


 



Introduction 
 
 
Student modeling is of great importance in intelligent tutoring and intelligent educational 
assessment applications.  However, student modeling for computer-assisted language learning 
(CALL) applications differs from classic student modeling in several key ways, including the lack 
of observable intermediate steps (behavioral or cognitive) involved in successful performance. This 
workshop will focus on student modeling for intelligent CALL applications, addressing such 
domains as reading decoding and reading and spoken language comprehension.  Domains of interest 
include both primary (L1) and second language (L2) learning. Hence, the workshop will address 
questions related to student modeling for CALL, including what types of knowledge ought such a 
model contain, with what design rationale, and how might information about the user’s knowledge 
be obtained and/or inferred in a CALL context? 
 
The first workshop on Student Modeling for Language Tutors is taking place at the AIED2005 
conference.  Constructing student models for language tutors is more challenging than for classical 
computer tutors for several reasons: 

1. It is difficult to determine the reasons for successes and errors in student responses.  In 
classic ITS domains (e.g., math and physics), the interaction with the tutor may require 
students to demonstrate intermediate steps.  For performance in language domains, much 
more learner behavior and knowledge is hidden, and having learners demonstrate 
intermediate steps is difficult or perhaps impossible, and at any rate may not be natural 
behavior.  (How) Can a language tutor reason about the cause of a student mistake? (How) 
Can a language tutor make attributions regarding a student's knowledge state based on overt 
behavior? 

2. Cognitive modeling is harder in language tutors.  A standard approach for building a 
cognitive task model is to use think-aloud protocols.  Asking novices to verbalize their 
problem solving processes while trying to read and comprehend text is not a fruitful 
endeavor.  How then can we construct problem solving models?  Can existing 
psychological models of reading be adapted and used by computer tutors? 

3. It may be difficult to accurately score student responses.  For example, in tutors that use 
automated speech recognition (ASR), whether the student’s response is correct cannot be 
determined with certainty.  In contrast, in classic tutoring systems scoring the student’s 
response is relatively easy.  How can inaccuracies in scoring be overcome to reason about 
the students’ proficiencies? 
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Modeling Student Knowledge in an Oral 

Reading Companion

Sherman R. Alpert, Peter G. Fairweather, Bill Adams, Jennifer Lai

IBM T.J. Watson Research Center
Yorktown Heights, NY USA

{salpert, pfairwea, whadams, jlai}@us.ibm.com

Abstract

Guided oral reading has been shown to have positive pedagogical value; our Reading 

Companion provides a shared reading experience in which students read on-screen books 
aloud guided by the Companion, which offers scaffolded modeling of expert skill and 
feedback based on speech recognition. A student model is maintained for each student,

which tracks student performance and decoding knowledge in terms of rules and word 
features. Decoding rules (or, more accurately, heuristics) involve mapping sequences and 

patterns of letters and letter categories to particular sounds. An example letter sequence 
heuristic makes "ph" sound like /f/; an example letter category pattern informs us that the 
pattern VCe at the end of a syllable usually makes the V have its long sound and makes 

the final "e" silent. An example word feature might be the fact that a word contains a 
specific consonant blend. We describe how the tutor maps spoken words to rules and

word features (collectively referred to as linguistic facts), and how information about 
these data are maintained in the student model. The Reading Companion includes a
sophisticated post hoc reporting facility, which provides a view into the student model, 

allowing teachers to gain insights into students’ strengths and weaknesses, and
facilitating targeted individualized interventions. The Reading Companion is Web-based

and accessible via an ordinary browser.
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Abstract.  Intelligent computer tutors can derive much of their power from having a 
student model that describes the learner’s competencies.  However, constructing a student 
model is challenging for computer tutors that use automated speech recognition (ASR) as 
input.  This paper reports using ASR output from a computer tutor for reading to compare 
two models of how students learn to read words:  a model that assumes students learn 
words as whole-unit chunks, and a model that assumes students learn the individual 
letter sound mappings that make up words.  We use the data collected by the ASR to 
show that a model of letter sound mappings better describes student performance.  We 
then compare using the student model and the ASR, both alone and in combination, to 
predict which words the student will read correctly, as scored by a human transcriber.  
Surprisingly, majority class has a higher classification accuracy than the ASR.  However, 
we demonstrate that the ASR output still has useful information, and that classification 
accuracy is not a good metric for this task, and the Area Under Curve (AUC) of ROC 
curves is a superior scoring method.  The AUC of the student model is statistically reliably 
better (0.670 vs. 0.550) than that of the ASR, which in turn is reliably better than majority 
class.  These results show that ASR can be used to compare theories of how students learn 
to read words, and modeling individual learner’s proficiencies may enable improved speech 
recognition. 

1 Motivation and Introduction 

Intelligent Tutoring Systems (ITS) derive much of their power from having a student model 
[1] that describes the learner’s proficiencies at various aspects of the domain to be learned.  
For example, the student model can be used to determine what feedback to give [2] or to 
have the students practice a particular skill until it is mastered [3] Unfortunately, language 
tutors have difficulty in developing strong models of the student.  Much of the difficulty 
comes from the inaccuracies inherent in automated speech recognition (ASR).  Providing 
explicit feedback based only on student performance on one attempt at reading a word is 
not viable since the accuracy at distinguishing correct from incorrect reading is not high 
enough [4].  Due to such problems, student modeling has not received as much attention in 
computer assisted language learning systems as in classic ITS [5], although there are 
exceptions such as [6].     
 A common approach to developing cognitive models for use in an ITS is to use think-
aloud protocols  [7, 8].  In a think-aloud study [7], participants verbalize their thinking 
while solving a problem.  Such verbalizations are then used to construct a cognitive model 
of how the participants were solving the task.  This approach has also been used to develop 
cognitive models for ITS [8].  Unfortunately, due to the speed of the reading process, think-
aloud methodology is not well suited to modeling reading. 
 There have been efforts to develop cognitive models that describe the reading process.  
For example, [9] developed a parallel distributed processing model that was able to 
simulate many aspects of human performance.   A major drawback of this approach is the 
models are designed for individual word reading and not for reading connected text.  
Furthermore, rather than observing the reader’s behavior with each word to model this 
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particular reader, these studies use simulated input to try to mimic known human behavioral 
characteristics.    
 The goal of this paper is to first quickly compare two models of how children learn to 
read, and then to use the better model to improve the ability of the ASR to listen accurately 
to children.   
 We first describe our approach to collecting and representing our data, and describe two 
candidate models of children’s reading.  We then compare which model better fits student 
performance as scored by the ASR.  Finally to determine whether the student model can 
improve listening accuracy, we compare the effects of combining the student model and the 
ASR to better predict how a human transcriber judges words as read correctly or 
incorrectly.   

2 Approach to Constructing the Student Model 

In this Section we discuss the data used for experiments, our statistical framework for 
modeling, and the two models of reading we are investigating.   

2.1 Data collected and representation 
We collected data from 541 students working with a computer tutor that helps children 
learn how to read.  Over the course of the school year, these students read approximately 
4.1 million words (as heard by the ASR).  The tutor presented one sentence (or fragment) at 
a time, and asked the student to read it aloud.  The student’s speech was segmented into 
utterances that ended when the student stopped speaking.  Each utterance was processed by 
the ASR and aligned against the sentence. This alignment scores each word of the sentence 
as either being accepted (heard by the ASR as read correctly), rejected (the ASR heard and 
aligned some other word), or skipped (not read by the student).  We use the terms 
“accepted” and “rejected” rather than “correct” and “incorrect” due to inaccuracies in the 
ASR.  The ASR only notices about 25% of student misreadings, and scores as incorrectly 
read about 4% of words that were read correctly.  Therefore “accept” and “reject” are more 
accurate terms.     
 One problem is determining how to score each word in the sentence text.  As an 
example, suppose the student is trying to read the sentence “They are formed over millions 
of years and once depleted will take millions of years to replenish,” and misreads 
“depleted,” and stops reading after “will.” Clearly the word “depleted” was read incorrectly, 
but what about the words “take” through “replenish?”  It is odd to score these words as 
incorrect, since the student did not try to read them.  However, the student stopped reading 
the sentence for some reason.  Since his true reason for stopping is unknown, we assume 
the student had difficulty with the next word in the sentence where he stopped reading.  So 
in the above example, the student would be considered to have misread “take.”   
 Our heuristic for scoring the sentence words was: 

1. For each utterance 
a. Start = position of first accepted word 
b. End = 1+position of last accepted word  
c. Use the ASR’s accept/reject decision to score all words from Start through 

End as correctly or incorrectly read. 
d. Even if the ASR accepted a word, if the student hesitated more than 300ms, 

score that word as incorrect. 
2. For each sentence word w 

a. Find the first utterance where w’s position is between Start and End 
b. Use the ASR’s score for w from that utterance.  If nothing is aligned against 

w, score it as incorrectly read. 
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c. If a student requested help on w before it was accepted by the ASR, mark it 
as incorrectly read. 

d. If w is not contained within any utterance, then it is not scored since the 
student did not attempt to read the word. 

 To continue the above example, if the student’s second attempt at reading the sentence 
consisted of “take millions of years to replenish,” then all of the sentence words would be 
accepted as read correctly except for “depleted” (since it was misread) and “take” (since in 
the first utterance that contains this sentence word nothing was aligned against the sentence 
word).   
  After using this methodology to combine utterances, and removing students who 
were not part of the official study, we were left with 360 students and 1.95 million sentence 
words that students attempted to read.  On average, students used the tutor for 8.5 hours.  
Most students were between six and eight years old, and had reading skills appropriate for 
their age.     

2.2 Knowledge tracing 
Now that we have determined how to score student attempts at reading a word as correct or 
incorrect, we must map those overt actions to some internal representation of the student’s 
knowledge.  Prior work in this area [10] has shown that knowledge tracing [3] is an 
effective approach for using ASR output to model students.   
   The goal of knowledge tracing is to map observable student actions while performing a 
skill (whether the student’s response is correct or incorrect) to internal knowledge states 
(whether the student knows the skill or not).  As illustrated in Figure 1, knowledge tracing 
maintains four constant parameters for each skill.  Two parameters, L0 and t, are called 
learning parameters and refer to the students initial knowledge and to the probability of 
learning a skill given an opportunity to apply it, respectively.  Two parameters, slip and 
guess, are called performance parameters and used to account for student performance not 
being a perfect reflection of underlying knowledge.  The guess parameter is the probability 
that a student who has not mastered the skill can generate a correct response.  For example, 
on a multiple-choice test with four response choices, a student with no knowledge still has a 
25% chance of getting the question correct.  The slip parameter is used to account for even 
knowledgeable students making an occasional mistake.  For example, a student who when 
asked to multiply 4 and 3, could accidentally hit the keys in the wrong order and type “21.”   
 

 

 

 

 

 

 

 

 

 

Figure 1.  Overview of knowledge tracing 

  For each student and for each skill, knowledge tracing is maintains the probability 
that the student knows the skill.  Knowledge tracing updates its estimates of P(knows) 
based on student performance.  The approach is that whenever a student has an opportunity 
to apply a skill, observe whether the student performed the skill correctly or incorrectly.  

P(slip) P(guess)

1-P(guess)

P(L0) 

P(Knows Skill) 

1-P(slip) 

P(Incorrect response) 

P(Doesn’t know Skill) 

P(Correct response) 

P(t)
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The probability of P(knows) can then be computed via Bayes’s rule [3].  In addition, the 
transition probability accounts for the expected increase in student knowledge due to the 
opportunity to practice the skill.    
 Knowledge tracing distinguishes between a student knowing a skill and getting it 
correct.  P(knows skill) refers to the model’s estimate of the student’s internal knowledge.  
P(correct response) is derived from P(knows skill) and the performance parameters:  
P(correct response) = P(knows skill) * 1 – P(slip) + 1 – P(knows skill) * P(guess).  Prior 
work on applying knowledge tracing to ASR output [10] demonstrated that the slip and 
guess parameters, in addition to accounting for variability  in student performance, can also 
account for variability in the ASR scoring of student responses.  Therefore, knowledge 
tracing is an appropriate modeling framework for this task. 

2.3 Lexical and graphophonemic models 
We considered two possible models for how students could learn to decode words.  The 
first is a lexical model, which assumes that students learn words as a whole-unit, and there 
is no transfer between words.  Although the assumed lack of transfer is somewhat naïve, it 
is likely that skilled readers recognize most words by sight.  It is less clear, however, 
whether children learning to read have a similar representation as skilled readers. 
 The second model is a graphophonemic model, and assumes that rather than learning 
whole-words, students instead learn subword units.  Specifically, it assumes that students 
learn the grapheme (letter) to phoneme (sound) mappings that make up words.  For 
example, the word “chemist” contains the following grapheme phoneme mappings:  
ch /K/, e /EH/, m /M/, i /IH/, s /S/, and t /T/.  The grapheme phoneme model is 
abbreviated as g p model. 
  Given these two possible models, the next task is to determine which model is better 
described by our data under the knowledge tracing framework.   

2.4 Evaluating the lexical and g p models 
 To determine which model of student reading, lexical or g p, better described student 
performance, we fit each of them to the student performance data as heard by the ASR 
(described above).  First we split the students into two groups (to create a testing set to be 
used later).  For students in the training set, we ordered each student’s performance data 
chronologically.  Then, for each model, we estimated the knowledge tracing parameters for 
each skill based on the student performance data. 
 For the lexical model, we simply treated words as skills.  So each student attempt at 
reading a word was evidence for knowing the whole word or not.  For the g p model, we 
considered all of the g p mappings in the word.  If the word was accepted as correct, then 
all of the mappings were credited; if it was rejected as incorrect then all of the mappings 
were debited.   
 The lexical model had considerably more skills than the g p model.  There were 3210 
lexical skill (i.e. words); in comparison there were only 295 g p mappings encountered by 
students.  As a result of this difference in number of skills, the g p model had substantially 
more students encountering each skill on average (106 vs. 45).  Table 1 describes the 
knowledge tracing parameter estimates for each of the models.  These parameters are the 
average across each skill in the model, weighted by the number of times the skill occurred.  
This weighting is to avoid biasing the model by several skills that occur rarely (e.g. the 
word “arose” or “bts /ts/” as in the word “debts”). 
 Note that the performance parameters (guess and slip) are similar for both models, 
while the learning parameters (L0 and T) are different.  These performance parameters are 
vastly different than in knowledge tracing done in other ITS (where typically “guess” is 
restricted to be less than 0.3).  The reason for this difference is the uncertainty introduced 
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by the ASR scoring.  This uncertainty is the reason the performance parameters under both 
models are similar:  the parameters are (mostly) modeling the speech recognition rather 
than the student.  Thus, the agreement in parameter estimates between the two models is not 
surprising.  The column labeled R2 in the table refers to how well the knowledge tracing 
parameters fit each skill. 

Table 1.  Mean knowledge tracing parameters 

 L0 T Guess Slip R2 
Lexical 0.32 0.14 0.65 0.08 0.34

g p 0.49 0.01 0.57 0.10 0.48

 
  At least within the framework of knowledge tracing, student performance is better 
described by the g p model (R2 of 0.48) than by the lexical model (R2 of 0.34).  Thus, the 
g p model appears to be a better description of how children at this age acquire reading 
skills.   

3 Leveraging the Student Model to Improve Speech Recognition 

Although the g p model is a useful way of viewing student performance and it provides a 
reasonable description of how students learn how to read, we would like to use the g p 
student model to make predictions about how students will behave in order to improve the 
speech recognition system.  For example, if the student model believes that the student has 
mastered the g p mappings of the word “cat,” but the ASR believes the student misread 
the word, perhaps we should ignore the ASR output and instead credit the student with 
reading the word correctly. 
 To evaluate possible improvements to the ASR, we had a skilled human transcribe a 
sample of the student utterances throughout the year.  We followed the same protocol for 
aligning the sentence text against the transcription as we did for the ASR output, and 
similarly computed regions of the sentence we thought the student was attempting to read 
and counted the student’s first attempt at reading the word.  There were two differences 
from the prior procedure.   
 First, we excluded cases where the student requested help on the sentence word before 
reading it.  Since the goal of this experiment was to evaluate whether a student model could 
improve ASR performance, help was a confound since it could be detected by neither the 
ASR nor the transcriber.  Therefore, we simply excluded such trials. 
 Second, we insisted that the ASR and transcriber agree about which word the student 
was trying to read.  Sometimes the ASR would be confused by background noise and get 
off-track.  We were not trying to improve performance in these cases, so simply excluded 
them from the data. 
  Our approach was to treat the problem as classification.  We used the second, testing, 
half of our data, so these data are not the ones used to perform the knowledge tracing 
parameter estimates of L0, t, slip, or guess.  For the students in the testing set, we ran their 
data for the year through the knowledge tracing equations to determine skill estimates for 
each student for each g p mapping.  While tracing through a student’s performance for the 
year, if a particular word had been transcribed, we recorded:  1) the student’s knowledge at 
that point in time (before updating the knowledge tracing estimates of the student’s 
knowledge for this attempt), 2) the ASR’s accept/reject decision, and 3) whether the 
transcriber thought the student said the word correctly.  The transcriber’s scoring was the 
outcome variable for the classifier.  We considered several types of features for the 
classifier: 
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1. The relative difficulty of the word for the student.  We pretested students at the 
beginning of year on a variety of tests, including the Woodcock Reading Mastery’s 
[11] Word Identification subtest, which gives a student’s proficiency at reading 
words in grade equivalent terms (e.g. 3.2 means second month of the 3rd grade).  We 
also had a heuristic that estimates the difficulty of the word on the same grade 
equivalent scale.  The difference between these scores is the relative difficulty of the 
word for this student.   

2. The student’s proficiencies at the g p mappings in the word.  Since words have a 
variable number of mappings, we needed some way to get a constant number of 
features per word.  We settled on extracting the student’s proficiency on the 
following g p mappings in the word:   the first, the last, the one with the lowest 
proficiency, and the one with the highest proficiency.  We also computed the 
student’s mean proficiency across all the g p mappings in the word, and product of 
P(knows) for a all the mappings in the word.  In addition to computing those six 
features for P(knows), we also computed them for P(correct) (according to the guess 
and slip parameter estimates for the skill).   

3. The ASR’s accept/reject decision for this word. 
 
 The testing set contained nearly 1 million sentence words heard by the ASR.  However, 
only 8,818 of those words were transcribed.  Furthermore, these data were highly 
imbalanced, with 369 (4.2%) instances of students misreading a word and 8449 (95.8%) 
instances of correct reading.  Although it may seem unusual for students to read 95.8% of 
words correctly (not counting those words on which they requested help), this level of 
performance is appropriate for material to help children learn to read.   
 For input to the classifier, we used several combinations of the above three groups of 
features:  relative word difficulty, knowledge tracing features, the ASR, ASR + relative 
word difficulty, and ASR + relative word difficulty + knowledge tracing features.   
 The relative word difficulty is in essence a simple student model:  how hard is this 
word for a student of this general reading proficiency; the knowledge tracing model is a 
more nuanced view since it accounts for variations in the student’s knowledge.  Thus, we 
can compare the relative benefit of using different levels of knowledge about the student.   
 Table 2 shows the results of the classification procedure.  All results were generated 
using Weka’s [12] REPTree fast decision tree learner’s default settings, with bagging (10 
bags) and a 20-fold cross validation.   
 The five most salient items from Table 2 are: 

1. No approach did noticeably better than baseline (maximum difference 1.85%). 
2. Majority class outperformed the ASR. 
3. The only classifiers that beat majority class used the knowledge tracing features as 

inputs. 
4. The student model was not able to improve classification accuracy by much.  In 

fact, the best performer only classified 6 more cases correctly than the majority 
classifier. 

5. Having the ASR as a feature hurt performance.   
However, perhaps classification accuracy is not the best metric to use.  Even though 
majority class outperforms the ASR, would it really be a superior scoring system to always 
assume the student read the word correctly?  As a thought experiment, pretend that we had 
simply scored all student reading as being correct rather than using the ASR at all.  It would 
have been impossible to apply knowledge tracing (or other student modeling approaches).  
Therefore, we would never have been able to get the small improvement in classification 
accuracy over majority class that we obtained by adding the knowledge tracing estimates.  
Although the improvement is very slight, it does exist.  Given that the student model was 
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built from the ASR output, it must contain some signal that is being overlooked by a simple 
majority classifier.   

Table 2.  Classifier accuracy for predicting transcription 

 
 
 
 
 
 
 
 
 
 
 
 
 
  Furthermore, the primary goal of the ASR in a computer tutor is not to get high 
classification accuracy, it is to serve as a means to construct a student model to enable the 
tutor to select appropriate feedback and customize instruction for the student.  It is unclear 
how assuming that the student is always correct can accomplish these modeling or teaching 
goals.   
 Perhaps lower classification accuracy is better if it enables the tutor to better model the 
student?  One method of accomplishing this goal is to give different penalties to different 
types of classification mistakes.  Unfortunately, it is difficult to specify a priori a good 
evaluation function that would lead to a good student model.  For example, we could try 
different penalties for different types of classification mistakes, then compute how well we 
can model the student, and iterate.  However, this approach is not computationally efficient.  
Furthermore, our ability to model the student depends on the domain being taught, known 
models for how students acquire the skills, etc.  Therefore, it would be difficult to transfer 
research results tuned for one system to others.   

 One approach that sidesteps the problems of non-generalizable results  and inventing 
penalties for various classification mistakes is to examine the Receiver Operator 
Characteristic (ROC) curves of the classifiers [13, p. 361].  Specifically, we investigate the 
Area Under Curve (AUC) of the ROC curves.  AUC is a measure of the classifier 
sensitivity: how well does the classifier do at distinguishing instances of each target class.
 Classifiers with a higher AUC are better than those with a lower AUC.  A random (or 
majority) classifier will have an AUC of 0.5.   

Table 3 shows the AUC for the classifiers shown in Table 2.  The lower and upper 
bounds for the AUC were computed via SPSS’s 95% confidence intervals making no 
parametric assumptions.   
 All of the AUCs are reliably superior to 0.5 (i.e. better than majority class).  Therefore 
each set of features is able to distinguish the difference in likelihoods of the student making 
a mistake under different circumstances.  Interestingly, all of the student models, even the 
simple model of relative word difficulty, were reliably superior to just using the ASR.  The 
more complicated knowledge tracing model did not outperform the simpler model that just 
used word difficulty.  However, there may be some slight gain from combining them with 
ASR (0.686 vs. 0.678).  Therefore, it seems likely that both the simple and more 
complicated student model contain some independent information about the student’s 
chances of reading a word correctly.    

Features Classifier accuracy 
Knowledge tracing 95.88% 
ASR + relative difficulty + knowledge tracing 95.84% 
ASR + knowledge tracing 95.84% 
Majority class 95.82% 
Relative difficulty 95.79% 
ASR + relative difficulty 95.78% 
ASR (baseline) 94.03% 
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4 Contributions 

This work extends prior work on testing models of reading in several ways.  First, it applies 
the models to individual’s data rather than to aggregate performance (as in [9]).  Second, it 
examines students learning to read in vivo in the classroom rather than using simulated data 
(as in [9, 14]).   
 This work extends prior work on using ASR output to build student models (e.g. [10]).  
First, it considers using the student model to aid speech recognition.  Also, rather than 
simply assuming a model of how children acquire reading skills, this paper examines the 
ability of the ASR to help select competing cognitive models reading (lexical and g p 
models).  
 

Table 3.  ROC for various feature combinations 

 
 
 
 
 

 

 

 

 

 

 
 
 Compared to existing work on user modeling for (generally dialog) systems that use 
ASR (e.g. [15] and [16]) this work describes a richer model of the user.  Two advantage of 
an ITS over many other systems that use ASR as input are that users work with the system 
for an extended length of time (8.5 hours in our study), and the system has a better idea of 
what the user is trying to do.  Both of these features make for stronger user models.   

5 Conclusions and Future Work 

The ASR of a computer tutor for reading provides information about an individual student’s 
reading development.  The content of this information is sufficient to choose which of two 
possible models of reading development better describes the students using the tutor.  
Specifically, children learning to read are better modeled using subword properties 
(grapheme phoneme mappings) than by treating words as atomic units.   
 The ASR is also powerful enough to construct a student model based on the student’s 
past actions that can predict how the student will perform next—even when judged by a 
human transcriber. 
 Determining what constitutes good ASR performance in an ITS is complex, and 
classification accuracy can be misleading.  Instead, AUC is a better metric for the actual 
task of the ASR:  to provide a signal to customize instruction to the student.  Using AUC as 
an outcome measure, the student model was able to improve the ability to hear the student’s 
reading.   
 The method for constructing a student model from the ASR output is somewhat crude.  
Two areas of improvement are a better credit model and using cues other than 
acceptance/rejection of a word.  Currently, all of the g p mappings in a word are blamed 

Features AUC Lower 
bound 

Upper 
bound 

ASR + knowledge tracing + difficulty 0.686 0.656 0.716 

ASR + knowledge tracing 0.678 0.649 0.708 

ASR + difficulty 0.678 0.648 0.707 

Just difficulty 0.670 0.641 0.699 

Just knowledge tracing 0.670 0.640 0.700 

Just ASR 0.550 0.518 0.583 
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or credited.  However, if a student misreads a word it is probable that not all of the 
mappings are responsible.  A Bayesian credit assignment approach (e.g. [2]) would 
overcome this weakness.  Similarly, the student’s pattern of hesitation before a word 
contains a useful signal for modeling the student [17].  One possible avenue is to use the 
amount of hesitation before reading a word as a clue to the strategy the student is using: a 
short pause suggests a lexical strategy while a longer pause suggests the student is using his 
knowledge of g p mappings. 
 One open question is rather than using the ASR to compare two competing models of 
reading, is to instead ask whether the ASR be used to determine for which words and for 
which students a particular model is appropriate.  For example, it is likely as students 
become more familiar with a word they will treat it as an atomic unit (as in the lexical 
model), and rely on their knowledge of grapheme phoneme mappings for less familiar 
words.  In the future, we would like to study the ASR’s capacity to detect such transitions. 
 Finally, this paper does not resolve the best method for combining the information 
contained in the student model (historical, averaged, data) and the ASR (current, noisy, 
data).  For example, we demonstrated that for a new utterance, the ASR does not do as good 
a job at determining which words the student read correctly than the student model—even 
though the student model does not use any information from the current attempt!  An 
obvious conclusion is to use the student model to second guess the ASR for the current 
interaction.  Less obvious is how the student model should be updated.  Should the 
student’s estimates be decreased (according to the ASR’s scoring) or increased (according 
to the student model’s scoring)?  If the latter option is chosen, there is a positive feedback 
mechanism built into the student model which could lead to instability:  once the student 
begins to demonstrate knowledge (or lack of knowledge), his scores will have a built-in 
tendency to further increase (decrease).  Intuitively, this mechanism does not sound like a 
good one.  Perhaps it is necessary to decouple the scoring of the student’s responses with 
one set of rules for determining feedback (student model + ASR), but just using the ASR to 
update the student model?   
 
Acknowledgements 
This work was supported by the National Science Foundation, under ITR/IERI Grant No. 
REC-0326153. Any opinions, findings, and conclusions or recommendations expressed in 
this publication are those of the authors and do not necessarily reflect the views of the 
National Science Foundation or the official policies, either expressed or implied, of the 
sponsors or of the United States Government.  The author also thanks John Helman for 
transcribing many, many, student utterances.   

 
 

References 
 

1. Woolf, B.P., AI in Education, in Encyclopedia of Artificial Intelligence. 1992, John Wiley &Sons: New 
York.  p. 434-444. 

2. Conati, C., A. Gertner, and K. VanLehn, Using Bayesian Networks to Manage Uncertainty in Student 
Modeling. User Modeling and User-Adapted Interaction, 2002. 12(4): p. 371-417. 

3. Corbett, A.T. and J.R. Anderson, Knowledge tracing: Modeling the acquisition of procedural knowledge. 
User Modeling and User-Adapted Interaction, 1995. 4: p. 253-278. 

4. Williams, S.M., D. Nix, and P. Fairweather. Using Speech Recognition Technology to Enhance Literacy 
Instruction for Emerging Readers. in Fourth International Conference of the Learning Sciences. 2000. p. 
115-120: Erlbaum. 

5. Heift, T. and M. Schulze, Student Modeling and ab initio Language Learning. System, the International 
Journal of Educational Technology and Language Learning Systems, 2003. 31(4): p. 519-535. 

6. Michaud, L.N., K.F. McCoy, and L.A. Stark. Modeling the Acquisition of English: an Intelligent CALL 
Approach". in Eighth  International Conference on User Modeling. 2001. p.: Springer-Verlag. 

10



7. Newell, A. and H. Simon, Human Problem Solving. 1972, Englewood Cliffs, N.J.: Prentice-Hall. 
8. Anderson, J.R., Rules of the Mind. 1993: Lawrence Erlbaum Assoc. 
9. Harm, M.W., B.D. McCandliss, and M.S. Seidenberg, Modeling the successes and failures of interventions 

for disabled readers. Scientific Studies of Reading, 2003. 7(2): p. 155-182. 
10. Beck, J.E. and J. Sison. Using knowledge tracing to measure student reading proficiencies. in Proceedings 

of International Conference on Intelligent Tutoring Systems. 2004. p. 624-634. 
11. Woodcock, R.W., Woodcock Reading Mastery Tests - Revised (WRMT-R/NU). 1998, Circle Pines, 

Minnesota: American Guidance Service. 
12. Witten, I.H. and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java 

Implementations. 2000: Morgan Kaufmann. 
13. Hand, D., H. Mannila, and P. Smyth, Principles of Data Mining. 2001, Cambridge, Massachusetts: MIT 

Press. 
14. Seidenberg, M.S. and J.L. McClelland, A Distributed, Developmental Model of Word Recognition and 

Naming. Psychological Review, 1989. 96: p. 523-568. 
15. Horvitz, E. and T. Paek. Harnessing Models of Users' Goals to Mediate Clarification Dialog in Spoken 

Language Systems. in Eighth Conference on User Modeling, Sonthofen. 2001. p. Sonthofen, Germany. 
16. Singh, S., D. Litman, M. Kearns, and M. Walker, Optimizing Dialogue Managment with Reinforcement 

Learning: Experiments with the NJFun System. Journal of Artificial Intelligence Research, 2002. 16(5): p. 
105-133. 

17. Mostow, J. and G. Aist. The Sounds of Silence: Towards Automated Evaluation of Student Learning in a 
Reading Tutor that Listens. in Proceedings of the Fourteenth National Conference on Artificial 
Intelligence (AAAI-97). 1997. p. 355-361 Providence, RI: American Association for Artificial Intelligence. 

 

11



Using Speech Recognition to Evaluate
Two Student Models for a Reading Tutor
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Abstract. Intelligent Tutoring Systems derive much of their power from
having a student model that describes the learner’s competencies. How-
ever, constructing a student model is challenging for computer tutors
that use automated speech recognition (ASR) as input, due to inherent
inaccuracies in ASR. We describe two extremely simplified models of
developing word decoding skills and explore whether there is sufficient
information in ASR output to determine which model fits student per-
formance better, and under what circumstances one model is preferable
to another.

The two models that we describe are a lexical model that assumes
students learn words as whole-unit chunks, and a grapheme-to-phoneme
(G→P) model that assumes students learn the individual letter-to-sound
mappings that compose the words. We use the data collected by the
ASR to show that the G→P model better describes student performance
than the lexical model. We then determine which model performs better
under what conditions. On one hand, the G→P model better correlates
with student performance data when the student is older or when the
word is more difficult to read or spell. On the other hand, the lexical
model better correlates with student performance data when the student
has seen the word more times.

Keywords. Intelligent Tutoring Systems, Student Model, Automatic
Speech Recognizer, Knowledge Representation

1. Introduction

Intelligent Tutoring Systems (ITS) derive much of their power from having a
student model [16] that describes the learner’s proficiencies at various aspects
of the domain to be learned. For example, the student model can be used to
determine what feedback to give [3] or to have the students practice a particular
skill until it is mastered [4]. Unfortunately, language tutors that use automated
speech recognition (ASR) as input have difficulty in developing strong models of
the student. Much of the difficulty comes from the inaccuracies inherent in the
ASR output. Providing explicit feedback based only on student performance on
one attempt at reading a word is not viable since the accuracy at distinguishing
correct from incorrect reading is not high enough [14].
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In previous work, we have been able to use ASR output to estimate a student’s
overall level of knowledge [1] (e.g. help requests within the use of a reading tutor
[2]) and assess interventions (e.g. help selection policy) of a tutoring system [7].
The next question is whether we can construct a student model from the ASR
output. Specifically, we would like to model internal knowledge representation
of reading and word decoding strategies. Ideally, we would like to construct a
complex student model capturing all aspects of reading. For example, Ehri [6]
describe the reading process:

“Reading words may take several forms. Readers may utilize decoding, analogizing,
or predicting to read unfamiliar words. Readers read familiar words by accessing
them in memory, called sight word reading. With practice, all words come to be read
automatically by sight, which is the most efficient, unobtrusive way to read words
in text. The process of learning sight words involves forming connections between
graphemes and phonemes to bond spellings of the words to their pronunciations
and meanings in memory. The process is enabled by phonemic awareness and by
knowledge of the alphabetic system, which functions as a powerful mnemonic to
secure spellings in memory.”

However, training such a complex student model is clearly infeasible due to a
sparse data problem. Although we can obtain more data with ASR, the inherent
inaccuracies with ASR output must be addressed. Therefore, in the current study
we first propose two extremely simplified models of developing word decoding
skills and examine whether there is sufficient information at all in ASR output
to discriminate the two overly simplified models.

More specifically, the two models that we describe are a lexical model that
assumes students learn words as whole-unit chunks, and a grapheme-to-phoneme
model that assumes students learn the individual letter-to-sound mappings that
compose the words. Given the observed student performance data, we map those
overt actions to some internal representation of the student’s knowledge. Then,
we evaluate the two models to determine which model fits student performance
data better. Furthermore, we examine under what circumstances one model is
preferable to another.

2. Knowledge Tracing

The goal of knowledge tracing is to estimate student’s knowledge from their ob-
served actions. Prior work in this area [2] has shown that knowledge tracing [4]
is an effective approach for using ASR output to model students.

As illustrated in Figure 1, knowledge tracing maintains four constant parame-
ters for each skill. Two parameters, L0 and t, are called learning parameters and
refer to the student’s initial knowledge and to the probability of learning a skill
given an opportunity to apply it, respectively. Two other parameters, slip and
guess, are called performance parameters and account for student performance
not being a perfect reflection of his underlying knowledge. The guess parameter
is the probability that a student who has not mastered the skill can generate a
correct response. The slip parameter is used to account for even knowledgeable
students making an occasional mistake.
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Figure 1. Overview of knowledge tracing. A set of L0, t, slip and guess parameters is estimated
for each skill, while the internal knowledge state of a skill is traced for each student.

At each successive opportunity to apply a skill, knowledge tracing updates
its estimates of a student’s internal knowledge state of the particular skill, based
on the skill-specific learning parameters and the observed student performance
(evidence). P (Ln) denotes the probability of knowing the skill following the nth

encounter,

P (Ln) =
{

L0 if n = 0
P (Ln−1|evidence) + (1− P (Ln−1|evidence)) ∗ t if n > 0 (1)

Given the current knowledge state of a student at a particular skill, knowledge
tracing then predicts the probability of the student performing the skill correctly,
based on the skill-specific performance parameters. P (On) denotes the probability
of applying the skill correctly at nth encounter,

P (On) = P (Ln−1) ∗ (1− slip) + (1− P (Ln−1)) ∗ guess (2)

Prior work on applying knowledge tracing to ASR output [2] demonstrate
that the slip and guess parameters, in addition to accounting for variability in
student performance, also account for variability in the ASR scoring of student
responses.

3. The Lexical and Grapheme-to-phoneme Student Model

We consider two extremely simplified models for how students can learn to decode
words. The first is a lexical model, which assumes that students learn words as a
whole-unit with no transfer between words. Although the assumed lack of transfer
is somewhat naive, it is likely that skilled readers recognize most words by sight
[6]. It is less clear, however, whether children learning to read have a similar
representation as skilled readers.

The second model is a grapheme-to-phoneme (G→P) model, and assumes
that rather than learning whole words, students instead learn sub-lexical units.
Specifically, it assumes that students learn the grapheme (letter) to phoneme
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(sound) mappings that make up words. For example, the word “cat” contains the
following G→P mappings: c→/K/, a→/AE/, and t→/T/.

Unlike the lexical model which assumes lack of transfer between words, the
G→P model allows students to share the sub-lexical knowledge for words that
share G→P mappings. For example, the word “bat” contains the G→P mappings
of b→/B/, a→/AE/, and t→/T/, where the last two G→P mappings are shared
with the word “cat”. The G→P model assumes that knowledge about a→/AE/,
and t→/T/ that are learned from reading the word “cat” will transfer to the word
“bat”.

4. Data Collection

Our data came from 360 students who used the Reading Tutor [9] in the 2002-
2003 school year. The students using the Reading Tutor were part of a controlled
study of learning gains, so were pre- and post-tested on the Woodcock Reading
Mastery Test [15]. The test was human administered and scored.

Over the course of the school year, these students read approximately 1.95
million words (as heard by the ASR). On average, students used the tutor for 8.5
hours. Most students were between six and eight years old, and had reading skills
appropriate for their age.

During a session with the Reading Tutor, the tutor presented one sentence (or
fragment) at a time, and asked the student to read it aloud. The student’s speech
was segmented into utterances that ended when the student stopped speaking.
Each utterance was processed by the ASR and aligned against the sentence. This
alignment scored each word of the sentence as either being accepted (heard by
the ASR as read correctly), rejected (the ASR heard and aligned against some
other word), or skipped (not read by the student) [11]. For example, in Table 1,
the student was supposed to read “The dog ran behind the house.” The bottom
row of the table showed how the student’s performance would be scored by the
tutor.

Table 1. Example alignment of ASR output to sentence

Sentence The dog ran behind the house.

ASR output The the ran

Scoring Accept Reject Accept Skipped Skipped Skipped

Notice that, we used the terms “accepted” and “rejected” rather than “cor-
rect” and “incorrect” due to inaccuracies in the ASR. The ASR only noticed about
25% of student misreadings, and scored as read incorrectly about 4% of words
that were read correctly. Therefore, “accept” and “reject” were more accurate
terms.
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5. Experiment 1: Fitting Aggregate Student Performance Data

5.1. Model Representation and Credit Assignment

To determine which of the lexical and G→P models better describes student
performance, we fit each model to student performance data as heard by the ASR.
First, we split the students into two groups (to create a testing set to be used
later). Then, for each model, we estimate the knowledge tracing parameters for
each skill using an optimization algorithm1. The optimization algorithm performs
a gradient search over the space of L0, t, guess and slip to find the best fit of a
non-linear curve to all student performance data in the training set, characterized
by Equation 1 and 2.

For the lexical model, we simply treat words as skills. Therefore, each student’s
attempt at reading a word is evidence for knowing the whole word or not. For the
G→P model, modeling the student’s proficiency at a sub-lexical level is difficult,
as we do not have observations of the student attempting to read G→P mappings
in isolation. In the current study, we adopt a simple crediting mechanism: if a word
is accepted by the ASR, then all of the G→P mappings are credited; otherwise,
if a word is rejected, then all of the mappings are debited.

The lexical model has considerably more skills than the G→P model. There
are 3210 lexical skills (i.e. words) and in comparison, there are only 295 G→P
mappings encountered by students. As a result of this difference in number of
skills, the G→P model has substantially more students encountering each skill on
average (106 vs. 45).

5.2. Model Fit

Table 2 describes the knowledge tracing parameter estimates for each of the mod-
els. Notice that, the knowledge tracing parameters are skill-specific; that is, a set
of L0, t, guess and slip is estimated for each skill. To summarize the parameters
for a model, we report the average across each skill in the model, weighted by the
number of times the skill occurred. This weighting is to avoid biasing the model
by several skills that occur rarely (e.g. the word “arose” or “bts→/TS/” as in the
word “debts”).

Table 2. Estimated knowledge tracing parameters (averaged across skills, weighted by the num-
ber of times the skill occurred)

Model L0 T Guess Slip R2

Lexical 0.32 0.14 0.65 0.08 0.34

G→P 0.49 0.01 0.57 0.10 0.48

As seen in Table 2, the performance parameters (guess and slip) are similar
for both models, while the learning parameters (L0 and T) are different. These
performance parameters are vastly different than in knowledge tracing done in
other ITSs (where typically “guess” is restricted to be less than 0.3 [4]). The reason

1Source code is courtesy of Albert Corbett and Ryan Baker and is available at
http://www.cs.cmu.edu/∼rsbaker/curvefit.tar.gz
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for this difference is the uncertainty introduced by the ASR. This uncertainty is
also the reason the performance parameters under both models are similar: the
parameters are (mostly) modeling the speech recognition rather than the student.
The column labeled R2 in the table refers to how well the knowledge tracing
parameters fit student performance data. The R2 for the lexical and G→P models
are 0.34 and 0.48, respectively, and are significantly different at p < 0.01.

At least within the framework of knowledge tracing, student performance is
better described by the G→P model than by the lexical model. Thus, the G→P
model appears to be a better description of how children between six and eight
acquire reading skills.

Notice that, the knowledge tracing’s model fit, R2, fits the aggregated stu-
dent performance data. That is, the performance data of all students are lumped
together in order to have more data to estimate knowledge tracing parameters
more reliably. Consequently, the estimated knowledge tracing parameters describe
aggregated student performance data and are not student-specific.

6. Experiment 2: Fitting Individual Performance Data

Given that the G→P model fit the aggregate student performance better, our
second goal is to determine which of the lexical and G→P model fit the individual
student performance data better. Our approach is to treat the problem as a
classification problem. For each student, we use knowledge tracing’s estimates of
his proficiency to predict whether the ASR will accept a word that he attempts
to read.

For example, upon encountering the word “cat”, we extract a student’s pro-
ficiency in both the lexical and G→P model. Whereas the lexical model asserts
that successful reading of the word “cat” depends on proficiency in only one skill,
“cat”, the G→P model asserts that it depends on three sub-lexical skills, c→/K/,
a→/AE/, and t→/T/. Notice that, the skill proficiency can be estimated in two
ways. We may estimate it to be the probability of knowing the skill, or the prob-
ability of correctly applying the skill. Unfortunately, neither of P (On) nor P (Ln)
is perfect solution. On one hand, by using P (On), we run the risk of solely mod-
eling the ASR, even when P (Ln) contains no information (that it is not model-
ing student knowledge). On the other hand, by using P (Ln), we run the risk of
ignoring ASR’s tendencies to accept/reject certain words regardless of student’s
knowledge. One remedy is to evaluate and bound proficiency in both P (On) and
P (Ln). In the current study, we simply use the P (On).

Given students’ proficiencies in both the lexical and G→P skills of a word,
we train two logistic regression classifiers to predict whether the word will be
accepted by the ASR. The first logistic regression classifier is for the lexical model
and has one predictor - the corresponding lexical skill for the word. The second
logistic regression classifier is for the G→P model and has one predictor for each
sub-lexical skill in the word. In the above example, the word “cat” requires only
one skill in the lexical model, but three skills in the G→P model. To account for
such differences, we train different logistic regression models for different word
lengths. That is, for the lexical model, we train a logistic regression for all words
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with the same word length, totaling 16 models since the longest word tried has a
length of 16 characters. For the G→P model, a logistic regression model is trained
for all words with the same number of G→P mappings, totaling 12 models since
the longest word tried has 12 G→P mappings.

We use the second (testing) half of our data to construct the classifiers, so
these data have not been used to perform the knowledge tracing parameter es-
timates of L0, t, slip, or guess. We then compute the R2 for each length, and
weight the overall result by the number of words of each length. The weighted
R2 suggests whether data can be predicted by our models. As seen in Table 3,
the R2 for the lexical model is essentially the same as the G→P model (0.0861
and 0.0832, respectively). Notice that, the R2 for individual data are expected to
be smaller than R2 for aggregate data (0.34 and 0.48) since aggregated data are
smoother.

Given the two logistic regression models, each model makes separate predic-
tions on the probability that a student will read a word correctly. We then use
the probabilistic predictions of the two models as independent variables in a lo-
gistic regression model to again predict individual performance data. The com-
bined model achieves an even higher R2 of 0.109, as seen in Table 3. This finding
suggests that, although each model fits individual performance data equally well,
there exists some variations in model predictions and each model accounts for
unique variance in student performance. It is likely that students use different
strategies for different words. That is, students may use the lexical model for some
words and the G→P for other words. In our next experiment, we examine which
model is preferable under what circumstances.

Table 3. Logistic regression

Model R2

Lexical 0.0861

G→P 0.0832

Combined 0.1090

7. Experiment 3: Which model performs better under what conditions

7.1. Model Preferability and Contextual Information

Given that the combined model is better, we want to know under what circum-
stances one model outperforms another. We do this by correlating various student
and word information with Delta, a construct that relates to preferability of a
model.

For each word encounter, each model makes separate predictions of the prob-
ability that a student will read the word correctly. We can compute the error
made by each model by taking the squared difference between a model’s proba-
bilistic prediction and the student’s observed performance. Then, we define Delta
as the lexical model’s error minus the G→P model’s error. For example, suppose
the lexical and G→P model estimate the probability that the student reads a
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Table 4. Example of error in model prediction and Delta

Example Model Model Prediction ASR accept Error Squared Error Delta

1 Lexical 0.7 1 0.3 0.09 -0.16

G→P 0.5 1 0.5 0.25

2 Lexical 0.7 0 0.7 0.49 0.22

G→P 0.5 0 0.5 0.25

word correctly at a particular trial as 0.7 and 0.5, respectively, where in reality,
the ASR indeed accepts student’s reading. Then, the squared error of the two
models are (1− 0.7)2 = 0.09 and (1− 0.5)2 = 0.25, respectively, and Delta equals
0.09− 0.25 = −0.16. Therefore, a negative Delta indicates that the lexical model
is performing better than the G→P model. Conversely, a positive Delta indicates
that the G→P model is performing better than the G→P model (see Table 4).

As discussed earlier, we want to characterize the students and words for which
one model outperforms the other. For information about a student, we include
the student’s age, grade, and word identification grade as found in the pretest of
Woodcock Reading Mastery’s Word Identification subtest [15]. For information
about a word, we heuristically estimate the word’s identification and spelling dif-
ficulty from the same Woodcock pretest. The measures give the difficulty esti-
mate of the word in grade equivalent terms. In addition, we include prior, the
number of prior encounters of the word within the Reading Tutor, and frequency,
how often the word occurs in a corpus of English text. Finally, we identify the
dolch [5] and stop words. The dolch words are a list of 220 high frequency words
that are used in beginning reading programs, whereas the stop words are 36 high
frequency words on which errors seldom affect comprehension [10].

7.2. The Correlation Matrix

The correlation between each feature and Delta is shown in Table 5. Despite the
small correlation coefficients, all correlations, except grade, are in the expected di-
rection and are statistically significant at p < 0.01. We now describe the observed
correlations.

One one hand, the G→P model better estimates the student performance
data when the student is older or has higher word identification proficiency (cor-
relation of 0.014, and 0.008, respectively). This finding agrees with Ehri’s descrip-
tion [6]: the process of skilled reading is enabled by phonemic awareness and by
knowledge of the alphabetic system. Moreover, the G→P model also performs
better when the word is more difficult. This is seen in the positive correlation of
word identification difficulty and spelling difficulty with Delta (0.022 and 0.023,
respectively). The direction is intuitive; the more difficult a word is, the more
likely is one to decode the word using G→P mappings.

On the other hand, the lexical model better predicts student performance
data when the word is more frequently encountered. This is seen in the negative
correlation between number of prior encounters, frequency in English text and
Delta (-0.014 and -0.016, respectively). The direction is intuitive; the more en-
countering of a word, the more likely one is to become a skilled reader with that
word. Further, we have expected and found similar correlations for the dolch and
stop word (correlations of -0.026 and -0.024, respectively).
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Table 5. Correlation matrix. **Correlation is significant at p < 0.01 (2-tailed).

Feature Correlation with Delta

(Positive means better fit for the G→P model)

Student Age 0.014**

Grade 0.000

Word identification proficiency 0.008**

Word Word identification difficulty 0.022**

Spelling difficulty 0.023**

Number of prior encounters -0.014**

Percent in English text -0.016**

Dolch word -0.026**

Stop word -0.024**

8. Conclusion and Future Work

The ASR of a computer tutor for reading provides information about an individ-
ual student’s reading development. This paper reports using ASR output from a
computer tutor for reading to construct two models of how students learn to read
words: a lexical model and a grapheme-to-phoneme (G→P) model. First, the two
student models are evaluated to determine which model better predicts student
performance data. The G→P model outperforms the lexical model in a model
where we aggregate across student performance data. The performance difference
disappears when we evaluate the models against individual performance data.
Nonetheless, when we combine the two student models, the combined model out-
performs either model alone. Consequently, we evaluate which model performs
better under what conditions. Correlations between model fit and student infor-
mation (grade, age, etc.), word information (number of prior encounters within
tutor, frequency, etc.) are in the expected directions. On one hand, the G→P
model better correlates with student performance data when a student is older
or when the word is more difficult to read or spell. On the other hand, the lexical
model better correlates with student performance data when the student has seen
the word more times. There appears to exist sufficient information in the ASR
output to determine which model is better under what circumstances.

Despite the initial success, the method for constructing a student model from
the ASR output is somewhat crude. Two areas of potential improvement are a
better credit model and using cues other than acceptance/rejection of a word.
Currently, all of the G→P mappings in a word are blamed or credited. However,
if a student misreads a word it is probable that not all of the mappings are
responsible. A Bayesian credit assignment approach (e.g. [3]) would overcome this
weakness. Similarly, the student’s pattern of hesitation before a word contains
a useful signal for modeling the student [9]. One possible avenue is to use the
amount of hesitation before reading a word as a clue to the strategy the student
is using: a short pause suggests a lexical strategy while a longer pause suggests
the student is using knowledge of G→P mappings.
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Abstract. We propose an approach to student modeling in the context of a project aimed 
at aiding readers negotiate authentic texts in languages where reading is particularly 
difficult due to the morphological complexity of the language, among other factors.  We 
focus on Modern Standard Arabic as an example of such a language. Our approach 
extends existing tools for modeling reading skills, text difficulty, and curricula developed 
for English.  We explore the extensions necessary for supporting Arabic morphology.  

Introduction and Objectives 

In this paper we describe our intended approach to student modeling for language tutoring in 
the context of a project titled “Teaching and Learning Linguistically Complex Languages”, 
recently funded by the United States Department of Education under the Title VI 
International Research and Studies Program.  The project aims to support foreign language 
learning and to enhance cross-cultural understanding by producing substantive textual and 
lexical learning materials and computer-based instructional tools that aid learners in reading 
authentic materials in languages that present special difficulties for reading.  The specific 
goals of the project are:  

(1) Providing readers with tools to negotiate the complex morphology of target 
languages;  

(2) Enabling learners to read authentic texts containing unfamiliar and difficult words;  
(3) Enabling teachers to prepare texts for classroom use and to test students’ reading 

ability; and   
(4) Creating easy Internet access to all tools and materials for teachers and learners. 

While the tools themselves will be designed to address multiple languages, they will 
be implemented specifically to support Modern Standard Arabic (MSA), a less-commonly 
taught but critical language of high priority in Middle Eastern and North African studies.  
MSA’s writing system and morphosyntactic structure present special challenges for the 
reader, particularly with respect to word identification and lookup in a dictionary.  The 
planned tools address dictionary lookup, text preparation, and assessment of word 
recognition.  To substantiate the claim that the tools do indeed generalize beyond MSA, they 
will be evaluated with a second less-commonly taught language, Nahuatl, spoken in southern 
United States and northern Mexico, which presents comparable – though different – word 
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identification and lookup challenges.  For MSA, where we have access to substantial textual 
resources, we will also use the REAP technology, developed at Carnegie Mellon University’s 
Language Technology Institute, to intelligently select texts to be presented to readers based 
on models of curriculum, text difficulty, student reading skills, and possibly topic interest.  
The REAP tools were originally developed to improve reading skills through individualized 
reading practice in English as a first or foreign language and will need to be extended to 
account for the special challenges presented by reading Arabic texts. 

Work on the project will only begin in July of 2005, therefore this paper and our 
participation in the workshop has two primary objectives: 1) to describe the problem we are 
attempting to solve and the tools and approaches we are planning to use; and 2) to elicit 
feedback and learn from other workshop participants with respect to the student modeling 
component of our reading facilitation tools.  Our proposed approach to student modeling, 
which is heavily based on REAP’s histogram-based approach, does not attempt to address all 
aspects of language learning.  Rather, it focuses on modeling specific aspects of reading skill 
in languages where even the basic process of word recognition presents special challenges 
due to the writing system and/or the morphosyntax of the language.  

1. Reading Arabic Texts: Challenges and Tools 

Modern Standard Arabic (MSA) is the primary, if not the only, formal written language used 
throughout the Arab world and is classified at the highest level of difficulty (level 4) in the 
United States Foreign Service Institute chart, requiring longer times for mastery than many 
other languages.  Reading in Arabic presents special challenges due to its script.  Learners of 
MSA – the main focus of Arabic teaching in the U.S. and elsewhere, and the only form of 
written Arabic – face difficulties in word recognition, word disambiguation, and the 
acquisition of decoding skills, which are important components of reading skill [1] [2].  
Authentic Arabic texts lack short vowels and other diacritics that distinguish words and mark 
grammatical functions.  Moreover, Arabic has a rich inflectional and derivational 
morphology that adds prefixes and suffixes and alters the stem of words according to 
syntactic context, and utilizes a number of particles (conjunctions, prepositions and 
pronouns) that attach to words as prefixes and suffixes.   

The aforementioned linguistic complexities result in significant reading difficulties. In 
order to understand the precise meaning of a text, learners who are trying to read materials 
must insert short vowels and other diacritics themselves on the basis of limited vocabulary 
knowledge and on the basis of grammatical rules they have not yet completely internalized.  
To accomplish this, they must be able to recognize letter and word boundaries, decode 
unvocalized words, and identify and comprehend these words. For example, the word fclm/

 is composed of the particle fa/  and one of several possible words written as clm/
(such as:  cilm “science or knowledge”, calam “flag”, callam “ (he) taught”, culima “it was 
learned”), and it may play a different role in the sentence depending on unwritten vowels and 
other diacritic signs.  Learners must bring knowledge of vocabulary, root-and-pattern 
morphology with complex derivational and inflectional rules, syntax, and contextual 
interpretation to produce correct and meaningful vocalization, to reach final word 
recognition, and even to look up a word in an MSA dictionary.  It is worth noting that MSA 
presents reading difficulties even for schoolchildren in Arabic speaking countries.  Their 
native language is a spoken dialect of Arabic, whose pronunciation, vocabulary and syntax 
can differ widely from MSA.  Often MSA is their first written language and their first second 
language (in some areas of the Maghreb region, French has played this role at times).  Arabic 
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schoolbooks begin with almost full diacritics and gradually decrease their use through the 
school years until they are entirely omitted by the end of middle school. 

Arabic instruction is challenging for teachers and institutions as well as for learners.   
Though lately there has been an increasing demand for Arabic instruction in the U.S., and 
more educational institutions are beginning to offer introductory courses in Modern Standard 
Arabic (MSA) and some Arabic dialects, Arabic is still not a widely taught language.  At 
higher levels of instruction, there is a shortage of pedagogically sound instructional materials 
and an insufficient number of teachers who have both the linguistic and technical skills and 
time to develop such resources, yet exposure to accessible, motivating and authentic materials 
is key in language learning.  Technology is therefore increasingly being used to supplement 
the model of the teacher-fronted classroom and to foster learner autonomy by adapting 
instruction to the needs of individual students who may have specific career or academic 
objectives that require more rapid attainment of advanced language proficiency for better 
cross-cultural understanding.   

To address the above challenges, our project will develop the following tools together:   
(1) Dictionary Lookup Tool: enables language learners to look up the citation form 

of an arbitrarily inflected word in a morphologically complex language;  
(2) Reading Facilitation Tool: enables language learners who encounter an 

unfamiliar word in electronic text to easily obtain a morphological analysis of that 
word, together with the dictionary entry for the citation form of that word;  

(3) Word Recognition Assessment Tool: aids in the assessment of learners’ reading 
ability, specifically the ability to choose the correct morphological analysis (and in 
languages where this is relevant, the diacritics) for each word, and its 
corresponding English gloss;  

(4) Text Preprocessing Tool:  designed to help teachers produce texts for use in the 
Word Recognition Assessment Tool. 

The four tools will make use of the Buckwalter Morphological Analyzer, which has 
been partially developed at and is currently distributed by the Linguistic Data Consortium 
(LDC) at the University of Pennsylvania (www.ldc.upenn.edu).  The project also leverages 
LDC’s extensive and expanding Arabic language resources and in particular the Penn Arabic 
Treebank to provide a large database of texts for learners and teachers to chose from.   The 
mission of the LDC is to continually collect and make available to the scientific community 
large quantities of linguistic resources, both text and speech, for Arabic and other languages.  
In addition to large quantities of raw Arabic text (LDC currently has more than 600 million-
words of newswire text and adds 80 million words annually to its collection), it has already 
published three segments of the Arabic Treebank, with a fourth one close to completion.  The 
treebank contains morphologically and syntactically annotated MSA text including newswire 
from the Agence France Presse, and the middle eastern newspapers Al-Hayat (distributed by 
Ummah Arabic News Text), An-Nahar, and most recently the Tunisian daily Assabah.1

Several more segments of the Arabic Treebank are planned. 

2. Supporting Reading Progress with REAP 

In addition to building the aforementioned four tools to support reading practice, creation of 
prepared texts, and word recognition assessment, we plan to interface them with technology 
                                                
1 By end of Spring 2005, the Arabic Treebank will contain a total of 791,681 tokens representing about 1 million 
words after cliticization.  The annotated corpora include complete vocalization including case endings, lemma 
IDs, more specific part-of-speech tags for verbs and particles, and an English gloss for each word.   
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developed by project REAP (http://orleans.lti.cs.cmu.edu/Reap/) to intelligently select texts 
for readers from an existing pool of materials [3] [4] [5].  REAP is funded by the U.S. 
Department of Education and includes researchers from Carnegie Mellon University’s 
Language Technology Institute and the University of Pittsburgh’s Learning Research and 
Development Center.  The project aims to find appropriate authentic documents for students 
learning to read.  It shares with our project the concern that too often students are given 
prepared texts, which has two disadvantages:  first, the student is not exposed to examples of 
real language, that is, the language used in everyday written communication; second, the 
students all get the same texts to read, regardless of individual reading skills and interests.  
The REAP project, which was motivated by the desire to improve reading skills through 
individualized reading practice in the context of an English and ESL classroom/curriculum, is 
based on L1 reading research, but can be used for L2 reading as well.  REAP has developed 
tools to a) retrieve texts from the Internet or from pre-existing collections that match different 
curriculum levels, b) model students’ reading ability, and c) select texts that are suited to 
students’ reading ability but also move them towards a higher level of reading skill (as 
defined by the curriculum) and/or pertain to topics of interest to the student or the teacher’s 
lesson focus.   

2.1 The REAP Approach to Student, Text, and Curriculum Modeling 

There are four types of models in REAP: a curriculum model, two kinds of student models, 
and text models.  REAP defines a reading curriculum with degrees of text difficulty in terms 
of vocabulary that a student should know at different curriculum levels.  The student’s 
knowledge is modeled as two histograms of words: 1) the passive model, which consists of 
all the words the student has read using the system, along with word frequencies – this can be 
considered exposure to words; and 2) the active model, which includes only the words for 
which the student has somehow demonstrated knowledge. Finally, texts are modeled by a 
histogram of word frequencies.   

In order to present the reader with appropriate texts, a search engine is first used to 
look for texts that match that curriculum level/reading difficulty and may include other 
criteria, such as topic-specific vocabulary.  For English REAP, the search is performed 
offline over the web, but it can also performed on a limited collection of texts in real time.  
To match documents to a student’s level, the system then looks at words in the student’s 
active and passive model and the words in the retrieved documents, selecting those 
documents that contain some subset of known words and some percentage of new words (the 
stretch).  Stretch size can be experimentally manipulated.  Once a set of documents 
appropriate to the student’s reading level has been selected, they can also be ranked 
according to other criteria, e.g. words the student doesn’t know but should in order to achieve 
curriculum level, or frequency of occurrence of these words, or topic of interest for a 
particular lesson. 

2.2 Extending REAP for Arabic 

The REAP project tools were developed primarily with English in mind.  REAP currently 
uses unknown vocabulary, excluding named entities, as the sole criterion for modeling 
curriculum, student knowledge and text difficulty, although some extensions may be 
undertaken for other linguistic phenomena, and especially English constructions.  The bare 
word models are extended with part-of-speech information.  Words with multiple POS are 
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considered different words and, in fact, word cohorts – e.g., ‘read’ ‘reading’ ‘reader’ – raise 
issues in choosing documents for the student.  This is currently a topic of research, to which 
experience with MSA’s complex derivational morphology can contribute. Knowledge of 
vocabulary is certainly very important for Arabic learners as well, but must be modulated by 
other considerations.  Morphologically, English is a (relatively) impoverished language, so a 
number of extensions will be needed in order to capture those aspects of Arabic writing and 
morphosyntax that make it difficult to decode and identify words and understand the role they 
play in a sentence.  We envision the following major differences and extensions in the 
treatment of curriculum, text, and student models when applying REAP tools to Arabic. 

Treatment of Named Entities:  In English, names seldom affect comprehension.  In 
Arabic, however, where there is no capitalization to distinguish proper nouns from regular 
words, identifying named entities is an important part of word recognition and text 
comprehension.  Many adjective and noun forms are used as names, and their identification 
as proper nouns depends on knowledge of morphology and syntactic structure.  A further 
problem is posed by the transliteration of foreign names into Arabic script: sometimes the 
resulting words are easily identified as foreign because they do not fall into the 
inflectional/derivational patterns of Arabic, but sometimes they do.  To what extent it is 
desirable or feasible to model this problem remains to be determined and is likely to be of 
secondary priority: the best strategy could well be, at least initially, to make evident in the 
texts their special nature of named entities (they are specially tagged in the Arabic Treebank), 
allowing readers to focus on more general and pervasive morphosyntactic phenomena.  

Modeling of Morphological Knowledge: Curriculum, texts, and student models, and 
the tools that operate on them, will need to be augmented with knowledge of inflectional 
morphological patterns.  At this stage of our thinking, such patterns are best represented as 
collections of morphological features, including part-of-speech, and their surface realization 
for different categories of words, notably derivational patterns and words containing weak 
consonants.  Included in morphological knowledge categories will be those closed parts of 
speech that attach themselves to words (e.g. direct object pronouns, conjunctions and 
prepositions), their effects on the surface realization of words (e.g. the preposition ‘ ’ causes 
an initial ‘ ’ to be elided), and constraints governing their attachment,.  Modeling of 
derivational morphology skills (as exemplified by the patterns ‘teach’, ‘teacher’ in English, 
callam and mucallim in Arabic) will need to be left for later, since the Arabic electronic 
lexicon and morphological analyzer underlying the tools are stem-based and do not attempt to 
recover derivations from Arabic roots.2  There is wisdom in using stem-based lexicons: while 
derivational patterns are quite regular, their accompanying derived meanings are often not.        

Modeling Syntactic Context: To the extent made possible by the Arabic Treebank 
syntactic representation, we will model the syntactic context that affects morphological 
realization of words.  While we do not expect to be able to cover the entire grammar, we will 
be able to model certain (local) phenomena, for example the omission of the definite article in 
all but the last term of a construct state (‘iDafa’), or the rule that a verb preceding its subject 
does not need to agree with it in number (and even not in gender).      

Updating the Active Student Model: While the passive student model can be 
updated by considering which words and morphosyntactic structures are present in texts the 
students have been exposed to, the active student model must be updated based on the 
knowledge demonstrated by the student.  In REAP’s use with English, knowledge is 
demonstrated by answering a question about a word; for Arabic, we will need to obtain this 
information from the Word Recognition Assessment Tool and/or the Reading Facilitation 
Tool.

                                                
2  Ongoing work may however make this possible at a later date [6] [7]. 
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The use of REAP tools with a morphologically complex language such as Modern 
Standard Arabic gives rise to an exciting synergy between projects.  On one hand, REAP 
tools will aid the proposed LDC tools to select texts for learners according to pedagogically 
sound criteria; project team members will interact with language teachers at the University of 
Pennsylvania and the University of Pittsburgh to develop a curriculum defining levels of text 
difficulty.  On the other hand, the addition of morphosyntactic analysis in modeling the 
curriculum, text difficulty, and learner ability, provides an opportunity to extend REAP tools 
in ways not afforded by their application to the English language alone.    

3. Background and Qualifications of Authors 

Neither of the authors is an expert in the area of student modeling per se, however they both 
bring relevant and complementary skills to the task.  Violetta Cavalli-Sforza is a Visiting 
Researcher at Carnegie Mellon University’s Language Technology Institute (CMU-LTI).  As 
a doctoral student in Intelligent Systems at the University of Pittsburgh, and as a staff 
member and researcher at CMU-LTI, she worked on different aspects of tutoring systems and 
natural language processing.  Her most recent research has focused on machine translation 
and Arabic morphology generation [6] [7] [8], some of which is being performed in Morocco 
through National Science Foundation and Fulbright fellowships.  She is fluent in four 
languages, has studied a few more, is a permanent student of Arabic and is well acquainted 
with the difficulties in learning to read MSA.   Mohamed Maamouri is a Senior Research 
Administrator and head of the Arabic Treebank project at LDC.  Maamouri is a recognized 
Arabic language specialist, with significant experience in Arabic reading research, literacy 
research, and foreign language teaching and learning pedagogy [9] [10].   For over fifteen 
years he was the director of the Bourguiba Institute of Modern Languages in Tunisia where 
he started the well-known MSA summer intensive courses.  Subsequently he worked as a 
senior researcher and the associate director of the International Literacy Institute, in the 
Graduate School of Education at the University of Pennsylvania. For the past three years, 
Maamouri has been leading the Arabic projects at LDC, where he has overseen and managed 
the preparation of extensive annotated corpora in Arabic.
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Abstract. There are various widely researched strategies that appear to be helpful in 
some, but not necessarily all vocabulary learning situations.  However, an early report 
suggested that an extremely simple strategy, in which only the ordering of the material 
presented is varied, might have very substantial effects on learning and recall.  These 
observations have been used as the basis of many subsequent developments, but rarely 
been subject to rigorous examination and replication.  We have recently been 
examining both the theoretical foundation, and the practical implementation, of this 
latter approach.  In this paper we present a comparison of data obtained using virtual 
users, operating in accordance with the underlying theory of memory, with the earlier 
experimental data obtained with real users. 

 
 
1. Introduction 
 
Sequencing of vocabulary instruction has tended over the years to be a somewhat imprecise art. 
 With a few exceptions most examples in the psychology of learning literature have promoted a 
variety of heuristics to optimise the retention of vocabulary.  One prominent exception is the 
work of Atkinson [1], which not only presents a detailed mathematical approach, but also a 
theoretical framework relating to the nature of memory. This work appeared to demonstrate 
that a teaching programme designed on the basis of that framework could dramatically 
improve retention rates in paired associate learning. Although the simple model of short-term 
memory employed in the work does not completely explain all subsequent experimental results, 
the original result remains a powerful demonstration of the possibilities of building a teaching 
system based on a well-defined model of memory. We have thus been led to examine the 
original model, to try to understand how it works and to see how it can be used to help support 
the design of learning programmes.  After reviewing some related work this paper gives an 
overview of the Atkinson model, followed by our own analysis and the results of simulations 
using artificial users that precisely embody Atkinson’s memory model. 
 
2. Learning Vocabulary 
 
One might argue today that the Atkinson Model is a limited model of vocabulary learning, 
because since it’s creation in the 60’s and 70’s an extensive literature has developed on the 
many different factors that can affect vocabulary learning.  For example there are results to 
indicate that associating sentences with vocabulary or requiring learners to perform generative 
tasks improves retention [5,10].  Other experiments have confirmed the widely known memory 
boosting effect of mnemonic strategies [11,15] as well as indicating that a scripted pair-
learning/testing format can provide additional benefits [9,11].  Conversely, some studies have 
indicated that visual repetition of vocabulary items correlates negatively with performance [8], 
and emphasize the positive effects of meta-cognitive strategies such as “Self Initiation” and 
“Selective Attention”. There is also a great deal of evidence to support the notion that 
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“distributed” practice is more effected than “massed” [4,6].  In addition de Groot [7] has shown 
that methods designed to encourage deep processing of vocabulary reduced retention loss two 
to three weeks after initial presentation.   
 
As a result the benefit of replicating Atkinson’s approach may not be immediately apparent. 
One might argue that the Atkinson model would be a poor choice for instructional design, 
since it does not explicitly handle long term memory decay, interference between items, or 
phonological encoding that might allow the advance prediction of errors.  However, Atkinson 
obtained very striking improvements in vocabulary recall by using relatively simple strategies 
based upon the sequencing and frequency of representation of individual items during learning. 
 His best results were obtained with an algorithm that required information on the difficulty of 
individual items for the target population, and the approach was based upon an explicit theory 
of memory function.  Firstly it is important to determine whether such results are reproducible.  
If they are, then this alone could have important implications for practical vocabulary teaching, 
although naturally further work would be required in order to combine Atkinson’s model with 
the other factors necessary to make a complete instructional approach.  In addition we believe 
that Atkinson’s method of model formation and testing is likely to complement a purely 
empirical approach, which can show whether one procedure is superior to another, but not why. 
 
 
3. Paired Associate Paradigm 
 
The paired-associate learning task is a standard procedure for assessing human explicit 
memory. For example, randomly paired elements such as words and letter strings are presented 
to subjects, who are then asked to recall one half of the pair from the corresponding other half, 
after which different types of feedback may be made available [19].  Rizzuto & Kahana [16] 
provide a summary of some different approaches to modelling of the paired associate learning 
task, as well as their own auto-associative neural network model.  Nesbit & Yamamoto [14] 
showed that grouping together similar paired associates in sub-lists, caused subjects to generate 
more practise errors, but overall retention was better (around 20% over 64 test subjects).  
 
In this paper we focus on the approach presented by Atkinson and Crothers [2] that was based 
on a model incorporating concepts of both short and long term memory.  In their original study 
the predictions of different models of the day were compared with the results of a variety of 
different paired associate experiments, using tri-grams, Greek letters, digits and normal letters.  
Having demonstrated the explanatory superiority of a three state model that distinguished 
between long-term and short-term memory, as well as including interference based forgetting, 
Atkinson [1] showed how the model could be applied to vocabulary learning. 
 
4. Atkinson Model 
 
The Atkinson Model takes a multiple state memory model that effectively distinguishes 
between long-term memory (LTM) and short-term memory (STM).  It is comparable to the 
Knowledge Tracing model of Anderson & Corbett [3]; the difference being an additional short-
term memory state. In Atkinson’s model paired associate items comprising of cue and response 
may be in LTM (state P), a permanent state, or in STM (state T) a temporary state where the 
association may be forgotten, becoming unknown (state U).  The assumption is that a learner 
will give a correct response when presented with any cue from a paired associate item that they 
have in either state P or T. Conversely, if that item is in state U they will give an incorrect 
response. 
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Fig. 1: Presented Item (left), and Other Item (right) Probability Transition Matrices (P=Permanent, 
T=Temporary, U= Unknown), showing probability of transition from one memory state to another  

 
The matrices in figure 1 show the probability of transition from one state to another with the 
left hand column being the state before presentation and the top row being the state after 
presentation.  The presented item transition matrix in figure 1 is applied whenever an item is 
presented, e.g. if the presented item is currently in state U, then the likelihood of transferring to 
state P is y. The transition matrices are defined in terms of a number of parameters, x, y, z, and 
f which indicate how difficult it is to learn or how easy it is to forget each item.  The second 
matrix is applied to those items that are not being presented, on each presentation that leads to 
an incorrect response.  The implication is that interference from other items in the unknown 
state can cause an item to drop out of short-term memory. There is also a fifth parameter g 
which defines the probablity that a subject already has the item in state P before the start of the 
experiment. 
 
Atkinson [1] created a teaching system based on this model that would choose items for 
presentation that were most likely to be transferred into the P state1.  Given the sequences of 
correct and incorrect responses from the user so far, the model would estimate the likelihood of 
each item being in a particular state.  Given knowledge of the transition parameters, the system 
could then infer which item, if presented next, would most likely be transferred to state P.  The 
assumption was that items in state P would remain in permanent store and thus be available for 
subsequent recall a week later, while items in state T would not. In experiments using German-
English word pairs Atkinson's optimal strategy condition significantly outperformed subjects 
selecting their own study order (“self selection”), and random presentation (fig 2).  Atkinson’s 
experimental procedure involved presenting seven sets of 12 German cue words in round robin 
fashion.  Each list of German cues numbered 1...12 was projected onto the wall in turn, and the 
subjects were presented with the number of a cue on a teletype.  The subjects would then type 
in what they believed was the English response, and the teletype would respond with the 
correct response.  A delayed test session a week later was in a similar format, except no 
feedback was given. There were in fact two types of Atkinson algorithm, with one setting the 
x,y,z,f, and g parameters equal across all items; the other allowing them to vary.  It was this 
latter algorithm, referred to as the “optimal (unequal)” approach that proved the most effective. 
 The former or “optimal(equal)” approach performed similarly to the self-selection condition 
 

                     
1 The precise equation is P(U)*P(U->P)+P(T)*P(T->P) 
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Fig. 2: Results reproduced from Atkinson’s 1972 paper showing the percentage correct for the 1st, 2nd, 
3rd, and 4th sets of 84 presentations (4 round robin repetitions of 7 lessons of 12 words) for each of the 
different experimental conditions (see text for more details) 

 
The results also showed a clear inverse relation between the performance during training, and 
subsequent test, e.g. the random condition subjects performed best during instruction, but worst 
at test, while the optimal (unequal) condition subjects performed badly during training but 
were the best during subsequent recall. The contrast between training and recall is most 
remarkable under the optimal (unequal) condition (see fig 2). The performance of the subjects 
in the optimal (unequal) condition is in fact extraordinarily low during training.  One possible 
explanation would be that the algorithm was re-presenting extremely difficult items again and 
again, such that most of the subjects responses were incorrect. 
 
Setting the  parameters for Atkinson’s model requires pilot studies to be performed on the same 
word pairs.  A minimization algorithm must then be employed to find the parameters that best 
fit the observed experimental data.  In previous studies [12] we were unable to replicate 
Atkinson’s results precisely. This may well be due to the lack of detailed information about the 
procedures used in the optimization process. There were other differences in our  experimental 
setup such as the use of Japanese words as opposed to German, and alternative blocking of the 
lessons which must also be expected to have influenced our results. In Atkinson’s experiments 
sets of 7 lessons were presented in round-robin order, so a subject would see one item from 
lesson 1, then one from lesson 2 etc. Our initial studies presented all items from lesson 1 before 
moving to lesson 2.  
 
Subsequent communications with the original author have cleared up many of the ambiguities 
and we are confident that our current user studies come much closer to replicating the original 
experiments.  Organising and managing human studies takes time and overhead, and in the 
meantime we have employed a mixture of analysis and simulated users to try and understand 
the Atkinson model in more detail.  

Atkinson's Original Results
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5. Analysis of the Atkinson Model 
 
The Atkinson model has influenced various authors, but with the exception of Katsikopoulos 
[13] few have replicated the algorithms in full.  For example, while Seigel & Misselt [18] refer 
to Atkinson’s work, they reject the use of a theoretical model in favour of a selection of 
heuristics based on instructional design strategies.  Van Bussel [19] created a modified version 
of Atkinson’s original procedure called the “a priori knowledge (APK) sequencing procedure”, 
which more frequently presents items that are difficult to learn, as measured by the number of 
mistakes made by a particular user. This fits in with other work such as that of Schneider et al 
[17] suggesting that focusing on difficult tasks can lead to better retention.  However Van 
Bussel’s approach overlooks the fact that the most effective Atkinson procedure does not 
necessarily present the most difficult items more frequently, since it may in fact avoid 
presenting them at all if there are other items that have a higher likelihood of entering the 
permanent state. Van Bussel’s results are extremely interesting however, showing that 
performance between the APK and fixed presentation strategies can only be distinguished if 
the users’ self-regulated versus externally regulated learning styles are taken into account.  As 
a result we plan to incorporate the same learning styles questionnaire used by Van Bussel into 
our current human studies. 
 
The relationships between the original model, the heuristic alternatives, and the modified 
model remain unclear. The customary approach to the modelling problem is to formulate 
analytical or numerical solutions to the particular conditions of the experiment, and compare 
the predictions and results according to some chosen measure. We have found that it is 
possible to understand how the model works, and thus demonstrate some of its general 
properties, and so compare them with the operation of other systems, by considering the 
following points: 

 
1. Paired associates can be thought of as being in one of three states: 
 

i. Un-tried: not yet presented to the subject 
ii. E-tried: presented and most recent response was erroneous 
iii. C-tried: presented and most recent response was correct 
 

2. Let us first ignore the T state and any forgetting processes, then if g is the probability of a 
prior known and y is the probability of transition from U to P (P(U->P)) then the merit 
(i.e. the Probability of a transition to P if the word is tried) of the different types of 
word in the Optimal (Equal) condition are: 

 
i. Un-tried: (1-g).y  = P(Unknown) * P(U->P) 
ii. E-tried: (1-y).y    = P(U->U) * P(U->P) 
iii. C-tried: 0 
 

3.  If g<y, indicating the probability of learning an item is greater than the probability of 
already knowing it, Un-tried words will have the highest merit. Thus an Optimal 
(Equal) approach will present all the Un-tried items, followed by the E-tried items, 
continuing until everything has been responded to correctly - i.e. a correct response will 
lead to dropping that item from consideration for subsequent presentation.  However 
one should note that there is no guarantee that the remaining E-tried items will be 
presented again with uniform frequency at any point, since they are all equally likely to 
be selected for presentation.   
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4.  If g>y, indicating the probability of knowing an item is greater than the probability of 

learning it, E-tried words will have the highest merit. Thus an Optimal (Equal) 
approach will present Un-tried items until an erroneous response is received, after 
which it would focus on that item until it was responded to correctly.  However it is 
important to note that the round-robin operation would prevent the subject from being 
presented the same item more than once every seven presentations so there would be a 
chance for items on other lists to enter the E-tried state. 

 
5. Continuing with the same assumptions the merit of the different types of word in the 

Optimal (Unequal) condition now depend also on the individual variation of their 
parameters: 

 
i. Un-tried - easy to learn words (high y) and non-obvious (low g) will be 

tried first 
ii. E-tried - words of middling difficulty (y=0.5) will be favoured 
iii. C-tried - as above 
 

6. Thus in the Optimal (Unequal) condition easy to learn and non-obvious words will be 
presented first, while C-tried items will be dropped as before.  Sufficiently obvious and 
difficult to learn words may conceivably be excluded altogether. Once the set of 
suitably easy to learn and non-obvious Un-tried items have been presented then E-tried 
items will start to be presented with a general emphasis on those items with middling 
difficulty. 

 
7. If we now include the T state. The merit of the different types of word in the Optimal 

(Equal) condition are: 
 

i. Un-tried - (1-g).y   = P(Unknown) * P(U->P) 
ii. E-tried - (1-y-z).y + z.x  = P(U->U) * P(U->P) + P(U->T) * P(T->P) 
iii. C-tried - if first round 0, or possibly non-zero if failure frequency is low2 

 
8. Since forgetting only reduces T and increases U without changing P, the merit of an E-

tried item will go up or down depending on the relative value of P(U->P) and P(U->T) 
 

9.  If x > y, i.e. P(T->P) > P(U->P), more recent E-tried items will have a higher merit, and 
the thus the Optimal (Equal) system will be likely to re-present recent E-tried items. 

 
10. If y > x, i.e. P(U->P) > P(T->P), older E-tried items will have a higher merit, and the 

thus the Optimal (Equal) system will be likely to re-present older E-tried items over 
more recently presented ones. 

 
11. It is interesting to note the difference between 9&10 and 4 above, in as much as while 

they both try to re-present E-tried items the effects of 9&10 wear off so that while the 
system described in 4 would keep repeating an item until it received a correct response, 

                     
2 We remark that the effect of the T state will only be detectable if the frequency of presentation of a paired 
associate is of the same order as the forgetting rate; for the data this would only be so in the latest stages of the 
rehearsal, since as Atkinson’s results show, the majority of presentations lead to incorrect responses and thus a 
high forgetting rate. 
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the parameters in 9&10 might be such that the system oscillated between presenting E-
tried and Un-tried items. 

 
12. Continuing with the same assumptions the merit of the different types of word in the 

Optimal (Unequal) condition now depend also on the individual variation of their 
parameters: 

 
i. Un-tried - easy to learn words (high y) and non-obvious (low g) will be 

tried first [as before] 
ii. E-tried - words of middling difficulty (y=0.5) will be favoured, as will 

words that are easy to learn using the T state (high x and z) 
iii. C-tried - are more likely to be repeated if easily forgotten (high f) and are 

likely to pass through the intermediate T state (high z) 
 

13. Thus in the Optimal (Unequal) condition we are likely to see similar effects as 7 above, 
however certain categories of items will have a much higher likelihood of repeated 
presentation - those that are easily forgotten, and those that are likely to be learnt by 
passing through the intermediate T state.  All this will be in combination with the 
effects described in 9&10. 

   
The consequence of these considerations is that the Atkinson algorithm is not necessarily 
approximated by repeatedly presenting items in proportion to how many times the user has 
answered them incorrectly.  The likelihood of an item being presented depends much more on 
the actual parameter settings associated with that item.  
 
6. Using Artificial Users 
 
In order to test our understanding of the Atkinson model we developed simulated users that 
embody precisely the theoretical basis of the Atkinson model.  Specifically these users 
maintain a set of three states (P, T & U) and the transition of items between the three states 
takes place as described in the Atkinson model. Although the simulation did not model 
feedback to the user explicitly, the ability of the artificial user to learn an item implies that 
some sort of feedback must be present. Using these artificial users we were able to replicate a 
subset of Atkinson’s original results (figure 3).  We created seven lessons, each consisting of 
12 pairs of nonsense words, and gave each pair x, y, z and f parameters selected randomly from 
a Uniform distribution between 0 and 1, with the additional constraint that y+z <1.  The g 
parameter was selected from a Uniform distribution between 0 and 0.4 to achieve similar first 
round success levels as seen in Atkinson’s original results.  
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Fig. 3: Results generated by 5 artificial users that embody Atkinson’s theoretical , showing the percentage 
correct for the 1st, 2nd, 3rd, and 4th sets of 84 Training presentations (4 round robin repetitions of 7 lessons 
of 12 words) for both of the different experimental conditions.  The Perm presentation simulates the results 
of Test a week later, showing the percentage of items in the permanent state at the end of Train. 
 
An inspection of an individual run bears out the predictions of our analysis, with the first 14 
items presented all having y values in excess of 0.6. Interestingly all but one of them was 
responded to incorrectly, and half of them were never presented again. It was also clear that 
some items were repeated as much as 10 or 11 times, and these items tended to be easy to 
forget (high f), or ones that were easier to learn via the T state (z > y and x > y).  
 
An ANOVA showed that the differences between the number of items in the permanent state 
after the first Training presentation and the final testing round are significant, F(1,4) =13.919, p 
< 0.01, F(1,4) =41.424, p < 0.01, and confirm the potential efficacy of employing the Atkinson 
algorithm as opposed to a purely random presentation order.  However the results indicate that 
the % correct order of the results at Test roughly reflect the ordering during Train, the inverse 
of Atkinson’s original results.  For these results to have mirrored Atkinson’s original we would 
have expected the Random condition to do better on 4th round of training, and then worse in 
terms of the number of items in the Permanent state. 
 
The extreme behaviour of the Atkinson algorithm, whereby many items are only presented 
once, and others are repeated again and again, does go some way towards explaining the 
remarkably high error rates in Atkinson’s optimal condition, along with the subsequent high 
performance at test.  The algorithm is presenting items that can be learnt on a single trial, 
where the user likely makes a mistake, but the algorithm anticipates that the item has been 
learnt and need not be presented again, thus the high error rate – i.e. the items that the user 
would answer correctly are not presented again, and the algorithm focuses on other items that 
are easily forgotten, or are learnt via the short term memory route.  Items are thus transferred to 
the Permanent state without being presented any more times than necessary. 

Simulated Users: Atkinson vs. Random
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7. Discussion 
 
The artificial user studies not only provide an essential check that the algorithms are correctly 
implemented, but also test the model under ideal conditions. The improved performance of real 
users under the Optimal (Unequal) condition may not be due to the validity of the Atkinson 
model for those users. For the artificial user, however, the improvement due only to the model 
can be measured accurately, and so separated out from that which is a by-product of the 
condition for the real user. It appears from our results that the effects of the Optimal (Unequal) 
condition on the real user are not entirely due to the model. Specifically the inverse 
relationship between performance at test and train present in Atkinson’s experiments does not 
appear in our simulations or interpretation of the model.   
 
This conclusion remains provisional, however, until the completion of our trials with real users, 
and of more extensive investigations of artificial users.  It would seem reasonable to expect that 
real users cannot be completely modelled by a three state memory model with constant 
transition rates. However, the contribution of this model is hard to elucidate in the complex 
context of real teaching programmes on real subjects. The facility for the creation of larger 
numbers of artificial users, with appropriate distributions of parameters, and subsequent testing 
of their performance under various programmes, will be of great assistance in critiquing the 
model and furthering its development. In this way we hope to extend the range of real 
responses that can be modelled, and perhaps explore the limitations of what is possible with 
such models. 
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Abstract. In this paper, we present a mobile adaptive computer assisted language
learning (MAC) software aimed to help Japanese-English speakers in perceptually
distinguishing the non-native /r/ vs. /l/ English phonemic contrast with a view to
improving their own English pronunciation in this regard. The software is adaptive
and more practice is given for the learner on contrasts that are most difficult for
them, and the learners themselves choose their level of adaptation. MAC is imple-
mented in Java (J2ME), allowing the software to be used on a wide range of mo-
bile devices including most recent mobile phones. This allowsthe application to
be used anywhere and anytime, on a device that the learner probably already owns.
We first discuss the theoretical background underpinning this work, followed by
a discussion of the software and some of the constraints for adaptive tutoring on
mobile devices.

Keywords. Adaptation, Language learning, Mobile Phone, PDA,

1. Introduction

In the Automatic Speech Recognition (ASR) field, Second Language (L2) learning ap-
plications primarily focus on pronunciation improvement using voice recognition [1]. A
problem with this approach is the difficulty of scoring learner responses with certainty.
An alternative way of approaching pronunciation improvements is instead to tackle the
underlyingperceptualdifficulties rather than focus on quantifying/scoring the learner’s
speech production. This approach derives from several psycholinguistic studies which
have highlighted a link between theperceptionandpronunciationof phonetic contrasts
[2,3,4]. Specifically, for the case of Japanese /r/-/l/ discrimination, work by Bradlow and
colleagues have shown that training individuals to perceptually discriminate /r/ and /l/
contrasts results in improved pronunciation [5,6]. The approach of tackling underlying
perceptual difficulties in Japanese /r/-/l/ discrimination has been shown to be highly ef-
fective [7,6] resulting in improvements in discriminationto around 82 percent accuracy
from 65 percent and lasting 3 months [6] from a training period of 15-22 hours over 3
weeks.

1Correspondence to: Dr. Maria Uther, Department of Psychology, University of Portsmouth, PO1 2DY, U.K.
Tel.: +44 23 9284 6330; Fax: +44 23 9284 6300; E-mail: maria.uther@port.ac.uk
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1.1. Theoretical foundations

The approach taken in the previously mentioned /r/-/l/ training studies was to train on as
wide a phonetic variability as possible. This involves providing the learner with speech
samples across a full range of linguistic variability that s/he would be expected to en-
counter in everyday language. This ‘high-variability’ training provides presentations of
different samples from different speakers and using different types of words. In terms of
word-type variability, the target contrast can occur at thebeginning or elsewhere in the
word as in ‘rake’ vs. ‘lake’, ‘blew’ vs. ‘brew’, etc. This linguistic variability was used
by Logan et al. [7] and later also in other studies [8,6] with effective and long-lasting
outcomes. On the basis of the success of these results, word type variability would ap-
pear to be a highly important factor in successful training.The variation of word type
has thought to be necessary as studies have suggested that /r/-/l/ discrimination across
different word types is not equivalent. In general, identification performance is worst for
/r/ and /l/ contrasts in initial positions and performance is best for /r/ and /l/ in final posi-
tions of the word [9]. Variability is thought to be a way of ensuring that the learner sees
the perceptual constancy across a wide range of environments.

Furthermore, it has been argued that the failure of early attempts [10] to provide
generalisable effects may (at least in part) be due to the fact that only a single phonetic
context was trained [7]. Apart from word type variability, talker type variability has also
been highlighted as an important factor by Lively et al. [8] who showed that the addition
of talker variation was important in demonstrating robust andgeneralisedimprovements
in /r/-/l/ discrimination. This result has also been validated by many subsequent studies
demonstrating successful and long-lasting training effects [11,6]. Talker variability may
be important because different talkers produce outputs that vary acoustically due to dif-
ferent vocal tract size and shapes, speaking rates and glottal source functions (see Logan
et al. [7] for a review).

Our Mobile Adaptive CALL (MAC) software builds directly on the work done using
a high-variability training approach. It also (as with the reviewed high-variability stud-
ies) tackles the problem of Japanese /r/-/l/ discrimination which is notoriously difficult
for Japanese language learners of English [2]. We advance oncurrent high-variability
approaches in CALL for /r/ vs /l/ training by first exploitingthe dimensions used as part
of that approach to tailor the training for the learners. There are several justifications
for providing anadaptivetraining based on the high-variability approach. Firstly,as has
been argued in other research, a more personalised tutoringapproach has been shown to
be a particularly successful strategy to train learners [12]. Secondly, there is strong evi-
dence to suggest that although Japanese speakers will at agenerallevel tend to be worse
at certain word positions, at anindividual level there is a large degree of variation in the
discrimination of /r/-/l/ for different word and talker types [13]. Developing a model of
these individual differences would appear to be a way of moreeffectively delivering this
training. This adaptation can tap into the learner’s possible weaknesses with respect to a
talker’s voice, e.g. male or female talker, or a characteristic of the word, e.g. positioning
of /r/ or /l/ within the word. Based on these premises, MAC aims to adapt to individual
learners’ needs in order to focus training in areas that are most difficult for the individual.
MAC uses adaptive, personalized training whilst maintaining the use of natural speech
samples and high phonetic and talker variation.

Recent work on /r/-/l/ training by McClelland and colleagues [14,15] used a novel
alternative to the high variability approach. They demonstrated successful training in
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Japanese speakers with an adaptive system which instead exaggerated /r/ and /l/ differ-
ences on a continuum using semi-synthesised speech. With their approach, they found
improvements of up to 30 percent using relatively short periods of training. McClelland
et al.’s results were quite dramatic. However, the extent towhich these effects would
generalise to other natural speech contexts has not yet beenshown. Indeed, on the basis
of previous work using synthesised stimuli [10], there is some reason to believe that ef-
fects on synthesised speech may not necessarily generaliseto natural speech or to other
phonetic contexts. This possible limitation was also acknowledged by McClelland et al.
themselves, even though they demonstrated generalisationto another untrained semi-
synthesised continuum.

Nonetheless, the success of the approach used by McClellandand colleagues could
also be interpreted in a similar light to the theoretical foundation underpinning the high-
variability training studies. The success of the high-variability approach is generally ex-
plained in terms of current ‘attention to dimension’ or ‘A2D’ models of speech percep-
tion. Within this view, the effective learning of a new phonetic category results in the
‘stretching’ of perceptual spaces that are the target of focussed attention and ‘shrinks’
the perceptual spaces for nonattended. The training is thought to affect the learner’s per-
ception so that their attention is directed towards dimensions that are relevant for classi-
fication and conversely away from dimensions that are irrelevant [16,17,18].

1.2. Mobile technology in learning

Another novel aspect of our approach is to use mobile technology to deliver the training.
Previous studies using /r/-/l/ training (at least to our knowledge) have only been delivered
on traditional PC-based platforms. This has significant drawbacks for the learner: s/he
would need to attend training sessions at a fixed location (usually by means of attending a
lab every day for a fixed period) and would not be able to practice in their own time. Even
if implemented as an Internet application, this generally still makes the application less
accessible and potentially costly. Learners with unlimited web access still have to boot
up and use a PC. Those using PDAs/phones with Internet connectivity would still have to
pay for Internet access. In contrast, a large percentage of the population see their phone
as a personal, trusted device that they always carry. MAC provides the opportunity of
downloading the application to a Java-enabled phone that the learner may already own.
If learners were able to practice in their own time, wheneverand wherever they wanted
to (e.g waiting for or on public transport, sitting at home),then it would likely provide
much quicker and more effective training.

Recent work has capitalised on these advantages producing several novel mobile
learning applications [19,20,21]. Mobile learning has several potential advantages over
class-room learning, but the most obvious is the availability of application (i.e. perva-
siveness). Being so readily available, learners can therefore choose to engage in learn-
ing activities across a greater time span. Another consideration (particularly for mobile
phones) is that there is a natural affordance for phones to speak into and listen from (i.e.
audio interaction). In this way, applications that involveaudio interaction may actually
be better suited for mobile phones than for the PC environment. Modern handsets are
often used for games and push-to-talk. For these types of mobile applications, the audio
is often played using a speaker functionality. MAC also follows this interaction style (but
also could be used in conjunction with a headset).
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In this paper, we present the design of an adaptive speech remediation software
aimed at training native Japanese speakers in distinguishing /r/ and /l/ contrast using a
high-variability approach. The MAC software adapts according to the learner’s responses
and presents to the learner a contrast of the type on which they will most need further
practice. The software is designed for J2ME-compliant mobile phones. Firstly, we give
an overview of the software functionality in section 2, thenwe detail the learner adap-
tation strategy and discuss issues relating to learner control in section 3. In section 4,
we discuss implementation issues including constraints inadaptive tutoring in mobile
devices and in the final section 5, we conclude with a discussion of future directions for
development.

2. Overview

2.1. Stimuli

As stated earlier, one dimension of the high-variability approach is the position of the
contrast within the word. In linguistic terms, we could broadly divide /r/-/l/ minimal pair
word types into five categories1 as follows:

1. Final singleton: The contrast appears at the end of the word as a single consonant.
For example: ‘tire’ vs. ‘tile’.

2. Initial singleton: The contrast appears at the beginningof the word as single con-
sonant. For example: ‘lead’ vs. ‘read’.

3. Intervocalic: The contrast appears in the middle, in between two vowel sounds.
For example ‘miller’ vs. ‘mirror’.

4. Initial cluster: The contrast appears at the beginning ofthe word as part of a
consonant cluster. For example: ‘blue’ vs. ‘brew’.

5. Final cluster: The contrast appears at the end of the word as part of a consonant
cluster. For example: ‘wild’ vs. ‘wired’.

2.2. Talkers

In MAC, we use four talkers (two male, two female) were used tocreate the stimuli,
and these form the second dimension upon which we can adapt the application for the
learner.

2.3. MAC operations

MAC software operations can be summarized as follows:

1. Under Options, we haveplay andexit. On pressingplay, the learner is presented
with a random word articulated by a random talker. The learner’s task is to iden-
tify which word they thought they heard by clicking one of twobuttons (left and
right navigation buttons) corresponding to either of the two written words apear-
ing on the screen. A screenshot of this can be seen in Figure 1.

1Although there are five possible categories, our initial work has been based on 3 and then 4 categories
omitting the final singleton and final cluster category for expediency, especially as the research shows that these
are the easiest ones for Japanese speakers to discriminate.
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Figure 1. Screen shot of our MAC soft-
ware from a Nokia Series 60 SDK

Figure 2. Occurrence weights for next
trial as a function of past learner er-
ror rate (default critical error rate set as
40%)

2. The learner is give immediate feedback as to whether they made a correct or
incorrect choice with either a chime or a buzz.

3. The learner can increase or decrease the volume by using the up or down arrows
respectively and can repeat the sound by pressingplay.

4. The learner can also select different degrees of difficulty at the outset and can
change it at anytime during the test.

5. The learner’s responses are monitored by the software andthis forms the basis of
the student model as described in detail in the following section.

6. The choice of the next presentation is based upon a tutor algorithm taking into
account the learner’s error rate for each token type and the learner’s preferred
difficulty level.

7. All data used by MAC is stored on the device itself, using the persistent memory
storage.

3. Student modelling and learner adaptation

One of the main goals in student modelling is to adapt the system’s behaviour to indi-
vidual needs and preferences [22,23]. Within MAC, we have designed the system so that
it presents the learner with more trials in the area where they make most mistakes, but
only up to a point at which their motivation is not affected. Within classical approaches
to designing ITSs, one can separate the student model (i.e. the system’s beliefs about
the student), the pedagogical model (i.e. the tutoring strategy) and the domain/expert
knowledge (i.e. all possible knowledge about the domain). In MAC, the domain model
is fairly simple - it is essentially expressed by the database of correct answers, which is
not unusual for a mainly procedural rather than declarativeknowledge base. Similarly,
the student model is also fairly simple: it reduces to knowledge of the student’s profi-
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Figure 3. Adaptation as a function of blocks of trials

ciency on all word/talker type combinations. This student model bases itself on data from
the most recent 30 trials (3 blocks of 10). This is done mostlyfor expediency as it was
felt necessary to (a) have as current data as possible and (b)to have a statistically large
enough number of trials on which to base the model. Admittedly, there were other possi-
ble approaches, such as to weigh old and new information, butwe wished to start with an
initial base version from which we could further develop, particularly given the limited
computational power of a small device. Furthermore, the speech perception literature
would suggest that having fine-grained information about the student’s old performance
is actually of very little value.

Figure 2 shows adjustment curve that supports the pedagogical approach in MAC
and determines the selection of which stimuli to train on, based on information in the
student model. As shown in Figure 2, the probability for a word type or talker being
chosen should initially increase if the learner makes more errors in identifying tokens of
that word or talker type, until it reaches an error rate of40% (by default). If a learner’s
error rate rises above40%, then the probability of that particular category or talkerbeing
chosen should start to decrease. This is done in order to ensure that the learner’s motiva-
tion is not affected, as too many errors by the learners wouldundoubtedly be highly de-
motivating. Moreover, the peak critical error rate can be changed by the learner, between
values of20% to 50%, for reasons discussed later in this section.

The adaptation algorithm monitors learner responses and based on this, adjusts the
probabilities of each token type being chosen for the next block of trials (shown in Fig-
ure 3). The student model is updated and checkpointed after each 10 trial block, and
never within these blocks. This is done so that the learner isable to exit the application
at any time without loss of too much data. Ten trials was chosen as a reasonable trade-
off with more complex (and therefore computationally intensive) checkpointing and exit
code.

Two dimensions of learner response are taken for the adaptation:

• Talker: Out of four talkers, any can be randomly chosen. Learner responses are
monitored to determine which talkers the learners find difficult to make the rele-
vant discrimination.

• Word type, outlined in section 2.1: In a similar way to the talker dimensions, words
can be chosen from any of the word types and learner responsesare monitored
to determine which type is more difficult for the learner to make the relevant
discrimination.

As can be seen in Table 1, this depicts an example where there are 4 ∗ 4 possible /r/
and /l/ tokens types, yielding a1/16 probability for any speech token type combination
TiWj being presented if all are equally weighted. Within each of these token type com-
binations, there have been (within our early trials) 30 actual word sample pairs under

44



M. Uther et al. / MAC: An adaptive, perception-based speech remediation s/w for mobile devices 7

Table 1. Possible /r/-/l/ token type combinations for each word and talker types whereT=talker type and
W=word type for an example where there are 4 talkers and 4 word types

W1 W2 W3 W4

T1 T1W1 T1W2 T1W3 T1W4

T2 T2W1 T2W2 T2W3 T2W4

T3 T3W1 T3W2 T3W3 T3W4

T4 T4W1 T4W2 T4W3 T4W4

each word type, forming several hundred possible speech samples in the database. Even
though only 30 trials are taken into consideration for the student model, since the talker
and word type error rates are assumed to be independent, thena given trial gives data for
both the talker and word type independently. In this way, anyspecific combinationTiWj

need not actually be presented to make the decision that it would be problematic for that
student if there were data suggesting that otherTi samples and otherWj samples were
difficult.

On the first three blocks of trials, no adaptivity is applied.This means that the pre-
sentation of all categories and all talkers are equiprobable. The error rates from the stu-
dent model are scaled according to the polynomial function below, which is also shown
in Figure 2:

ln(P ) = a0 + a1 ∗ x + a2 ∗ x2 (1)

Herex is the error rate from the student model anda0, a1 anda2 are constants chosen
to give a curve which adjusts the degree of difficulty of the training while maintaining
optimum motivation. Although presumably, the same ends mayhave been achieved with
other functions (e.g. stepwise), a curve seemed best suitedfor a more gradual adaptation.
For the default difficulty level (peaking at 40%) the constants are given values2.5357,
0.0902, and−0.0011 respectively.P is then the weighted value for that category. There
is also an additional constraint that any word or talker typeshould be given a minimum
weight of 10 and the rest of the probabilities are scaled accordingly.

Ideally, adaptive tutoring systems should give the learneras much autonomy as pos-
sible while s/he is making good progress but at the same time offer control when things
are not working well for them [24]. Giving students control over how their model is used
has already proved a successful approach [25,26,27]. Although MAC does not allow the
learner to fully inspect all data in their own student model,it still gives the learner some
degree of control by letting them choose the degree of difficulty they consider to be ad-
equate. In MAC, learners have the possibility to choose the degree of difficulty moving
the40% threshold peak of the model on a range that goes from20% to 50%, an advance
also on earlier prototypes of the software [28].

4. Implementation issues

Mobile devices have not yet converged on a small number of dominant software plat-
forms as have larger computing devices. For this reason it isoften difficult to justify
programming a specific device in ‘C’, as this severely limitsthe number of devices the
software supports. It is also the case that native programming environments for mobile
devices are not as polished as for the PC, with Symbian in particular noted for unusual
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APIs. On the other hand, the most widely available cross-platform programming envi-
ronment for mobile devices, Java J2ME has its limitations. It is much slower, uses more
battery, has a much reduced class library, missing languagefeatures such as floats, and
has very limited access to device cababilities. However, since we had limited time for
this initial implementation, and wished to test the software on a number of devices, J2ME
(MIDP 2.0) was chosen. We encoded the speech samples using the AMR codec, although
we plan to migrate to the WB-AMR codec for better sound quality.

We have run the software on the Sun WTK emulator and Nokia emulators. We have
also run the software on a Nokia 9500 communicator handset, and plan also to run it on
a Nokia 6630. Our application can also be theoretically run on any mobile phone which
is J2ME (MIDP 2.0) compliant as long as it supports the correct codecs. Furthermore,
initial tests of the MAC algorithm with a control group of users (native English speak-
ers trialing the application) have found a good fit between the observed and predicted
behaviour of the MAC adaptation.

5. Conclusion & future work

This paper suggests an approach to speech remediation whichis founded on several years
of psycholinguistic research. The implementation of an adaptable mobile device software
is a novel contribution to the field of CALL by both allowing the learning to be person-
alized to learner needs and also allowing portability. Our adaptive software (MAC) was
developed with a view to help Japanese speakers of English distinguish /r/ and /l/ sounds,
adapting so it changes itself according to the learner’s needs. For future work, we have
planned several studies to fully evaluate MAC’s usability and efficacy. We are currently
conducting user tests on the interface and hardware and alsoplan to conduct further stud-
ies using a traditional pre- and post-test repeated measures experimental design. In other
future work, the system could also be easily adapted to trainlearners in the acquisition
of similarly difficult phonemic contrasts (e.g. Chinese speakers’ difficulties in discrim-
inating English /t/-/d/ [29] or Korean speakers’ perception of the /v/ and /f/ contrast in
English [30], and so on). There would be little change required to adapt MAC for these
applications beyond changing the database of speech samples used and any internation-
alization issues that would arise for a non-English language contrast. Nonetheless, our
work so far represents a useful and novel starting point in the field of adaptable systems
for speech remediation.
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