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A B S T R A C T

This paper addresses the problem of spatiotemporal localization of actions in videos. Compared to leading
approaches, which all learn to localize based on carefully annotated boxes on training video frames, we
adhere to a solution only requiring video class labels. We introduce an actor-supervised architecture that
exploits the inherent compositionality of actions in terms of actor transformations, to localize actions. We
make two contributions. First, we propose actor proposals derived from a detector for human and non-human
actors intended for images, which are linked over time by Siamese similarity matching to account for actor
deformations. Second, we propose an actor-based attention mechanism enabling localization from action class
labels and actor proposals. It exploits a new actor pooling operation and is end-to-end trainable. Experiments
on four action datasets show actor supervision is state-of-the-art for action localization from video class labels
and is even competitive to some box-supervised alternatives.

1. Introduction

The goal of this paper is to localize and classify actions like skate-
boarding or walking with dog in video by means of its enclosing spa-
tiotemporal tube, as depicted in Fig. 1. Empowered by action propos-
als (Jain et al., 2014; Weinzaepfel et al., 2015; Zhu et al., 2017), deep
learning (Gkioxari and Malik, 2015; Saha et al., 2016) and carefully
labeled datasets containing spatiotemporal annotations (Soomro et al.,
2012; Rodriguez et al., 2008; Xu et al., 2015), progress on this chal-
lenging topic has been considerable (Kalogeiton et al., 2017; Hou et al.,
2017a). However, the dependence on deep learning and spatiotemporal
boxes is also hampering further progress, as annotating tubes inside
video is tedious, costly and error prone (Mettes et al., 2016). We
strive for action localization without the need for spatiotemporal video
supervision.

Others have also considered action localization without spatiotem-
poral supervision (Siva and Xiang, 2011; Mettes et al., 2017; Li et al.,
2018). Recently, Li et al. (2018) proposed a deep learning based
model for action classification with an attention LSTM. The attention
component highlights regions in the video that correspond to high-
responses of certain action class labels. Unfortunately, this scheme
does not ensure high-localization accuracy as the model may learn
to attend only to discriminative parts of the action, such as the legs
and the skateboard for the action skateboarding, but not the entire

✩ No author associated with this paper has disclosed any potential or pertinent conflicts which may be perceived to have impending conflict with this work.
For full disclosure statements refer to https://doi.org/10.1016/j.cviu.2019.102886.
∗ Corresponding author.
E-mail address: victor.escorcia@kaust.edu.sa (V. Escorcia).

1 Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

actor. Siva and Xiang (2011) and Mettes et al. (2017) circumvent this
issue and aim to retrieve the entire actor by relying on human detectors,
trained on images. These approaches learn a classifier using a multiple
instance learning framework. This framework selects the best candidate
proposal in the video guided by multiple cues, in particular the detected
human actors, which is then used to learn an action classifier. These
works are shallow and were not designed to exploit the representation
learning principle of deep learning architectures. Our work unifies
these alternatives. It infuses the pragmatic and arguably more accurate
scheme of localization from detected actors into a novel end-to-end
trainable deep architecture.

In this work, we introduce an actor-supervised architecture that
exploits the relevance of actors to steer the localization of actions in
videos without using spatiotemporal annotations of the training videos.
Instead of using the detected actors to select among candidate regions
a posteriori (Siva and Xiang, 2011; Mettes et al., 2017), we exploit the
detections to define the candidate proposals a priori. Based on them,
our architecture learns to rank the potential actor tubes from action
labels at the video level. Our technical contributions are twofold. First,
we introduce actor proposals; a means to generate candidate tubes that
are likely to contain an action and that do not require any action video
annotations for training. We derive our proposals from a detector for
human and non-human actors, intended for images, combined with
Siamese similarity matching to account for actor deformations over
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Fig. 1. We propose actor-supervision as a means for weakly-supervised action local-
ization in video space and time. During the learning stage, our method relies on action
labels at the video level only. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

time. Second, we introduce actor attention; an end-to-end architec-
ture that selects the most suited (actor) proposals. It exploits a new
differentiable operation, actor pooling, which summarizes the visual
information spanned by an actor. In this way, our attention mechanism
is not only derived from the action class, but it also considers the
actors. Experiments on four human and non-human action datasets
show that our actor proposals and actor attention register an absolute
(and relative) improvements up to 8.4% (23.7%) in Recall and 10.4%
(27.5%) in mAP, respectively. Taken together, our actor supervision is
the state-of-the-art for action localization from video class labels and is
even competitive to some box-supervised alternatives.

2. Related work

Typical approaches for action localization first generate spatiotem-
poral action proposals and then classify them with the appropriate
action label. We discuss work related to these two aspects of action
localization and group them by the amount of supervision needed.

2.1. Action proposals

Supervised action proposals generate box proposals and classify them
per action for each individual frame. In addition to video-level class
labels, bounding-box ground-truth for each action instance across all
the frames is required. In Gkioxari and Malik (2015) and Weinzaepfel
et al. (2015), the box proposals come from object proposals (Uijlings
et al., 2013; Zitnick and Dollár, 2014), and a two-stream convolutional
network (conv-net) is learned to classify these boxes into action classes.
More recently, action boxes are generated by video extensions of mod-
ern object detectors (Liu et al., 2016; Ren et al., 2015), as in Saha et al.
(2016, 2017b), Kalogeiton et al. (2017), Saha et al. (2017a), Hou et al.
(2017b), Zhu et al. (2017), He et al. (2018) and Sun et al. (2018). For all
these works, once the action boxes per frames are established they are
linked together to create action proposals per video, for example via
dynamic programming based on the Viterbi algorithm (Gkioxari and
Malik, 2015).

Unsupervised action proposals do not require any class labels or
bounding box ground-truth. A sliding window sampling is unsupervised
but has an exponentially large search space. More efficient methods
generate action proposals by grouping super-voxels based on low-level
cues such as color or image gradients (Jain et al., 2014, 2017; Oneata
et al., 2014). Clustering of motion trajectories is also an effective choice
to hierarchically build proposals (van Gemert et al., 2015; Chen and
Corso, 2015; Puscas et al., 2015).

Weakly-supervised action proposals do not rely on box-level ground-
truth for all the video frames (Kläser et al., 2012; Lan et al., 2011;
Tran and Yuan, 2012; Yu and Yuan, 2015). Instead, they exploit object

detectors trained on images to get detections. Yu and Yuan (2015) use
a human detector and motion scores to locate boxes and compute an
actionness score for each of them. Linking of boxes is formulated as
a maximum set convergence problem. Kläser et al. (2012) rely on an
upper-body detector per frame and links them in a tube by tracking
optical flow feature points. For the linking of our human and non-
human actor detectors, we prefer a similarity based tracker (Tao et al.,
2016; Bertinetto et al., 2016), which is more robust to deformations
and can recover from loose and imprecise detection boxes.

Full supervision results in more precise boxes but scales poorly as
the number of action classes grows. Unsupervised proposals are more
scalable, but boxes are often less precise. Our approach achieves the
best of both worlds. We obtain box precision by using an actor detector
and then link the boxes from consecutive frames by Siamese similarity
matching, making them robust to deformations. At the same time, our
approach is action-class agnostic and hence more scalable.

2.2. Proposal classification

Supervised classification is the default in the action localization
literature. Methods train classifiers using box-supervision for each
action class and apply it on each action proposal for each test video,
e.g. Gkioxari and Malik (2015), Weinzaepfel et al. (2015), Saha et al.
(2016), Hou et al. (2017b), Kalogeiton et al. (2017), Saha et al.
(2017a,b) and Duarte et al. (2018), Xie et al. (2018). Others, who rely
on unsupervised or weakly-supervised action proposals, also train their
action proposal classifiers in a supervised fashion using bounding-box
ground-truth across frames (Jain et al., 2017; van Gemert et al., 2015;
Chen and Corso, 2015).

Unsupervised classification has been addressed as well. Puscas et al.
(2015) classify their unsupervised proposals using tube-specific and
class agnostic detectors, trained via two-stage transductive learning.
Soomro and Shah (2017) start with supervoxel segmentation and auto-
matically discover action classes by discriminative clustering. It local-
izes actions by knapsack optimization. Jain et al. (2015), classify action
proposals in a zero-shot fashion by encoding them into a semantic word
embedding spanned by object classifiers. Mettes and Snoek (2017),
capture actors, relevant object detections and their spatial relations in
a word embedding. All the training happens on images and text, no
videos are needed.

Weakly-supervised classification refrains from box-supervision for
classifying action proposals. A considerable reduction in annotation
effort may be achieved by replacing boxes with point annotations and
unsupervised action proposals (Mettes et al., 2016), but it still demands
manual labor. An alternative is to rely on human body parts (Ma et al.,
2013) or human detectors trained on image benchmarks (Russakovsky
et al., 2015; Lin et al., 2014) to steer the localization in video;
either by defining the search space of most likely action locations,
e.g. Siva and Xiang (2011), or by selecting the most promising action
proposal (Mettes et al., 2017).

We also rely on human (and non-human) actor detectors but exploit
them to generate a limited set of actor proposals. Among those, we
select the best ones per action, based on an actor attention mechanism
that only requires action class labels. Without the need for box annota-
tions per video frame, we achieve results not far behind the supervised
methods and much better than unsupervised methods.

3. Actor-supervision architecture

To deal with the inherent difficulty of spatiotemporal action local-
ization without box supervision, we introduce actor supervision. We
exploit the fact that actors are precursors of actions. Actions result
from an actor going through certain transformations, while possibly
interacting with other actors and/or objects in the process. This means
that actors not only locate the action in the video, but also one can
learn to rank the potential actor locations for a given action class.
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Fig. 2. Actor-supervised architecture. Blocks in yellow generate actor proposals where
it is likely to find actions in the videos. Blocks in blue illustrate our action attention
module which classifies the action occurring in each actor proposal and sorts them
based on the relevance of the actor class. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Based on these premises, we design a novel end-to-end architecture for
spatiotemporal action localization guided by actor supervision.

Fig. 2 illustrates the two pillars of our architecture, namely actor
proposals and actor attention. In a nutshell, our approach enables the
localization of actions with minimal supervision by (i) infusing the
concept of actors in the architecture, through existing knowledge and
progress in object detection and object tracking; and (ii) introducing
a powerful attention mechanism suitable for learning a meaningful
representation of actions. In the following subsections we disclose full
details of each pillar.

3.1. Actor proposals

Our actor proposals receive a video stream and generate a set of
tubes, parameterized as a sequence of boxes  = {𝑖}. The tubes
outline the most likely spatiotemporal regions where an action may
occur based on the presence of an actor. It contains two modules: actor
detection and actor linking, as shown in Fig. 3 and detailed next.

Actor detection. This module generates spatial locations where the
actor of interest appears in the video. Respecting the requirements
of our setup, this module adopts a pre-trained conv-net for object
detection which predicts bounding boxes over all the frames of the
video. Despite the huge progress in object detection, the predictions
are still imperfect due to false positive errors or missed detections of
the actor. Missed detections typically occur when the actor undergoes
a significant deformation, which is common in actions. For example,
when performing a cartwheel in floor gymnastics, the shape of the actor
changes when he/she is flipping upside down. In these cases, actor
deformations, characteristic of the performance of the action, may
involve significant visual changes that do not fit the canonical model
of the object category of the actor.

Actor linking. This stage carefully propagates the predictions of our
actor detector throughout the video to generate an actor proposal tube.
It complements the detector by filling the gaps left during the perfor-
mance of the action, without demanding any annotation to tune the
detector. In this way, our module is more robust to missed detections
and consistently retrieves complete actor tubes associated with actors.
We attain this goal with the aid of a robust similarity-based tracker
along with a scheme to filter and select the boxes enabling detection
boxes and tracker coordination. The similarity tracker exploits the tem-
poral coherence between neighboring frames in the video, generating a
box-sequence for every given box. In practice, we employ a pre-trained
similarity function learned by a Siamese network which strengthens
the matching of the actor between a small neighborhood in adjacent
frames. Once it is learned, this similarity function is transferable and
remains robust against deformations of the actor (Tao et al., 2016;
Bertinetto et al., 2016). The filtering and selection scheme selects the
best scoring detection boxes and sequentially feeds them to the tracker,
which propagates them into box-sequences 𝑖, also called tubes. This
scheme also filters out the candidate detections, similar to the boxes
generated by the tracker, reducing the amount of computation.

Section 4.2 describes the implementation details about the conv-net
architectures used to generate our actor proposals.

3.2. Actor attention

The second pillar of our approach is responsible for assigning action
labels to the actor proposals. It takes into account the visual appearance
inside the actor proposals, and scores them based on action classifica-
tion models trained on video-level class labels only. The outcome of this
module is a set of ranked proposals where it is likely to find particular
actions in the video. Fig. 2 illustrates the inner components of our actor
attention which are detailed next.

Video encoder. The encoder transforms the video stream into a
suitable space where our attention module can discern among different
actions. In practice, we use a conv-net, which encodes video frames as
response maps that also comprise spatial information. Without loss of
generality, an input video with 𝑇 frames and shape 𝑇 × 3 × 𝑊 × 𝐻
produces a tensor of shape 𝑇 × 𝐶 × 𝑊 ′ × 𝐻 ′, where 𝐶 is the number
of response maps in the last layer of the video encoder. 𝑊 ′ and
𝐻 ′ correspond to scaled versions of the original width and height,
respectively, due to the pooling layers or convolutions with long stride.

Actor pooling. We introduce a new pooling operation that takes
as input the response maps from the video encoder and the set of
actor proposals, and outputs a fixed size representation for each actor
proposal. This module identifies the regions associated with each actor
proposal in the response maps, and extracts a smooth representation for
them. Our operation extends the bilinear interpolation layer (Jaderberg
et al., 2015; Johnson et al., 2016), which operates over feature maps
of images and bounding boxes, to deal with feature maps of videos
and spatiotemporal tubes. Concretely, given an input feature map 𝑈
of shape 𝑇 × 𝐶 × 𝑊 ′ × 𝐻 ′ and a set of actor proposals 𝐴 of shape
𝑇 × 𝑃 × 4, which represents coordinates of the bounding boxes of 𝑃
actor proposals of length 𝑇 . We interpolate the features of 𝑈 to produce
an output feature map 𝑉 of shape 𝑇 ×𝑃 ×𝐶 ×𝑋 ×𝑌 where 𝑋, 𝑌 are the
hyper-parameters representing the size of the desired output features of
each actor box. For each actor box, we perform bilinear interpolation
by projecting the bounding box onto the corresponding 𝑈𝑡,∶,∶,∶ and
computing a uniform sampling grid of size 𝑋 × 𝑌 , inside the actor box,
associating each element of 𝑉 with real-valued coordinates into 𝑈 . We
obtain 𝑉 by convolving with a sampling kernel 𝑘 (𝑑) = max(0, 1 − |𝑑|):

𝑉𝑡,𝑝,𝑐,𝑖,𝑗 =
𝑊 ′
∑

𝑖′=1

𝐻 ′
∑

𝑗′=1
𝑈𝑡,𝑐,𝑖′ ,𝑗′𝑘

(

𝑖′ − 𝑥𝑡,𝑝,𝑖,𝑗
)

𝑘
(

𝑗′ − 𝑦𝑡,𝑝,𝑖,𝑗
)

(1)

Finally, we average pool the contribution of all the output features
belonging to the same actor proposal, which gives us a tensor 𝑍 of
shape 𝑃 × 𝐶 × 𝑋 × 𝑌 corresponding to the final output of our actor
pooling.

Fig. 4 illustrates the inner details of actor pooling. Note that the
bilinear kernel 𝑘 ensures that only the four pixels adjacent to the
point (𝑥𝑡,𝑝,𝑖,𝑗 , 𝑦𝑡,𝑝,𝑖,𝑗 ), which belongs to the sampling grid defined by each
actor box, contributes to the final representation. Recently (Hou et al.,
2017a) introduced the Tube of Interest Pooling which extends the 2D-
RoI operation (Girshick, 2015) to spatiotemporal actors. In contrast, our
actor pooling relies on bilinear interpolation. While the RoI operation
only considers the maximum value over a bin cell, the bilinear kernel 𝑘
considers four pixels for each sampling point. Thus, our layer yields a
smooth representation for the actors with less sparse gradients during
backpropagation. We showcase the benefits of the bilinear sampling
inside a weakly-supervised experimental setup in Section 4.3.

Actor proposal classification. We classify each actor proposal accord-
ing to a pre-defined set of action classes. This module learns to map
the fixed size representation of each actor proposal into the space of
actions of interest. In practice, we employ a fully connected layer where
the number of outputs corresponds to the number of classes 𝐴. During
training, the main challenge is to learn an appropriate mapping of the
actor representation into the action space without the obligation of
explicit annotations for each actor proposal. For this reason, we propose
an attention mechanism over the actor proposals that bootstraps the
action labels at the video level. In this way, we encourage the network
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Fig. 3. Actor proposals. We generate actor proposals by detecting the most likely actor locations with the aid of an object detector. Our actor linking module selects the most
relevant detections and carefully tracks them throughout the video using a Siamese similarity network, which robustly overcomes possible actor deformations. After an actor tube
𝑖 is formed, we filter out detections with high similarity with the boxes of the tube. Notably, our actor linking can handle the miss detected actor boxes in the fourth frame
without requiring annotations for fine tuning.

Fig. 4. Actor pooling computes a smooth fixed sized representation of each actor proposal. It crops the feature maps around each actor box and aligns a sampling grid 𝑋 × 𝑌
to compute the representation via bilinear interpolation with the kernel 𝑘(𝑑). Finally, it appropriately forms the actor representation of each actor tube with a temporal average
pooling. We illustrate the procedure for a single actor proposal over one slice of the feature maps.

Fig. 5. Our actor-supervised architecture is the first end-to-end approach for weakly-supervised spatiotemporal action localization that adjusts the parameters of the video encoder
as training progresses. The block diagram illustrates all the operations of our approach during training. The dashed lines represent the flow of data during backpropagation.
Notably, we do not inquiry for any supervisory signal different than action labels at the video label to achieve the spatiotemporal localization of actions.

to learn the action classifier by focusing on the actors that contribute
to an appropriate classification.

In this work, we explore the use of an attention mechanism based
on top-𝑘 selection. It encourages the selection of the 𝑘 most relevant
actor proposals per class that contribute to perform a correct classifi-
cation. In practice, we choose the top-𝑘 highest scores from the fully
connected layer for each action category, and average them to form a
single logit vector for each video. Subsequently, we apply a softmax
activation on the logits of each video. Fig. 5 illustrates the particular
instantiation described before. Note that our architecture classifies each
actor independently, it could easily be extended for multi-class videos.
In such case, we would change the softmax nonlinearity by a sigmoid
during training.

Learning. We train our actor attention using the cross-entropy loss
between the output of the softmax and the video label. It is relevant to
highlight that we do not use any spatiotemporal information about the
actions for learning the parameters of our model. In practice, we fit the
parameters of the actor attention by employing back-propagation and
stochastic gradient descent. In the case of the top-𝑘 selection module,

we use a binary mask during the back-propagation representing the
subgradients of the selection process.

Having defined our actor-supervised architecture, we are now ready
to report experiments.

4. Experiments

4.1. Datasets and evaluation

We validate our approach on four public benchmarks for spatiotem-
poral action localization in videos2.

UCF-Sports (Lan et al., 2011). This dataset consists of 150 videos
from TV sport channels representing 10 action categories such as
weightlifting, diving, golf-swing,. We employ the evaluation protocol es-
tablished by Lan et al. (2011), but without using the box annotations
in the training set.

2 Datasets used in this paper were downloaded and experimented on by
primary author
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Fig. 6. Actor linking outperforms the Viterbi linking algorithm by Gkioxari
and Gkioxari and Malik (2015), used to connect sparse detection in time. We attribute
its success to the use of similarity-based matching to handle deformations of the actor
that the Viterbi linking is unable to fix. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

JHMDB (Jhuang et al., 2013). This dataset showcases 21 action
categories such as push-up, shooting, etc.; and consists of 928 videos
from movies and consumer videos from internet portals. Unless stated
otherwise, we employ the standard evaluation protocol using three
splits. We refrain from using the box annotations in the training set
to tune our model.

THUMOS13 (Soomro et al., 2012). This dataset incorporates
untrimmed videos and multiple action instances per video. It consists
of a subset of 3294 videos derived from UCF101 featuring 24 action
categories. We use the training and testing partition from split 1 of
UCF101 for evaluating our approach. Note that we do not rely on the
spatiotemporal box annotations of the training set.

A2D (Xu et al., 2015). The actor–action dataset comprises 3782
videos from Youtube designed to model the relationship between actors
and actions in videos. This dataset considers actions, such as flying,
jumping, climbing, etc., as performed by various actors, such as ball, cat,
baby, etc. Again, we do not use the spatiotemporal annotations of the
training set.

Evaluation. Following the standard protocol for action localization,
we report the intersection over union (IoU) to measure the degree to
which a candidate tube is associated with a given spatiotemporal action
ground-truth annotation. Depending on the task and dataset of interest,
we report the result in terms of Recall or mean Average Precision
(mAP). To evaluate action classification performance, we employ the
evaluation setup typical for action localization using mean average
precision (mAP) over all available classes, given an overlap threshold
of 0.2 (THUMOS13) and 0.5 (UCF-Sports, JHMDB).

4.2. Implementation details

Actor proposals. We use a single-shot multi-box detector (Liu et al.,
2016) to detect an actor of interest in every frame. We used a public
pretrained detector trained on all MS-COCO categories (Huang et al.,
2017; Lin et al., 2014) and limit the detections used to the actors of
interest according to the action categories defined in each dataset. The
base network of the actor detector is InceptionV2 (Ioffe and Szegedy,
2015) – up to 𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛(5𝑏) pre-trained on ILSVCR-12 (Russakovsky
et al., 2015) – followed by six feature layers and box predictors (Liu
et al., 2016; Huang et al., 2017). We only track the detections selected
by our actor linking forward-and-backward over the entire video us-
ing a multi-scale fully-convolutional Siamese-tracker (Bertinetto et al.,
2016) trained on the ALOV dataset (Smeulders et al., 2014). The base
network of the tracker corresponds to the first four convolutional blocks
of VGG-16, followed by a cross-correlation layer (as in Bertinetto et al.
(2016)) operating over 4 scales. The actor selector ignores detections
predicted by the actor detector greedily when those have a high spatial
affinity with boxes generated by the tracker. In practice, we use an
overlap threshold of 0.7.

Actor attention. We only consider the RGB stream to encode the
visual appearance of the videos. Our video encoder corresponds to
the convolutional stages of VGG-16, for fair comparison with previous
work (Li et al., 2018), pre-trained on ILSVCR-12 (Russakovsky et al.,
2015). The grid size for the bilinear interpolation of actor pooling is
3 × 3. During training, our attention module focuses on the 𝑘 = 3
most relevant actors out of 10 actor tubes for classifying the video. We
train our entire actor attention module end-to-end from RGB streams
to video labels, adjusting the parameters of the visual encoder as
training progresses, as opposed to using pre-computed features like (Li
et al., 2018). Due to memory constraints, we employ segment partition
introduced by Wang et al. (2016) to allocate more than one video per
batch. For each video, we analyze 16 equally spaced frames each time.
We set the learning rate to 1e-2 and employ a momentum factor of 0.99
to train our model in a single GPU with a batch size of four videos. At
test time, we used at most ten actor-proposals per video and remove
tubes with overlap greater to 0.6 via NMS.

4.3. Results

Actor linking versus Viterbi linking. In our first experiment we
validate the relevance of our actor linking with respect to the more
traditional Viterbi linking (Gkioxari and Malik, 2015) for the gener-
ation of actor proposals from the predictions of our actor detector.
As shown in Fig. 6 our actor linking achieves an improvement in
Recall of +19.9% and +21.6% for 0.2 and 0.5 IoU in THUMOS13. We
attribute these results to the capability of the similarity-based matching
to accommodate for deformation of the actor, that the Viterbi linking
approach is unable to fix. Previous approaches e.g. Gkioxari and Malik
(2015), Kläser et al. (2012) and Saha et al. (2016) employ supervision
at the level of boxes and length of the tubes to overcome this issue.
This clearly limits their application under the weakly-supervised setup
evaluated in this work. We conclude that actor linking, by similarity-
based matching, aids spatiotemporal action localization with weak
supervision.

Actor proposals versus others. Table 1 compares our actor pro-
posals with previous supervised and unsupervised action proposals.
Compared to the action proposals by Yu and Yuan (2015), our ap-
proach achieves an improvement of +34.2% in terms of Recall on
THUMOS13. This result evidences the benefit of our actor detection
and linking scheme. Interestingly, our approach improves upon pre-
vious unsupervised work by +1.7% and +8.4% in terms of Recall on
UCF-Sports and THUMOS13, respectively. These methods (Jain et al.,
2017; van Gemert et al., 2015) are based on grouping techniques
over low-level primitives such as color and motion, which reaffirms
our intuition about the relevance of actors as a strong semantic cue
for the localization of the actions. Fig. 7 illustrates the recall of our
actors proposals for a varying number of proposal in comparison with
previous unsupervised approaches. It provides further evidence on the
quality of our proposals, especially when considering only a limited
number of proposals.

The state of the art for action proposals generation (Zhu et al.,
2017; Weinzaepfel et al., 2015) are fully supervised approaches based
on a mix of convolutional-recurrent networks and supervised instance
level tracking, respectively. Our approach achieves competitive results
or even outperforms them in JHMDB-split1, following the evaluation
protocol of Weinzaepfel et al. (2015), without relying on additional
action box supervision. Although supervised approaches offer proposals
with better quality in two out of the three datasets studied, they do
so at the expense of extra annotations. It that sense, these methods
have a limited scalability potential, and it opens up a spot for our actor
proposals.

Non-human actor proposals. We also analyze the quality of our
proposals for generating spatiotemporal tubes for non-human actors.
For this experiment we assume that the class of the actors are known at
test time and evaluate the quality of the localization accordingly. Fig. 8
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Table 1
Action proposal comparison in terms of Recall. Weinzaepfel et al. (2015) and Zhu et al.
(2017) use video supervision from action boxes and action labels, while the rest do not
use any video supervision. Our actor proposals achieve better Recall compared to previous
unsupervised and weakly-supervised methods.

Fig. 7. Actor proposals outperform unsupervised action proposals. We attribute its success to the use of actors as semantic cue relevant for the grounding of actions. Notably, we
retrieve relevant action tubes from a much smaller pool, which is advantageous in the context of retrieval and spatiotemporal localization of actions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Non-human actor proposals on A2D. Qualitative visualizations of action proposals for Bird and Ball. The recalls at IoU = 0.5 are consistently high for all the actor classes
except for Ball, which is understandable due to its common shape and small size, which invite many occlusions. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

summarizes our findings including two qualitative results taken from
the A2D dataset. The leftmost example shows we are able to generate
proposals for highly articulated actors like birds. The example in the
center exemplifies a common failure case for the ball actor. In this case,
the ball changes significantly in appearance during the execution of the
action, including several full occlusions caused by the human. From
our quantitative analysis, we appreciate that the actor with the highest
recall is baby, which is not directly represented in the training set of
our actor detector. The analysis also reveals that the gap in recall at
0.5 IoU between adult actors and animal actors like bird and dog is at
most +2%. Except for ball, the recall for all the actors using at most
50 actor proposals is greater than 85%. Therefore, we conclude that
our method is general and applicable to both human and non-human
actors.

Impact of actor attention. We validate the benefits of our actor
attention stream, and ablate the operations of our novel actor pooling
layer.

How to pool the spatial information of the actors? Table 2(a) compares
the proposed bilinear interpolation vs. the RoI pooling strategy pro-
posed by Hou et al. (2017b), by replacing the former with the latter

in our actor pooling module. The result shows an improvement of
+7.9% in mAP when bilinear interpolation is used. This could be a
consequence of the smoother representation with less sparse gradients
mentioned in Section 3.2, while training in a regime without box level
supervision.

How to aggregate the temporal information of the actor? Table 2(b)
compares different types of temporal aggregation function of the ac-
tor representation after bilinear interpolation. We observed that Early
pooling, averaging the temporal information of V after the bilinear sam-
pling, performs the best. Followed closely by Late pooling, computing
the likelihood of each box in the actor tube independently and average.
In contrast, No pooling, using fixed size representation of a group of
frames V, and 3D-conv, a 3D conv kernel followed by early pooling, do
not perform as well in THUMOS13. This result could be a consequence
of some degree of overfitting as coarse level information is enough to
classify the actions of interest and modeling precise details of the actors
is not necessary in the current benchmarks. We used early pooling for
the rest of the experiments in the paper.

Benefit of end-to-end training. Finally, we showcase the impact of
fine-tuning the video encoder in an end-to-end fashion, as training

6



V. Escorcia, C.D. Dao, M. Jain et al. Computer Vision and Image Understanding 192 (2020) 102886

Table 2
Actor pooling ablations and the benefit of our end-to-end actor attention stream in THUMOS13. We ablate the spatial and temporal operations of
our actor pooling layer. (a) Bilinear interpolation of the actor information adds 7.9% compared to RoI as done in Hou et al. (2017b). Similarly,
(b) early pooling the temporal information of each actor performs the best among other types of temporal pooling. Finally, (c) Fine-tuning the
video encoder adds 4.4% in mAP as opposed to a fixed visual representation as done in Li et al. (2018).

(a) (b) (c)

Spatial pooling ablation mAP@0.2 Temporal pooling
ablation

mAP@0.2 Fine-tune video
encoder

mAP@0.2

RoI as Hou et al. (2017a) 37.9 3D-conv 37.9 41.4
Bilinear Interp, Our paper 45.8 No pooling, 𝑉 42.68 � 45.8

Late pooling 44.7
Early pooling, 𝑍 45.8

Fig. 9. Per-class correlation between action localization, AP at IoU = 0.2, and actor
linking (detection + tracking) frame-level performance, Recall IoU = 0.5. Among
all action classes AP is not correlated to the frame-level recall. We noticed that
for two groups: (i) action classes that are relatively untrimmed, presented in red,
and (ii) trimmed classes, presented in yellow; better performance in frame-level
detection translates into better action localization performance. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

progresses, in Table 2(c) on THUMOS13. When the video encoder is
fine-tuned we achieve an improvement of 4.4% in mAP, compared
to when employing a fixed visual representation, as done in Li et al.
(2018).

Impact of detection and tracking on action localization. Fig. 9
shows per-class correlation between action localization AP (at IoU =
0.2) and actor linking (detection + tracking) frame-level performance,
Recall IoU = 0.5. We noticed that among all action classes AP is not
correlated to the frame-level recall. We observe two clusters of classes,
one mostly containing the untrimmed classes (in red) and the other
mostly containing trimmed classes (in yellow). For each cluster, the
action localization performance is directly proportional to that of actor
detection and tracking.

Actor-supervision versus others. Table 3 compares multiple ap-
proaches with a varying degree of supervision. Based on these results,
we note that actor supervision achieves the state-of-the-art among all
approaches that localize action from an action class label only. It
improves upon (Li et al., 2018) by +8.1% and upon (Mettes et al.,
2017) by +10.4% on the THUMOS13 and UCF-Sports benchmarks,
respectively. Compared to Mettes et al. (2017), our approach gives
more relevance to the actors during the localization stage instead of
using them as cues to improve the ranking of existing action proposals.
We hypothesize that our attention mechanism is more effective than
the one in Li et al. (2018), because actors are a more powerful cue for
guiding the localization of actions than individual pixels. Table 4 illus-
trates the results of our approach for a broad range of IOU thresholds in
contrast with the state of the art approach for weakly-supervised action
localization of Mettes et al. (2017). It is evident that our architecture

achieves better localization accuracy, especially on higher IOU val-
ues. Interestingly, actor-supervision outperforms this multiple instance
learning approach in the most challenging dataset, THUMOS13, over
all the IOU values reported.

Actor-supervision also outperforms several approaches with varying
levels of supervision on the challenging THUMOS13 benchmark (Yu
and Yuan, 2015; van Gemert et al., 2015; Mettes et al., 2016). Com-
pared to Weinzaepfel et al. (2015) and Hou et al. (2017b), our visual
representation is limited to the RGB video stream. We suspect that flow
information can boost the action classification and localization results
as earlier shown by Carreira and Zisserman (2017), Gkioxari and Malik
(2015) and Saha et al. (2016). Similarly, we compare actor-supervision
on JHMDB with Gkioxari and Malik (2015), using their RGB stream
only, and observe comparable results (35.8% ± 2.7 versus 37.9%). This
proves the relevance of our approach in another challenging benchmark
against a strong competitor aided by box-supervision during training.

The state-of-the-art in action localization is dominated by fully-
supervised approaches resembling conv-net architectures well estab-
lished for generic object detection (Kalogeiton et al., 2017; Saha et al.,
2017b), which require strong levels of supervision. These approaches
are unable to be trained in the weakly supervised regime presented
in this paper. Interestingly, our approach not only outperforms other
weakly-supervised methods but it also has an edge over some of
the supervised approaches. Considering the poor scalability of fully-
supervised approaches and the tremendous amount of progress in
object detection, we envision that our work can inspire the community
to seek other forms of supervision during the design and adaption
of deep representations for localizing actions in videos. Figs. 10–11
illustrate action localization results of our approach on the THUMOS13
benchmark. The latter showcases that our method can deal with videos
exhibiting multiple actors such as Ice Dancing. We also corroborate
that the mAP of actions exhibiting multiple actors is similar to those
of actions with a single actor.

4.4. Discussion

Our tubes spans the entire videos as most datasets for spatiotem-
poral localization are trimmed or nearly trimmed. Only THUMOS13
contains action tubes that does not expand the entire video. Yet THU-
MOS13 is nearly trimmed; as the instance temporal coverage, defined
as the ratio of the length of an action tube by the length of the video,
is 74% on average, and only five out of twenty-four classes have an
average coverage lower than 50%. We observed that the AP@IoU =
0.2 in those five classes is 0.25x lower than the other classes. Inter-
estingly, concurrent work on weakly-supervised temporal localization
has emerged (Nguyen et al., 2018; Paul et al., 2018) without localizing
the actors as presented here. Thus, our work is orthogonal and we
envision follow-up work merging both approaches, accompanied by
new datasets where the untrimmed aspect of spatiotemporal action
instances is widespread.
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Table 3
Comparison of spatiotemporal action localization approaches with decreasing amount of supervision. The top half shows supervised approaches,
whereas the bottom half shows weakly-supervised approaches relying on action class labels only. Actor-supervision achieves state-of-the-art
performance among the weakly-supervised approaches and sometimes even outperforms supervised methods.

Action supervision THUMOS13 UCF-Sports JHMDB

Boxes Points Labels mAP@0.2 mAP@0.5 mAP@0.5

Kalogeiton et al. (2017) � � 77.2 92.7 73.7
Saha et al. (2017b) � � 73.5 – 72
Hou et al. (2017b) � � 47.1 86.7 76.9
Jain et al. (2017) � � 48.1 – –
Weinzaepfel et al. (2015) � � 46.8 90.5 60.7 ± 2.7
Gkioxari and Malik (2015) � � – 75.8 37.9a

van Gemert et al. (2015) � � 37.8 – –
Yu and Yuan (2015) � � 26.5 – –
Mettes et al. (2016) � � 34.8 – –

Mettes et al. (2017) � 37.4 37.8 –
Li et al. (2018) � 36.9 – –
Cinbis et al. (2014) (from Mettes et al. (2016)) � 13.6 – –
Sharma et al. (2015) (from Li et al. (2018)) � 5.5a – –
Our paper � 45.8a 48.2a 35.8 ± 2.7a

aDenotes use of RGB frames solely, as we do.

Table 4
Localization accuracy for multiple IoU. Actor-supervision outperforms the state-of-the-art weakly-supervised approach of Mettes
et al. (2017) for a broad range of stringent IoU thresholds.

IOU thresholds 0.1 0.2 0.3 0.4 0.5 0.6

UCF-sports Mettes et al. (2017) 87.7 81.7 64.4 54.5 37.8 17.5
This paper 84.2 84.2 84.2 64.9 48.2 40.6

THUMOS13 Mettes et al. (2017) 49.8 37.4 25.8 13.7 6.2 1.3
This paper 53.4 45.8 38.0 30.7 19.3 6.2

Fig. 10. Qualitative results on the THUMOS13 dataset. Top row shows three successful cases by visualizing the ground-truth and action tubes as well as two highlighted frames.
These include action sequences that have deformations of actor as well as multiple actors with complex background. Bottom row visualizes three failed cases which show that
crowded background, occlusions and temporally untrimmed action sequences are the most challenging scenarios. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

8



V. Escorcia, C.D. Dao, M. Jain et al. Computer Vision and Image Understanding 192 (2020) 102886

Fig. 11. Qualitative results with multiple actors, ground-truth tubes in green. Our approach can detect multiple actors and associate an action label for each of them. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

5. Conclusion

This paper introduces a weakly-supervised approach for the spa-
tiotemporal localization of actions, driven by actor supervision. We
show that exploiting the inherent compositionality of actions, in terms
of transformations of actors, disregards the dependence on spatiotem-
poral annotations of the training videos. In the proposal generation
step, we introduce actor supervision in the form of an actor detector
and similarity-based matching to locate the action in the video as a
set of actor proposals. Then, our proposed actor attention learns to
classify and rank these actor proposals for a given action class. This step
also does not require any per frame box-level annotations. Instead, we
design an attention based mechanism that chooses the most relevant
actor proposal only for class labels at the video level. Moreover, we
introduce a novel actor pooling operation that summarizes the repre-
sentation of each actor in a more effective way than recent pooling
strategies for the weakly-supervised setup of our interest. Our approach
outperforms the state-of-the-art among weakly-supervised works and
even achieves results that are better or competitive to some of the
fully-supervised methods. In future work, we envision clever redesigns
of our actor supervised approach to attain further improvement in the
spatiotemporal localization of actions without action box annotations.
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Appendix

We complement the manuscript with the following items:

• A video summarizing our work. It showcases more qualitative
results generated by our actor-supervised architecture. There you
can appreciate that our approach works well in videos with
multiple actors, involving considerable deformations and for non-
human actors.
Video (high-quality): http://bit.ly/2CkaIf6
Video (compressed): http://bit.ly/2CkxIL2
The codec of the video is H264-MPEG-4 AVC, its resolution is
1280 × 720 and the frame rate 60. We recommend using the VLC
media player https://www.videolan.org/vlc/index.html.

• In Appendix A.1, we describe the inner details of our actor
proposal algorithm and comment about its computational com-
plexity.

• Appendix A.2 gives more details about the training of our actor-
supervised architecture concerning initialization and training pol-
icy, details about the backpropagation, and robustness of our
actor pooling operation.

A.1. Actor proposals

The Algorithm 1 describes all the interactions between the inner
blocks involved for the generation of our actor proposals, described in
the main paper.
Algorithm 1 Actor proposals generation
1: Input: maximum number of proposals 𝑁
2: Output: 
3:  ← run actor detector over all frames
4:  ← ∅
5: 𝑖 ← 0
6: while  ≠ ∅ ∧ 𝑖 < 𝑁 do
7: 𝑏𝑖 ← select actor with highest score from 
8: 𝑖 ← actor tracker tracks 𝑏𝑖 forward and backward

throughout the video
9: Push 𝑖 onto 

10:  ← filter actors in  with high similarity with boxes in 𝑖
11: 𝑖 ← 𝑖 + 1

Regarding the time complexity of our approach, our object detector
and Siamese-tracker run at 32 and 60 FPS, respectively, on an Intel-
Xeon E5-2687 with a GTX 1080. After direct contact with Jain et al.
(2017), we establish that our method generates less number of propos-
als (100), is more accurate (+10% Recall at 0.5 IOU) and 7.91 times
faster on THUMOS13. In conclusion, our action proposal approach
generates more precise candidates and does so in less time.

A.2. Actor-supervised architecture

Backpropagation details. Fig. 5 illustrates the end-to-end characteris-
tic of the actor attention stream of our Actor-supervised architecture.
The modules involved during the training of our actor attention. These
are (i) the video encoder; (ii) our actor pooling; (iii) the actor attention
classifier; and (iv) the attention mechanism. The latter is composed
by a top-k selection operational average among top-k scores per-class;
and a softmax activation per video. This diagram also highlights the
capability to be trained in a weakly-supervised setup, only from class
labels at the video level. We can note that gradients flow backwards
down to the raw video updating the parameters of our video encoder.
This contrasts with the strategy of Li et al. (2018) that trains a recurrent
module on top of pre-computed features from the last convolutional
block of VGG16. In that sense, our work is the first deep architecture for
weakly-supervised spatiotemporal action localization in videos trained
from raw visual information.

On the other hand, it is relevant to mention that we did not employ
any supervisory signal nor perform any updates on the parameters of
our actor proposal. Note that the use of any additional supervisory
signal to tune our actor proposals module, top stream in Fig. 5, goes
against the weakly-supervised setup of our interest.

Training details of our actor-attention stream. We initialize the
weights of our actor classifier module with Xavier technique (Glorot
and Bengio, 2010), and our video encoder with the weights from
a VGG-16 model pre-trained on Imagenet-ILSVCR-2012 (Russakovsky
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Fig. 12. The violin plot clearly shows that using actor pooling in regards of the tube
pooling operation (Hou et al., 2017b) results in better localization performance. The
middle line in each violin represents the median mAP and its shape is determined by
the density function of the sample points in the experiment. The experiment was carried
out in THUMOS13 using the training–testing partition from the split 2 of UCF101. More
details of the experiment are provided in the text.

et al., 2015). Our actor attention stream is trained for 20 epochs
annealing the learning rate by a factor of 0.75 after eleven epochs.
We use a momentum factor of 0.99 and an initial learning rate of
0.01. As input pre-processing, we employ the segment based strategy
suggested by Wang et al. (2016). In our case, we randomly sample 16
frames uniformly spaced per video. Additionally, we apply a random
horizontal flipping of all the sampled frames. Finally, we normalize the
input frames such that the intensity values lie on the range between
[−0.5, 0.5] using standard scaling with mean [0.485, 0.456, 0.406] and
standard deviation [0.229, 0.224, 0.225] for the RGB channel.

Robustness of actor pooling . As we mentioned in the main paper, the
use of our actor pooling yields better results than the tube pooling
operation (Hou et al., 2017b) in the weakly-supervised setup of our
interest. Fig. 12 compares the robustness of our actor pooling operation
in regards to the tube pooling operation. The violin plot, Fig. 12,
summarizes the statistics of the top-15 results among forty experiments
for each trial i.e. our actor supervised architecture using either actor
pooling or tube pooling. One experiment constitutes a variation of the
grid size (3 × 3 or 5 × 5), or the optimization hyper-parameters, such
as learning rate, momentum, etc., while maintaining the other hyper-
parameters of our actor supervised architecture intact. In this manner,
we can compare both operations beyond a single hyper-parameter
configuration without introducing other confounding variables. For this
experiment, we use the THUMOS13 dataset employing the training–
testing partition from the split 2 of UCF101 (Soomro et al., 2012),
ensuring that we do not overfit on the standard partition used for
comparing different methods.

We verify that our actor pooling statistically improves upon the tube
pooling operation with a 𝑝-value of 1%. Thus, we reaffirm that our actor
pooling consistently achieves better localization performance than tube
pooling beyond a single hyper-parameter configuration.
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