precision was fairly low, due to the large number of
false positives obtained due to overgeneralization of the rules on the basis of misinter-
preted RGB values. With the pruned data, the use of the domain-specific RGB compo-
nent tended to improve precision over the use of straight text terms only; RGB alone
gave a 0.50 total precision value compared with 0.35 for term only. Combining the two
gave an even better result: 0.66. Recall remained relatively unchanged.

The system performed better on the colors yellow and pink than purple and grey.
Using pruned data the system was never able to generalize properly for purple and grey.
Part of the reason for this is that the RGB color specification version space doesn’t do any
reasoning about the relationship between numerical ranges for different color channels.
It is unable to learn a rule like “all three color values must be the same.” So if the system
sees a positive example where a student created a very dark grey, such as “grey is (50,
50, 50)” and a positive example with a light grey, such as “I made grey with (200, 200,
200)”, then it will learn the overly general hypothesis RGB(50-200, 50-200, 50-200).

Another source of difficulty in classifying purple was the use, by a few students, of
a format very similar to the keyword format described in section 4. These students used
three named color values, but rather than writing “name: value”, they put the value first
and then the name. (See example 5 in table 1.) This example confused the rule learner
since it interpreted it as a color specification in which the red value is 200 and the blue
value is 0.
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True+ True− False− False+ Precision Recall F-Score

Yellow 6 9 2 11 0.353 0.750 0.480

Purple 0 26 2 0 0.000 0.000 0.000

Pink 16 1 0 11 0.593 1.000 0.744

Grey 0 26 2 0 0.000 0.000 0.000

Total 22 62 6 22 0.500 0.786 0.611

Table 4. Results for RGB only pruned data sets.

True+ True− False− False+ Precision Recall F-Score

Yellow 5 9 3 11 0.313 0.625 0.417

Purple 0 26 2 0 0.000 0.000 0.000

Pink 16 12 0 0 1.000 1.000 1.000

Grey 0 26 2 0 0.000 0.000 0.000

Total 21 73 7 11 0.656 0.750 0.700

Table 5. Results for combined pruned data sets.

6. Discussion

The rule learner is able to successfully classify examples for some colors, though it
has trouble with others. In particular, it fails when the restriction bias inherent in the
RGB color specification version space doesn’t match the actual concepts that should be
learned. This mismatch can happen in two ways. First, if the format of the color speci-
fications varies significantly from that described by the version space, as when students
reversed the order of color names and values. Second, if the concept that describes a
positive example involves a relationship between the values of different color channels
that the version space can’t represent. The concept that best describes RGB values for
the color grey is that all three color channels are equal. But our RGB color specification
learner can’t represent numeric relationships between channels, only ranges of values for
each channel independently.

These observations give us some insight into how the method described in this paper
could be used for other types of notational text, what limitations might be encountered,
and some ways to extend it for greater applicability. We will sketch a similar approach
that can form hypotheses describing mathematical expressions, and then discuss how
such a system may work.

To construct a version space algebra for mathematical expressions, we would start
with primitive version spaces that identify simple mathematical terms, numbers and vari-
ables. We could use the numerical range version space described above for numbers, and
the variable version space would be similar to the term version space. We would then
construct a compound version space for binary operators. It would be a sequence of three
elements, the first and last would be expressions and the middle one would be one of
the accepted operators. Similar compound version spaces would handle parenthesized
expressions and equations. Finally, the expression version space would be a disjunction
between the various forms of a valid expression. The application of this method to math-
ematical expressions is just one possible domain. Any formal notation that has a tree-like
structure would be representable in our system.

While the system sketched above could learn hypotheses describing general math-
ematical expressions, it’s clear from our experience with RGB color specifications that
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additional biases would need to be included to learn effectively. First, it would probably
be necessary to restrict the variable version space. It might be useful to limit length of
variable names or even have a hard-coded list of commonly used variable names for a
particular domain. Second, it would probably improve the ability to learn useful classifi-
cation rules if the version space components are able to analyze the relationships between
their constituents. To make this feasible, it would make sense to have specific variants of
the version spaces that capture particular common misconceptions associated with math-
ematical expressions, such as dropping a negative sign before a term or doing multiplica-
tion instead of division. In general, we believe that the system will perform better when-
ever more domain knowledge can be incorporated into the version space representations
of the notational text.

In addition to pointing up the need for more problem-specific and domain-specific
biases in the version spaces, our experiences have led us to consider possible extensions
to the algorithm. Because the lazy disjunction mechanism is order-dependent, it is prone
to learning disjunctions that represent coincidental similarities and differences between
examples. We believe that disjunctive concepts could be better learned using a two-pass
approach in which examples are first clustered into sets, each of which represents a sep-
arate disjunct. Each disjunctive set could then be used to train the system separately.
However, we are not yet sure how to cluster examples of notational text.

Another problem we encountered was the system’s ability to recognize notational
text amid non-notational prose. This was the reason the system performed so poorly
on unpruned data. A pre-processing step that can recognize and delimit examples of
notational text, based on the version space definitions would be of great benefit. Then
the notational text learner could be applied to appropriate sections of text, and other
mechanisms could be applied to the rest.
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The Uses of Code Fragments in
Programming Tutorials

Mary McGee Wood
School of Computer Science, University of Manchester

Abstract. In human-human, keyboard-to-keyboard programming lan-
guage tutorials, fragments of code are mixed with natural language in

explanations of programming concepts and constructs. I describe a se-

ries of 37 distributed learning tutorial dialogues on the C programming
language, held world-wide over four months, and propose an annotation

scheme for the uses served by code fragments. A preliminary analysis of

the data set is presented and directions for further research are explored.

Keywords. programming languages, human-human dialogue

1. A corpus of programming language tutorials

Mixed language explanations in learning environments include code fragments
embedded in natural language in programming tutorials. Distributed learning
courses in C and Java programming, taught world-wide by the Teaching Inno-
vation Unit in the School of Computer Science at the University of Manchester,
are supported by on-line, human-human, keyboard-to-keyboard tutorials held in
a chat-room environment. Students may be taking single modules to update their
professional skills, working towards a modular degree of MSc, or competing for
admission to a full-time residential MSc programme. They are sent course mate-
rial and assessed exercises: the tutorials are optional, and designed for the stu-
dents to turn up and ask for help when they need it. Thus the “task initiative”
(Chu-Carroll & Brown 1998, Core et al 2003) lies largely with the students rather
than the tutors, unlike most of the tutorial dialogues which have been studied.
These tutorials are logged, and the logs made available for reference to the tutors
and students on each course.

For the present study, the logs of a series of 37 tutorials on the C programming
language, held from October 2002 to February 2003, were chosen as a data set.
Three tutors and 18 students are represented, although a typical tutorial involves
one tutor and three or four students. Tutorials typically last for one hour. The
dialogues were annotated for the uses served by the code fragments, and the
results analysed.

It is worth stressing that this is “live” data. There are no questions about
experimental design, because there are no experiments. The data we have is messy
and complicated, but gives an accurate snapshot of how (some) tutors and (some)
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students really use language in general, and code fragments in particular, in a
serious learning environment.

The 37 logs in the chosen set were lightly cleaned up (purely by removing
system messages: all user input was untouched apart from anonymisation). The
sections which included code fragments were isolated by hand (for now: auto-
matic recognition of code fragments should be tractable). Annotation with the
ten categories of use explained below was also done by hand, by one annotator
(the author). (For now: an obvious research priority is to cover more data with
more annotators.)

The nature of the chat-room environment means that user input appears as
separate lines: a new line appears on the screen at some indeterminate time after
a user closes and sends it by typing Return1, and begins with the time received
and the system name of the sender. In the context of the dialogues overall, I refer
to these as “turns”; when specifically discussing code, I refer to “lines”. While
natural language turns are usually segmented along natural syntactic / seman-
tic / pragmatic boundaries, lines of code are usually segmented by the syntax
and/or formatting conventions of the programming language. Thus it is common
for a conceptual unit to appear spread over several lines: I refer to these units as
“fragments”. For example,

<T> ok, but what if I do the following:
<T> char first[20];
<T> char second[20];
<T> if (first == second)
<T> is this still using pointers?

includes three lines of code, which form one fragment.

2. An annotation scheme

The first obvious distinction to make, in analysing code fragments, is between
their use by tutors and by students. Bottom-up analysis of the data shows three
functions which code fragments proper can serve: asking a question, answering
a question, or quoting a line or fragment to comment on. Program output, and
command line input, are also significant formal language elements.

2.1. Tutors

A good tutor uses code fragments in all these ways.

TQn - Tutor question. A tutor uses a line or fragment of code in asking a
question, often to test a student’s understanding of a programming construct or

1The Student Answer example below shows one typical effect of this. Bear in mind that, while
some students may be using local ethernet connections in Manchester, others may be working

down noisy telephone lines from Latvia or South Africa.
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a higher concept.

<T> ok, so if I do:

<T> int i = 4;

<T> int *int ptr = i;

<T> is that ok?

TA - Tutor answer. A tutor uses a line or fragment of code in answering a
question or giving a hint.

<T> try -

<T> int i = 4;

<T> int *int ptr = &i;

<T> read the & as the ’address of’ operator, and this reads:

<T> assign to int ptr the address of i. Ok?

There is scope for further sub-division here between giving a hint and sup-
plying a direct answer, but that lies beyond my immediate scope.

TQt - Tutor quote. A tutor quotes a line or fragment of code supplied by a
student, in order to comment on it or correct it. Very often followed immediately
by an answer fragment giving a correction.

<T> (&(info.Letters in database) == &(info.Length of database)) should

be

<T> (info.Letters in database == info.Length of database)

TO - Tutor output. A tutor quotes output, compile-time (as here) or run-time
(the difference is programming-language-specific), either to give a hint as to what
is wanted from a student, or as part of debugging.

<T> ouch...

<S> ??

<T> tree.c: In function ‘add less than’:

<T> tree.c:79: warning: assignment from incompatible pointer type

<T> tree.c:81: warning: assignment from incompatible pointer type

<T> ... etc....

TI - Tutor input. A tutor specifies what needs to be input to the environment
in order to compile or run a program. (This maps to the DAMSL (Core & Allen
1997) Information Level category of “task management”, whereas our other four
uses are all “task”.)

<T> you do gcc -Wall -pedantic -ansi file.c -o file

69



2.2. Students

The students in our data set show most of the same uses.

SQn - Student question. A student uses a line or fragment of code in asking
a question, usually asking for low-level debugging.

<S> okay, so inputting a statement like that : strcpy(dest, source);
<S> would that cause an error??

SA - Student answer. A student uses a line or fragment of code in answering
a question.

<T> strcmp means ’string compare’
<T> any ideas on how to use that to test if first is the same as second?
<S1> strcmp(first,second)
<T> use an ’if’ here.
<S2> strcmp (first==second)
<T> Gs, on the right track, just needs an if to test the return value
of strcmp
<S1> if strcmp(first,second)=0; printf("first = second")2

SQt - Student quote. A student quotes a line or fragment of code supplied by
a different tutor or the course material.

<S> T2 suggested that the following would be better typedef enum white,
back colour;3

SO - Student output. Not found in this data set, but included as logically
possible.

SI - Student input. Here the student is typically asking for help in exactly
how to run a program in a particular environment.

<S> my emacs didn’t recognise the command -wall. so i compile my progs.
without it. jus -gcc -ansi -pedantic...

3. Some results

The 37 dialogues contain 7284 turns, an average of 197, with a range from 28 to
359. Code-lines total 884, or 12%, with a range from 0 to 27%. The dialogues with
no code are either short exchanges with little or no technical content, or, more
interestingly, show a deliberate tutoring strategy of hinting rather than giving

2A good example of “lag”: S2’s suggestion was typed before seeing the tutor’s “if” hint which
appears before it in the log.

3The student really did type “back” for “black”.
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answers:

<S> Ok another question:
<S> according to the requirements we have to ensure that each part
the ’Posted date’ information is held as a separate field.
<S> What are these parts? (month, day, year, time) Should we use nested
structure?
<T> you definately need month, day, year, time, but should also consider
an AM/PM field
<S> Ok thanks
<T> this struct should be typedefed to be a new type that is
<T> useable in the rest of the struct, so yes, a nested structure that
is clarified by typedefed struct
<T> also consider using typedefed structs for other fields.

In fact it is a peculiar feature of these dialogues that they attempt to avoid
using code, because the tutorial logs could give away answers to students further
behind in the exercises than those present at the time: there are numerous exam-
ples of tutors explicitly refusing to contribute real code, or urging students not
to. It will be interesting to study the parallel uses of pseudo-code and natural
language paraphrase.

Tutors’ code-lines nevertheless outnumber students’ by 755 to 129, a factor of
5.8. However tutors’ fragments are significantly longer than students’, especially
for answers, which average almost three times as many lines (the table shows
average lines per fragment for each category). Therefore tutors’ fragments out-
number students’ by a factor of only 3.5 (349 / 94).

Qn A Qt O I
Students 1.62 1.1 2 - 1

Tutors 2.08 3.12 2.06 4.93 1.58

The distribution of categories across the time span of the series is also inter-
esting. Discussions of system input are relatively common in the first few tuto-
rials, while students are learning how to use the environment, and then pretty
much vanish. Discussions of system output are rare early on, and typically take
the form of desired run-time output used as a hint as to what is wanted in a
particular exercise:

<T> Hmm.. does this help answer the question?
<T> int i;
<T> for (i = 0 to 9) {
<T> printf("%c ", i + ’0’);
<T> }
<T> will print
<T> 0 1 2 3 4 5 6 7 8 9
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They then disappear completely only to reappear, densely, towards the end of
the course when the tutor is helping the students to debug their code, as in the
typical compiler output example in section 2. It is also interesting, and perhaps
unexpected, that the use of code in questions largely disappears as the series
progresses.

4. Future work

Narrowly directed, the first priority for future work is clearly to look at a larger
data set. Many aspects of the questions discussed here are highly specific to either
programming languages or tutors. A complete series of Java tutorials, with a
different tutor, is our next target for analysis. Although the proposed annotation
scheme is fairly clear and objective, it is also a priority to bring in additional
annotators and look at their degree of agreement.

We will then be in a position to ask how far the proposed annotation scheme
carries over to other phenomena and data sets. The “output” and “input” cate-
gories clearly are specific to the programming task. However, I would expect the
question / answer / quote classification, as far as it goes, to generalise grace-
fully to similar data such as the proof fragments described in Horacek & Wolska
(2004). If experiments with this prove successful, we should go on to consider
what finer-grained analysis is possible and useful.

However the data suggests a number of avenues for wider exploration. These
include:

- A systematic analysis of the natural language immediately surrounding code
fragments. We find passages of fine-grained mosaic:

<T> ok, so ctype.h provides a func called:
<T> int islower(int ch);
<T> basically returns true if the parameter ch is a lowercase letter
<T> you could instead of using this func do the following:
<T> if (ch>=’A’ && ch<=’Z’)
<T> sorry, meant:
<T> if (ch>=’a’ && ch<=’z)
<T> for lowercase.

Tutors (as an impression, not yet quantified) usually introduce fragments ex-
plicitly, while students often do not:

<T> in C we’d use the loop that most of the examples rely on,I.e.:
<T> char ch;
<T> while(ch = fgetc(stdin), !feof(stdin) )
<T> ...
<T>
<T> do you understand this loop?
<S> is it not int ch; ?
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Anaphoric reference into a fragment is particularly difficult to resolve: in the
first of these examples “this” refers to the complete fragment, while in the second
“that” probably refers to a single function name:

<TG> ok, but what if I do the following:
<TG> char first[20];
<TG> char second[20];
<TG> if (first == second)
<TG> is this still using pointers?

<TG> ok, so how about the following:
<TG> I want to see if the following 2 strings are the same:
<TG> char* first = "first";
<TG> char* second = "second";
<TG> there’s another func with the following sig:
<TG> int strcmp(const char* ch1, const char* ch2);
<TG> strcmp means ’string compare’
<TG> any ideas on how to use that to test if first is the same as second?

However even a human domain expert consulted on this was not completely
confident about the second judgement, so it is unlikely that automatic anaphora
resolution will be terribly successful in the near future. But it is important in
detecting and addressing student misconceptions.

- A systematic analysis of dialogue strategies. How, in particular, are multi-
party conversations conducted keyboard-to-keyboard? There are many details to
be considered here, especially as regards turn-taking and initiative. It will be
interesting to compare our data and analysis with other work such as Jordan &
Siler (2002) and Shah et al (2002).

The inclusion of time-stamps on each line in the logs allows us to look at
the timing of turns: while the multi-party exchanges can be frantic, one-to-one
tutorials often show pauses of as much as three or four minutes - usually while
the tutor waits for the student to answer a question - which designers of tutorial
systems might wish to consider.

- A systematic analysis of tutoring strategies. Even from this sample, we see
that a third tutor, who is much less experienced than the two quoted here, seldom
uses code fragments, and then only large fragments used as answers; T1 and T2
are much more subtle and flexible. Distinguishing “answers” from “hints” will
also be important here. We cannot quantify learning gain as can be done in exper-
iments, but we can certainly study the patterns of student response to different
styles of tutoring at a finer grain. Apart from its inherent paedogogic interest, real
data on human-human keyboard-to-keyboard tutoring strategies should be essen-
tial to the development of keyboard-based human-computer tutorial systems.

- On-line communities are a current focus of attention in the Information
Retrieval community (Leuski 2004). These dialogues show a group of diverse peo-
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ple working together on a significant learning task over several months, and so
give us real data on the evolution of groups and individuals, both in general, and
specifically in a learning environment.

- Corpus collection and management in a real-world working environment
presents different issues from those involved when generating data through ex-
periments. I started with a tar file holding two years’ worth of system logs, com-
prising 771 logs from 14 courses (including Bioinformatics and Object-Oriented
Design, as well as the programming courses), which yielded 318 worthwhile dia-
logues. Even those contained large quantities of system messages and other rub-
bish, raising questions of what to take out and leave in. After that, anonymisation
was a non-trivial question, as the participants often share personal information
which cannot (easily, if at all) be automatically detected. Only after this is done
can we begin to select appropriate subsets of the corpus for the study of the many
different questions which can be explored.
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Abstract. This paper presents an assessment of learners’ knowledge about semantic 
networks using the Multinet paradigm. Since users of Multinet have to learn the 
transformation of natural language sentences in semantic networks as well as the 
reformulation of semantic networks in natural language two kinds of assessment are 
developed. In the first assessment learners build semantic networks in a graphical 
tool. The graphics are automatically analysed by comparison with a reference 
solution. In the second assessment the natural language reformulation is 
automatically transformed in Multinet and then compared to a reference answer. 
Depending on the analyses a detailed feedback is presented to the learner for the 
improvement of his solution.  

 
 
Introduction 
 
We have developed an virtual laboratory (VILAB1) for computer science at the open and 
distance university in Hagen focused on problem solving [4]. The access to the VILAB 
server operated at our university is managed by decentral user clients via Internet. Within 
the lab hypertext (e.g. problems) as well as documents from the WWW can be selected and 
displayed in a browser. Additionally, complex graphical software-tools installed on the 
server can be activated. The problems given in VILAB are divided into different domains of 
computer science (e.g. relational data bases, programming, natural language processing 
[NLP]). The learner’s solutions for these problems can automatically be analysed and a 
tutoring component immediately gives feedback for improvements [3]. After this the learner 
modifies his solution and a further analysis starts, etc.  
 This paper presents the mechanisms for analysing solutions in the field of semantic 
networks using the Multinet2 paradigm [2]. Multinet has been developed as a semantical 
representation for information given in natural language. The core of the Multinet 
representation is a semantic network which is formally a directed labeled graph. Nodes in 
the graph represent certain entities in the discourse area while edges express semantic 
relations between the nodes. Every possible concept in the real world is eligible as a net 
node. Inner nodes represent complex concepts. There exists a fixed set of about 110 
relations labeling the edges. Each relation has its own pre-defined meaning (e.g. (AGT e a): 
a is agent in an event e). Further more sophisticated Multinet concepts are several attributes 
of the nodes and edges. Besides the structural information given by the net the conceptual 
representives of Multinet are characterised by embedding the nodes into a multidimensional 
                     
1 Homepage: http://pi7.fernuni-hagen.de/vilab/, Guided Tour: http://inflabor.fernuni-hagen.de/tour_en/ 
2 Multilayered extended semantic networks 
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space of layer attributes (for details s. [2]). For the assessment of knowledge about Multinet 
we have realised two approches (Sect. 2). The analysis of a semantic network built by a 
learner in a graphical software tool and the analysis of natural language reformulation of a 
semantic network in form of Multinet. Thereby this paradigm itself is used for the analysis 
of this reformulation.  
 
 
1. Assessment of Knowledge about Semantic Networks 
 
1.1 Analysis of Semantic Networks 
 
Using the graphical software tool MWR3 the learner has to design in different exercises 
semantic networks in Multinet form to a given natural language sentence (s. Figure 1). At 
any time he can start the automatical correction module which is integrated in MWR. This 
module, written in the Lisp dialect Scheme, compares by logic inferences the linearised 
semantic network of the learner’s solution with the author’s reference semantic network. 
Outcome of this module are entities and relations, which are wrong and which are missing, 
and what relations do not connect the right entities. The feedback is graphically and 
textually given. Wrong or unverified parts of the learner’s network are marked in red and 
verified parts in green in MWR. Additionally, the result of the analysis (or depending on the 
user model only selected parts of it) are textually presented in a hypertext document (e.g. 
Figure 2 and 3). This feedback can also be enriched by further support hints (e.g. literature 
or examples, for details s. [3]).  
 

 
 
Figure 1: Design of the semantic network to the given sentence  “Today Peter rides his bike to Munich.”. 

                     
3 Multinet Working Bench is a graphical tool for representation and edition of semantic networks in MultiNet 
form. 
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Figure 2: Wrong design of the semantic network to the given sentence “Today Peter rides his bike to Munich.”.  

 
 
 

 
 

Figure 3: Example for (a part of) an (hypertext-)answer of this wrong design with full information of the tutoring 
component and with literature links to wrong relations. Depending on the user model it also possible that only 

missing and wrong entities and no information about edges are given, or no links are given, or only the number 
of wrong edges. 

 
 
 

1.2 Analysis of Natural Language Solutions 
 
To a given semantic network in form of Multinet the learner has to write the reformulation 
in a special text field of MWR (s. Figure 1: field between “Netzbeschreibung” and 
“NatLink”). After he has automatically transformed his answer in Multinet using WOCADI 
(formerly: NatLink) [2] by clicking the Button “NatLink” in MWR he can start the request 
for correction of his textual solution. Then the previously described module compares the 
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learner’s transformed answer with the author’s reference reformulation (given also in 
Multinet). The results of this analysis (wrong, missing, unverified or verified Multinet 
terms) are transformed back in natural language to present mistakes and missing 
information of the reformulation. While information about the entities can be directly 
included in the feedback information about relations and connections of relations with 
entities has to be transformed by rules and templates in natural language phrases or 
sentences.  
 

  
Figure 4: For this given semantic network on the left the reference reformulation would be: “Tom gives Peter a 
blue book.”. The wrong reformulation of this network  by a learner “Peter gives Tom a book.” would lead to the 

network on the right. 
 

Figure 4 gives an example for a reformulation exercise. The wrong reformulation in this 
example would lead to the feedback of the tutoring component including the statements: 
“The entity ‘blue’ is missing in your answer.” 
“The orientation of the action is not correctly expressed”. 
“The agent in your answer is wrong.” (because (AGT c1 Tom) is part of the reference 
answer and (AGT c1 Peter) is part of the learner’s answer). 
For all relations we have such rules and templates which are used and filled with values for 
the feedback generation. 
 
 
2. Use the Assessment 
 
Since 2002 we successfully use the correction module of semantic networks (Section 1.1) in 
practical courses, seminars, and for exercises of courses. Comparing the performance of 
students having learnt with and without the automatical assessment modules we reveal that 
the students worked with our interactive learning environment have more exercises 
correctly solved, have a better understanding of Multinet, and get better marks in exams in 
this field. Since we have supported with our module for the analysis of semantic networks 
only the direction from “natural language text” to “semantic network” we have 
implemented in 2005 the module for the other direction (Section 1.2). The first use of this 
module will take place in the summer term 2005 in a practical course about NLP and we 
hope that we can further improve the performance of the students.  
 Our analysis of natural language reformulation is a kind of short answer assessment 
for a special domain. This assessment is limited to exercises in which an ordinary semantic 
network is given and the learner has to express the information of the network in one 
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natural language sentence in German4. The automatical transformation in general as well as 
the correction modules are successful in the most cases. However, the transformation in 
Multinet is only possible for one sentence because several sentences had to be automatically 
assimilated to one network. We are working on this task but our currently success rate is not 
high enough using automatical assimilation in regular teaching. 
 
 
3. Perspective 
 
We have the perspective that in the future we can enlarge our short answer assessment from 
the reformulation of semantic networks to open questions in different domains and to 
answers consisting of several sentences (essays). For this aim we work on the automatical 
assimilation and on the comparison between the nets of the learner’s answer and the 
reference answer. This comparison must be improved because actually it is limited to nodes 
and edges, but does not include the layer attributes of the nodes (e.g.quantifiers). These 
attributes can be neglected in the reformulation of semantic networks (if networks without 
attributs are given), but not in free natural language answers. Additionally, we will 
implement several reference answers to one question and use the synonym list of our 
computer lexicon [1] to prevent misdetection of right answers. This point is again not 
critically for the reformulation since every correct answer is transformed to the reference 
semantic network, but of course, normally many different right answers exist to one 
question. While as far as we know our module for the analysis of semantic networks by 
logic inferences is unique there exist several approaches for the analysis of short answers. 
The most of them use predominantly statistically-based natural language processing and 
evaluation procedures (s. [5]). In contrast, our approach for free-text assessment based on a 
deep semantic understanding of the learner’s answer. Thereby we hope that we can make a 
more detailed analysis of a text and can give a more detailed feedback to a learner. 
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4 Since we are a German institute we teach only in this language and our research in NLP is focused on this 
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Abstract. The basic hypothesis of the ongoing research presented in this paper is that the 
observation of problem solving by students facilitates the learning process. We propose 
PERO a planner implemented in Java to solve exercises in physics automatically in such a 
way that the students can make observations on the proof. Several strategies for finding 
solutions can be chosen by the students and, an adequate explanation is generated. It is not 
only developed with the aim of solving exercises, but also serves for drafting answers and 
explanations in a language that combines formal and natural language. A complete 
application has been implemented based on exercises in electricity. The planning algorithm 
uses properties in physical science and mathematics such as axioms, laws, theorems, 
functions, etc. These properties are supplied by the teacher in a declarative way. A model 
based on the notion of intention has been adopted to help the generation of explanations. 
This model assumes that any action made by planer has its own intention. The intention is 
defined by the goal, the means and the reason for the action. The explanation of an exercise 
solution is a sequence of intentions of all actions performed by the planner to provide a 
proof for the exercise. 

 

 

1. Introduction 
 
In the college, the development of skills for resolving scientific problems must be considered as 
an essential component of fundamental learning. This ability should, therefore, be considered 
both as the target of personal development and as an important means of learning [1] and [2]. 
Teachers have a responsibility to find means of supporting this kind of learning process.  

The basic hypothesis of the ongoing research presented in this paper is that the observation of 
problem solving by students facilitates the learning process. The externalisation of the problem 
solving process may help to facilitate this observation. The research presented here has for 
objective, on the one hand, to model knowledge involvement during the resolution of a problem 
and, on the other hand, to implement a planning algorithm for problem resolution, to explain to 
the learner the underlying mechanisms and to facilitate learning. The system proposed here is 
relatively general, even if it is presented here through its application in a physics course on 
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electricity and, more precisely, on RLC circuits (Resistance, Impedance, Condenser).  Indeed, 
PERO is a system conceived to adapt to various families of contents in the field of physical 
sciences.  It is implemented as a prototype of problem solving in Java in a manner that makes it 
possible to calculate a complete solution to exercises in physics. 
     In this article, we present in the next section the planning process of Pero, in the third section a 
scenario describing through an example how the system solves a problem of LC circuits 
(impedance, condenser). A Graphical User Interface showing mixed information between 
explanation and the solution is also presented in the third section. The last section presents how 
the process of explanation is made. 
 
 
2. The Pero Planner  
 
The main algorithm combines all the small features and components of planning in a manner that 
is usable as a whole – this algorithm is inspired from [3] and [9]. Note that the input given to the 
planner combines the problem to solve and planning information (such as operators, initial and 
final states; the search tree is a typical component of problem solving). The first part of planning 
is based on substitutions and calculus, i.e. the planner proceeds by the transformations of terms 
from a state considered as an assumption state to a an other state called the successor state.  If 
there is no solution, the system starts a set of function that transforms the terms of the assumption 
state trying to converge to the solution. The functions applied on terms are a set of mathematical 
possibilities such as derived function, Maxwell function, primitive function, and so on.  
The following Figure 1 shows roughly the processes executed from the step in which the applet 
has obtained the user input until it prints out the solution. 
 

Figure 1: the planning process 
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3. A scenario sample 
 
The knowledge is expressed declaratively in the system in the form of equalities. For example, 
the following equality expresses Ohm’s law and the theorem of potential difference of a closed 
loop in the following form:   
Ur = Ri [Ohm’s Law] ; 

 ∑URLC =UR + UL + UC = 0 [The sum of the tensions of a closed loop is equal to zero]  
  
Problem solving in PERO can be compared to natural methods of deduction, when they are 
applied by a professor or a student. For example if the system must establish a differential 
equation of the electric charge (q) of a condenser of a circuit LC: q¨ + (1/LC) q = 0. 
The algorithm starts from the assumption state as initial state. In the example it is ∑ULC  =0. The 
system uses the operators of substitution and calculation; it applies a set of transformations to all 
the terms of state assumption towards the following states until meeting a state in the which there 
is a conclusion. It will have built a graph of the proof.  Explanatory texts associated with the 
equalities, with the operators and the functions used are concatenated to give the whole 
explanation of the solution. This explanation is expressed in terms of the intention model (Goal, 
Means, Reason) of each action. Figures 1 and 2 show the explanation process.   
The use of a planning algorithm shows the incapacity of the Pero system to only? Solve certain 
questions while just being based on declaratory knowledge.                                                 
         Given the quantity of knowledge to handle, it is of primary importance to store the data in 
an organized way.  The planner will have to thus articulate it self and coordinates around a data 
base.   A PHP MYSQL data base is used for this purpose.   
In the proof process, one finds two methods applied to solving this exercise:   the first top-down  
and the second one bottom-up. In the top-down method the planner builds the proof solution 
going from the initial state towards the final state. In the bottom-up method the planner builds the 
proof solution going from the final state towards the initial state. 
  

 
Figure 2: graph of the proof of LC circuit with the use of the Top-down method.   
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Figure 3: graph of the proof of circuit LC with the use of the method Bottom-up. 

 
 
4. Explanation 
 
In the last three decades, Artificial Intelligence has developed automated systems for reasoning. 
In the eighties, most of this work was oriented towards systems that are able to give explanations 
about their own reasoning. The main result published from this research is that a good 
explanation is an explanation that takes account of the context. The model we propose here takes 
into account the context of actions being performed. Each action achieved by the planner is 
contextualized, i.e. we consider what one may call the intention of the action. The intention of an 
operator of the planner is a set of knowledge representing the goal of the action, the means used 
to perform the action and the reasons that justify the action. This knowledge depends on the 
context of the action, so for any action performed to solve a problem, there is an intention that 
could be considered as the explanation of this contextual action. The whole explanation of the 
solution is considered as the set of explanations of the actions performed to attain the final 
solution. In previous work [10] we have developed the model of Intentional structures that we 
recall briefly here. 
Pero generates the knowledge concerning the description of what we call the intention of the 
action, (i.e. the goal, the means and the reasons for the action). This knowledge comes from the 
solution graph. The whole explanation destined for the student is the concatenation of the all 
intentions of the actions belonging to the path solution. 
In order to illustrate this model, the following is a draft of how the solution is proved and the 
explanation is generated. 
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Let EQ1 be the initial state, and EQ2 be the final state. (EQ1 and EQ2 are respectively the first 
equations that will lead to the second equation after a certain number of substitutions and or 
calculus). 
When the system passes from one state S1 to the following one (S2) it concatenates the intention 
of the action that leads from S1 to S2.  
For the global problem, the intention of the problem is defined by: 
1. Goal: try all possible combination of substitution and calculus to find the solution 
2. Means: are the operators used in the actions; 
3. Reason:  is the set of theorems, laws or functions that triggers the operator. 
 
For each action the intention is defined as  
          1.  Goal: Try to find the final state from the current state 
          2.  Means: The operators used to perform the action (e.g. Substitute, Calculate, Derive, 
etc.) 
          3. Reason: justify the action by the arguments that trigger the action, these arguments can 
be theorems, laws, lemma functions, etc.) 
 
        The proof paths of the LC circuit, in Figures 1 and 2 show how the explanation is presented 
to the student (B for the Goal (B as in the word ‘But’ in French), M for the Means and R for the 
reason) in both top-down and bottom-up strategies. In these figures one can see the explanation 
of the adopted solution. 

 

5. Conclusion 
 

This work aims to support learning by giving students the possibility of observing how a problem 
can be resolved.  
We propose PERO a planner implemented in Java to solve exercises in physics automatically in a 
way that allows the students to make observations on the proof. Several strategies (such as top-
down and bottom-up strategies) for finding solutions can be chosen by the students and, an 
adequate explanation is generated. It is not only developed with the aim of solving exercises, but 
also for drafting answers and explanations in a language that combines formal and natural 
language. The explanation is generated from the solution graph in which knowledge about the 
goal, the means and the reason for each action is stored. 
The next step of this ongoing work is to validate this system with a group of users.   

As a possible extension to this work, we plan to add a module for the generation of a sheet of 
exercises using automatic indexing of solutions already stored in the system. The indexation will 
be made on concepts such as theorems of physical sciences used for their resolution. This kind of 
indexation applied to mathematical exercises has been developed by [7].   
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