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Abstract
Visual repetition is ubiquitous in our world. It appears in human activity (sports, cooking), animal behavior (a bee’s waggle
dance), natural phenomena (leaves in the wind) and in urban environments (flashing lights). Estimating visual repetition from
realistic video is challenging as periodic motion is rarely perfectly static and stationary. To better deal with realistic video, we
elevate the static and stationary assumptions often made by existing work. Our spatiotemporal filtering approach, established
on the theory of periodic motion, effectively handles a wide variety of appearances and requires no learning. Starting from
motion in 3D we derive three periodic motion types by decomposition of the motion field into its fundamental components. In
addition, three temporal motion continuities emerge from the field’s temporal dynamics. For the 2D perception of 3D motion
we consider the viewpoint relative to the motion; what follows are 18 cases of recurrent motion perception. To estimate
repetition under all circumstances, our theory implies constructing a mixture of differential motion maps: F, ∇F, ∇·F and
∇×F. We temporally convolve the motion maps with wavelet filters to estimate repetitive dynamics. Our method is able
to spatially segment repetitive motion directly from the temporal filter responses densely computed over the motion maps.
For experimental verification of our claims, we use our novel dataset for repetition estimation, better-reflecting reality with
non-static and non-stationary repetitive motion. On the task of repetition counting, we obtain favorable results compared to
a deep learning alternative.

Keywords Video analysis · Motion · Periodicity · Repetition counting · Wavelet transform · Motion segmentation

1 Introduction

Visual repetitive motion is common in our everyday expe-
rience as it appears in sports, music-making, cooking and
other daily activities. In natural scenes, it appears as leaves
in the wind, waves in the sea or the drumming of a wood-
pecker, whereas our encounters of visual repetition in urban
environments include blinking lights, the spinning of wind
turbines or a waving pedestrian. In this work we reconsider
the theory of periodic motion and propose a method for esti-
mating repetition in real-world video.

Improving our ability to estimate repetition in realistic
video is important in numerous aspects. In computer vision,
periodic motion has proven to be useful for action classifi-
cation (Goldenberg et al. 2005; Lu and Ferrier 2004), action
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localization (Laptev et al. 2005; Sarel and Irani 2005), human
motion analysis (Albu et al. 2008; Ran et al. 2007), structure
from motion (Belongie and Wills 2006; Li et al. 2018), ani-
mal behavior study (Davis et al. 2000) and camera calibration
(Huang et al. 2016). From a biological perspective, repetition
is fascinating as the human visual system relies on rhythm
and periodicity to approximate velocity, estimate progress
and to trigger attention (Johansson 1973).

To understand the origin and appearance of visual repe-
tition we rethink the theory of periodic motion inspired by
existing work (Pogalin et al. 2008; Davis et al. 2000). We
follow a differential geometric approach, starting from the
divergence, gradient and curl components of the 3D flow
field. From the decomposition of the motion field and its
temporal dynamics, we derive three motion types and three
motion continuities to arrive at 3 × 3 fundamental cases of
intrinsic periodicity in 3D.For the 2Dperception of 3D intrin-
sic periodicity, the observer’s viewpoint can be somewhere
in the continuous range between two viewpoint extremes.
Finally, we arrive at 18 fundamental cases for the 2D percep-
tion of 3D intrinsic periodic motion.
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Fig. 1 Examples from ourQUVA Repetition dataset, containing videos
with repetitive motion such as sports, cooking, music making and other
daily activities. The videos are challenging in their variety of appear-
ance, non-stationarymotion (e.g. accelerations or transient phenomena)

and non-static appearance induced by camera motion or a changing
motion appearance throughout the video. In this paper we focus on
dealing with such challenges as they often appear in the real-world

Estimating repetition in practice remains challenging.
First and foremost, repetition appears in many forms due
to its diversity motion types and motion continuity (Fig. 1).
Sources of variation in motion appearance include the action
class, origin of motion and the observer’s viewpoint. More-
over, the motion appearance is often non-static due to a
moving camera or as the observed phenomena develops over
time. In practice, repetitions are rarely perfectly periodic
but rather are non-stationarity. Existing literature (Levy and
Wolf 2015; Pogalin et al. 2008) generally assumes static
and stationary repetitive motion. As reality is more complex,
we here address the challenges involved with non-static and
non-stationary by proposing a novel method for estimating
repetition in real-world video.

To deal with the diverse and possibly non-static motion
appearance in realistic video, our theory implies represent-
ing the video with a mixture of first-order differential motion
maps. For non-stationary temporal dynamics the fixed-period
Fourier transform (Cutler and Davis 2000; Pogalin et al.
2008) is not suitable. Instead, we handle complex temporal
dynamics by decomposing the motion into a time-frequency
distribution using the continuous wavelet transform. To
increase robustness and to be able to handle camera motion,
we combine the wavelet power of all motion representations.
Finally, we alleviate the need for explicit tracking (Pogalin
et al. 2008) or motion segmentation (Runia et al. 2018)
by segmenting repetitive motion directly from the wavelet
power. On the task of repetition counting, our method per-
forms well on an existing video dataset and our novel QUVA
Repetition dataset which emphasizes onmore realistic video.

A preliminary version of this work appeared as (Runia
et al. 2018). The current manuscript largely maintains the
original theorywhilemaking significant improvements to the
method for repetition estimation. Specifically, we simplify
our approach by removing the need for explicit motion seg-
mentation prior to repetition estimation. Instead, we obtain
a foreground motion segmentation directly from the wavelet
filter responses densely computed over the motion maps. As
the most discriminative motion representation is not known a
priori, our previous work employed a self-quality assessment
to select the representation bestmeasurable. However, select-

ing a single most discriminative representation is inherently
unsuitable for handling significant variations due to camera
motion or motion evolution over the course of the video. We
improve this by combining thewavelet power of all represen-
tations for robustness and viewpoint invariance. Together the
two improvements simplify our method while improving or
giving comparable results on the task of repetition counting.
More precisely, the contributions of our work are as follows:

– We rethink the theory of periodic motion to arrive at a
classification of periodic motion. Starting from the 3D
motion field induced by an object periodically moving
through space, we decompose the motion into three ele-
mentary components: divergence, curl and shear. From
the motion field decomposition and the field’s temporal
dynamics, we identify 9 fundamental cases of periodic
motion in 3D. For the 2D perception of 3D periodic
motion we consider the observer’s viewpoint relative to
the motion. Two viewpoint extremes are identified, from
which 18 cases of 2D repetitive appearance emerge.

– Our spatiotemporal filtering method addresses the wide
variety of repetitive appearances and effectively handles
non-stationary motion. Specifically, diversity in motion
appearance handled by representing video as six differen-
tial motion maps that emerge from the theory. To identify
the repetitive dynamics in the possibly non-stationary
video, we use the continuous wavelet transform to pro-
duce a time-frequency distribution densely over the
video. Directly from the wavelet responses we localize
the repetitive motion and determine the repetitive con-
tents.

– Extending beyond the video dataset of Levy and Wolf
(2015), we propose a new dataset for repetition estima-
tion, that is more realistic and challenging in terms of
non-static and non-stationary videos. To encourage fur-
ther research onvideo repetition,wewillmake the dataset
and source code available as download.

The paper proceeds as follows: in Sect. 2, we provide an
overview of related work. Section 3 introduces new theory
on periodicmotion to arrive at a classification of fundamental
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motion types and their appearance in video. Our theoretical
insights are at the core of our method for repetition estima-
tion, which is presented in Sect. 4. The experiments in Sect. 5
evaluate our method on two challenging video datasets. Sec-
tion 6 summarizes and concludes the manuscript.

2 RelatedWork

2.1 Repetition Estimation

Existing approaches for repetition estimation in video typ-
ically represent video as one-dimensional signals that pre-
serve the repetitive structure of the motion. Subsequently,
frequency information is often extracted by Fourier analy-
sis (Azy and Ahuja 2008; Cutler and Davis 2000; Pogalin
et al. 2008; Tsai et al. 1994), peak detection (Thangali and
Sclaroff 2005), singular value decomposition (Chetverikov
and Fazekas 2006) or computational topology (Tralie and
Perea 2018). In general, the existing methods perform well
under the assumptions of static and stationary videos.

The seminal work of Cutler and Davis (2000) uses nor-
malized autocorrelation to obtain similarity matrices and
proceeds by repetition estimation using Fourier analysis.
Pogalin et al. (2008) estimate the frequency of motion in
video by tracking an object, performing principal compo-
nent analysis over the tracked regions and also employing
the Fourier-based periodogram. From the spectral decompo-
sition, the dominant frequencies can be identified by peak
detection and non-trivial separation of fundamental and har-
monic frequencies. While Fourier-based methods provide a
good estimate of strongly periodic motion, they are unsuit-
able nor intended to deal with more realistic non-stationary
repetition, see the accelerating rower in Fig. 2.

As strongly periodic motion has received serious atten-
tion, less effort has been devoted to non-stationary repetition
in video. Briassouli and Ahuja (2007) use the Short-Time

time

acceleration

Fig. 2 Non-stationary motion often appears in real-world video. This
example shows a rower accelerating as plotted in the time-frequency
space. The vertical axis of the spectrum denotes the wavelet scale,
inversely proportional to the frequency.The sudden acceleration appears
as shift of the maximum power in time-frequency space. The Fourier
transform is unable to handle such non-stationary video

Fourier Transform for estimating the time-varying spectral
components in video to distinguish multiple periodically
moving objects. The filtering-based approach of Burghouts
and Geusebroek (2006) uses a time-causal filter bank from
Koenderink (1988) to detect quasi-periodic motion in video.
Their method works online and shows good results when
filter response frequencies are tuned correctly. In this work,
we employ the continuous wavelet transform over multiple
temporal scales to estimate repetition in complex video.

The deep learning method of Levy and Wolf (2015) is
different from all other work but resembles our work in
counting-based evaluation over a large video dataset. The
general idea is to train a convolutional neural network for
predicting the motion period in short video clips. As training
data is not available, the network is optimized on synthetic
video sequences in which moving squares exhibit periodic
motion of four motion types from Pogalin et al. (2008). At
test time, the method takes a stack of video frames, performs
explicit motion localization to obtain a region of interest and
then classifies the motion period by forwarding the frame
crops through the network. The system is evaluated on the
task of repetition counting and shows near-perfect perfor-
mance on their YTSegments dataset. The 100 videos are a
good initial benchmark but as the majority of videos have a
static viewpoint and exhibit stationary periodic motion, we
propose a new dataset. Our dataset better reflects reality by
including more non-static and non-stationary examples.

Increased video complexity in terms of motion appear-
ance, scene complexity and cameramotion demands intricate
spatiotemporal localization of salient motion. While many
methods for periodic motion analysis incorporate some form
of tracking ormotion segmentation (Polana andNelson 1997;
Pogalin et al. 2008; Levy and Wolf 2015), few approaches
specifically address the challenge of repetitive motion seg-
mentation. Goldenberg et al. (2005) estimate the repetitive
foreground motion to leverages its center-of-mass trajec-
tory for classifying human behavior. More closely related
is the work of Lindeberg (2017) in which scale selection
over space and time leads to an effective temporal scale map.
Inspired by this, we perform spatial segmentation of repeti-
tive motion directly from the spectral power maps obtained
through the continuous wavelet transform. This is appeal-
ing, as it connects localization to the temporal dynamics
rather than relying on decoupled localization by state-of-the-
art motion segmentation, e.g. Tokmakov et al. (2017).

Instead of considering repetition as their primary goal,
various works leverage the presence of periodic motion for
auxiliary tasks. Belongie and Wills (2006) exploit periodic
human motion for 3D reconstruction of a scene, whereas
Laptev et al. (2005) uses sequence alignment of periodic
motion for stereo-camera correspondence. From a practical
point of view, the presence of periodic motion also serves
as cue for action classification (Lu and Ferrier 2004; Gold-

123



1364 International Journal of Computer Vision (2019) 127:1361–1383

∇×F

∇×F

∇·F

Fy

Fig. 3 There is great diversity in appearance of repetitive motion. We
decompose the motion field into its fundamental components. Here we
visualize the motion fields as optical flow arrows over the foreground
motion with the visually dominant motion field component indicated in
the white box

enberg et al. 2005) and supports camera calibration (Huang
et al. 2016).

2.2 Categorization of Motion Types

In real-world video, periodic motion emerges in a wide vari-
ety of appearances (see Fig. 3). We reconsider the theory of
periodic motion by proposing a classification of fundamental
periodic motion types starting from the 3D motion field tied
to a moving object. Using first-order differential analysis, we
decompose the motion field into its primitive components.
The work of Koenderink and van Doorn (1975) delivered
inspiration for our theoretical derivation of repetitive motion
types from the flow field. Similar to the Helmholtz–Hodge
decomposition (Abraham et al. 1988) into the eigenvalues of
theflowfield’s Jacobianmatrix, it finds use inflowfield topol-
ogy for fluid dynamics and electrodynamics. Although our
work is similar in differential decomposition of the motion
field, we use it to reach a novel classification of periodic
motion patterns. We use the insights for establishing our rep-
etition estimation method.

In the context of periodic motion, Davis et al. (2000)
and Pogalin et al. (2008) both propose a categorization of
motion patterns. Davis et al. (2000) consider a simple sinu-
soidal model to characterize periodic motion and link each
type to animal behavior. In terms of periodic motion cat-
egorization, our work bears resemblance to Pogalin et al.
(2008). The authors identify four visually periodic motion
types (translation, rotation, deformation and intensity vari-
ation) complemented with three cases of motion continuity
(oscillating, constant and intermittent) in the field of view.

We take a more principled approach starting from the 3D
motion field. Specifically, we show that fundamental peri-
odic motion types emerge from the decomposition of the
flow field and the motion direction over time. Moreover, the
projection of 3D periodicity on a 2D image has to take into
account the continuous nature of the viewpoint which we
address explicitly in theory and experiments.

Although not directly related to our work, first-order dif-
ferential geometric motion representations have been used
extensively as spatiotemporal video descriptors. Klaser et al.
(2008) proposes a spatialmulti-scalemotion descriptor based
on first-order differential motion and uses integral videos
for efficient computation. Along similar lines, MoSIFT
(Chen and Hauptmann 2009) uses spatial interest points and
enforces sufficient temporal dynamics to eliminate candidate
points. In terms of motion descriptors, our work bears resem-
blance to theDivergence–Curl–Shear descriptor proposed by
Jain et al. (2013). Their favorable action classification results
associated with the differential-based descriptor support our
findings for periodic motion estimation.

3 Repetitive Motion

Visual repetition is defined as a reoccurringpattern over space
or time in the 3Dworld. In this work, we focus on temporally
repetitivemotion rather than spatially repetitive patterns such
as a texture. Consequently, the 3D motion field induced by
a moving object is the right starting point for our theoretical
analysis.

Let a moving object and observer be positioned in a 3D
world specified by the Cartesian coordinates x = (x1, x2, x3)
at time t . Formally, intrinsic periodic motion is defined as the
reappearance of the same 3D-flow F(x, t) induced by the
motion of an object over time.

F(x, t) = F(x + S, t + T ). (1)

The parameter T denotes the period over time and S corre-
sponds to a period over space. We initially exclude the trivial
case of a constant flow field inducing periodic appearance
due to a reappearing texture on the object’s surface. Starting
from the motion field, we follow a differential approach to
decompose the field into its elementary components. In the
end we arrive at nine fundamental cases of intrinsic periodic
motion in 3D.

3.1 Motion Field Decomposition

In 3D Cartesian space, the gradient of the flow ∇F(x, t) is
described by the Jacobian matrix J ∈ R

3×3 containing all
first-order partial derivatives of the vector field:
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Fig. 4 Three 2D flow fields with fundamentally different characteris-
tics that emerge from the decomposition of the motion Jacobian J. Left:
Pure divergent flow field with outward flux often associated with expan-
sion or depth perception. Center: Pure rotational flow field also referred

to as vorticity or curl. Right: Flow field with a pure shear component
related to the deformation tensor. The shear component is divergence-
and curl-free as the opposing terms cancel out. In real-world video, shear
is generally negligible compared to divergence and curl components

(∇F)i j = ∂Fi

∂x j
, (2)

where i and j are dimension indices and we omit the posi-
tion x and time t for brevity. From the first-order partial
derivatives contained in the Jacobian, three fundamental
components of the motion field can be recognized (Abraham
et al. 1988). Specifically, the Jacobian J can be decomposed
into a sum of a diagonal part D, a symmetric part E and an
anti-symmetric part R such that:

∇F = D + R + E. (3)

This is similar to the Helmholtz–Hodge vector field decom-
position well-known from fluid dynamics, which distin-
guishes divergence-free and curl-free components of a
motion field. The diagonal part of the Jacobian J is given
by:

D = diag

(
∂F1

∂x1
,

∂F2

∂x2
,

∂F3

∂x3

)
. (4)

The trace of this matrix defines the divergence of the field:

∇·F = trace (D). (5)

The divergence is a scalar field representing the amount
of outward flux from an infinitesimal volume around a given
point. Next, the anti-symmetric partR, referred to as the spin-
or rotation matrix, is given byR = 1

2 (J−JT)with elements:

Ri j = 1

2

(
∂Fi

∂x j
− ∂F j

∂xi

)
. (6)

From the elements of the spin matrix we can recognize the
curl of the flow field. More specifically, the curl of the 3D
flow field is defined as:

∇×F =
[
∂F3

∂x2
− ∂F2

∂x3
,

∂F1

∂x3
− ∂F3

∂x1
,

∂F2

∂x1
− ∂F1

∂x2

]T
.

(7)

This vector field describes the infinitesimal rotation around a
given point. Finally, the last fundamental component is given
by the symmetric part E = 1

2 (J + JT) with elements:

Ei j = 1

2

(
∂Fi

∂x j
+ ∂F j

∂xi

)
. (8)

This trace-free matrix is known as the deformation tensor
and associated with the shear of the flow field. In Fig. 4
we illustrate three motion fields with either pure divergent,
rotational or shear flow.

3.2 Intrinsic Periodic Motion in 3D

3.2.1 Motion Types

For an object moving periodically through the 3D space, the
decomposition of the flow field tied to the object is used
to characterize the type of motion. A non-rigid object that is
expanding or contracting alongone ormore axeswill produce
a purely divergent flow field ∇·F . Examples include: inflat-
ing a balloon or a pulsing anemone. Moreover, a flow field
exclusively containing curl ∇×F emerges with rotational
motion such as a spinning wheel or tightening a bolt. Finally,
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shear is associated with deformation or stress on a surface
caused by opposing forces parallel to the cross-section of a
body. Shear predominantly plays a role for materials with
high-elasticity (e.g. fluids) or in the presence of large forces
(e.g. solidmechanics). Generally, the 3Dmotion field’s shear
component is negligible as excessive forces are required to
deform the material. For softer materials such as foam, paper
or plastics, the shear components can be measurable but this
is rare in practice. Based on its rare appearance, we therefore
leave the shear for what it is.

In particular, three basic 3Dmotion types emerge depend-
ing on the values of divergence and curl as follows:

translation : ∇×F(x, t) = 0, ∇·F(x, t) = 0

rotation : ∇×F(x, t) �= 0, ∇·F(x, t) = 0

expansion : ∇×F(x, t) = 0, ∇·F(x, t) �= 0.

These motion types are tied to a particular 3D motion field
of pure form. In practice there may be a mixture types. As
we are aiming to handle realistic video, our method employs
a combination of first-order differential motion maps from
which the dominant 3D periodicity in the object’s motion is
determined.

3.2.2 Motion Continuities

As periodic motion by its nature contains a temporal
component, we here transition to the temporal dynamics
of the time-varying motion field. Consecutive measure-
ments of the flow field F(x, t) produce a time-varying
motion field with particular temporal dynamics. Depend-
ing on the type of motion, the motion field needs to
satisfy one of the following necessary periodic condi-
tions:

∇F(x, t) = ∇F(x + ε, t + T )

∇×F(x, t) = ∇×F(x + ε, t + T ) (9)

∇·F(x, t) = ∇·F(x + ε, t + T ),

where ε denotes a translation as the object’s periodicity may
be superposed on translation. For robustness, our method
measures bothF(x, t) and∇F(x, t). From the direction and
temporal dynamics of motion, three distinct periodic motion
continuities can be distinguished: constant, intermittent and
oscillating periodicity. In practice the motion continuity may
be a mixture between types. For intermittent and oscillat-
ing motion repetitive nature is intrinsically in the temporal
dynamics whereas for constant motion to appear repetitively,
there will be special conditions on the object’s texture or
albedo.

3.2.3 Categorization of Periodic Motion

The intrinsic periodicity in 3D does not cover all perceived
recurrence in an image sequence. For the trivial cases of con-
stant translation and constant expansion in 3D, the perceived
recurrence will appear when a repetitive chain of objects
(conveyor) or a repetitive appearance (texture on a car tire)
on the object is aligned with the motion. In such cases, the
recurrence will also be observed in the field of view. For con-
stant rotation, the restriction is that the appearance cannot be
constant over the surface, as no motion, let alone recurrent
motion would be observed. In the rotational case, any rota-
tional symmetry in appearance will induce a higher order
recurrence as a multiplication of the symmetry and the rota-
tional speed.

For the purpose of periodic motion, nine cases organize
in a 3 × 3 Cartesian table of basic motion type times motion
continuity, see Fig. 5a. The corresponding examples of these
nine cases are given in Fig. 5b. This is the list of fundamental
cases, where a mixture of types is permitted. In practice,
some cases are ubiquitous, while for others it is hard to find
examples at all.

3.3 Visual Recurrence in 2D

So far we have considered the intrinsic periodicity in 3D.We
reserve the term recurrent for the 2D observation of the 3D
periodicity. Recurrence in the field of view is defined by:

F(x′, t) = F(x′ + ε′, t + T ) (10)

where F(x′, t) is the perceived flow in 2D image coordinates
x′. The observed displacement is denoted by ε′ and T is the
temporal period. The underlying principle is that the same
period length T will be observed in both 3D and 2D for all
cases of periodicity. This permits us to measure 3D motion
periodicity T from the 2Dflowfield. Only in some rare cases,
the period of motion may change due to a partial or complete
occlusion; or the periodic motion disappears entirely due to
lack of texture or albedo from a given viewpoint (e.g. a con-
stantly rotating textureless disk). These are exceptional cases
as the general principle applies that the temporal period is
viewpoint invariant.

The camera position relative to the object’s motion has a
large influence on the perception of the flow field. There are
two fundamentally different viewpoints: the frontal view and
the side view:

frontal view : on the main axis of motion

side view : perpendicular to the main axis of motion.

For translation, there is one main axis and two perpendicu-
lar axes, which are both identical for our purpose. There is
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(b) Examples in Real Life

Fig. 5 3 × 3 Cartesian table of the motion type times the motion con-
tinuity. These are the basic cases of periodicity in 3D emerging from
the motion field decomposition and the temporal dynamics. The exam-

ples are: escalator, leaping frog, bouncing ball, pirouette, tightening a
bolt, laundry machine, inflating a tire with repetitive texture, inflating a
balloon and a breathing anemone

no distinction between the two perpendicular views as their
perception is equivalent. Similarly, for rotation, the two per-
pendicular cases are also indistinguishable. For expansion
there are one, two or three axes of expansion, again leav-
ing us with the frontal case and the perpendicular case as
the two fundamental cases. Consequently, for all cases con-
sidered, a distinction between frontal view and side view is
sufficient. As a result, the perceived recurrence is defined on
the continuous range between the two extreme viewpoints.
Combining the two viewpoint extremes with the nine cases
of periodic motion we arrive at the classification of 18 basic
cases as illustrated in Fig. 6. The two views are the end of a
continuous range of viewpoints. Most of the time an actual
viewpoint will be somewhere in between the frontal view
and the side view. This leaves the flow field asymmetrical
or skewed, either in gradient, curl or divergence. As long as
T can be measured from the observed signal, the skewed or
asymmetric observation will not affect the recurrent nature
nor the period of the 3D motion field (Fig. 7).

3.4 Non-static Repetition

Relative motion between the moving object and the observer
adds another dimension of complexity. In particular with
recurrent motion (1) the camera may move because the cam-
era is mounted on the moving object itself, or (2) the camera

is following the target of interest, or (3) the camera is in
motion independent of the motion of the object. For the first
two cases, the camera motion reflects the periodic dynam-
ics of the object’s motion. The flow field may be outside the
object, but otherwise it displays a complementary pattern in
the flow field.

In the first case, the periodically moving camera will
produce a global repetitive flow field as opposed to local
repetitive flow when the object itself is moving. The third
case particularly demands the removal of the camera motion
prior to the repetitive motion analysis. In practice, this situa-
tion occurs frequently. Therefore, particular attention needs
to be paid to camera motion independent of the target’s
motion. When the viewpoint changes from frontal to side
view due to camera motion, the analysis will be inevitably
hard. Figure 6 illustrates the dramatic changes in the flow
field when the camera changes from one extreme view-
point (side) to the other (frontal), or vice versa. Our method
handles such appearance changes by simultaneously using
multiple motion representations and summing temporal fil-
ter responses.

In addition, even when object motion and camera are both
static, for none of the intrinsicmotion types (translation, rota-
tion, expansion), a point on the object will be at the same
position in the camera field all the time. Under the double
static condition, a point will just return to the same point on
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Fig. 6 Observed flow: the 18 fundamental cases for 2D perception of
3D recurrence. The perception follows from the motion pattern (3×),
motion continuity (3×) and the viewpoint on the continuous interval
between the two extremes: side and front view. ↑ denotes flow direc-

tion,� denotes a vanishing point, • denotes a rotation point,� denotes
expansion point.Dashed grey lines for constantmotion indicate the need
for texture to perceive recurrence. Pairs 4–16, 5–17 and 6–18 appear
similar at first sight but vary in their signal profile

(a) Frontal view (b) In-between view (c) Side view

Fig. 7 Example video displaying girl on a swing captured from three
distinct viewpoints. Moving from one end of the continuous viewpoint
spectrum (frontal) to the other (side) results in a dramatic change of
motion appearance. The in-between viewpoint leaves the motion mea-
surements either skewed or asymmetrical. In practice, we combine the
motion representations to emphasize the one best measurable

the camera field. As the intermediate points on the object or
background have an arbitrary albedo and radiate an arbitrary
luminance, it will not produce a sinusoidal signal in gen-
eral. This is noteworthy as previous work (Cutler and Davis
2000; Liu and Picard 1998; Pogalin et al. 2008) implicitly
assume such a signal by considering the Fourier transform
or variants.

3.5 Non-stationary Repetition

A recurrent signal is said to be stationary when the period
length is constant over time. In the initial steps of peri-
odicity analysis, it was assumed the periodic signal was
near-stationary. However, decay in frequency or acceleration

are common in realistic video. In practice, we have observed
that non-stationary is often present, to which we return later
with the discussion of our dataset. Therefore, in contrast to
Pogalin et al. (2008) and Levy andWolf (2015) we loosen the
stationarity assumption, leaving the option of acceleration
open. More precisely our method employs the continuous
wavelet transform for spectral decomposition of the video.

4 Method

In this section we present our method for estimating rep-
etition in video. The method takes as input a sequence of
RGB frames and outputs a frequency distribution densely
computed over space and time. Subsequently, the spectral
power distribution, which we obtain from the continuous
wavelet transform, is used for repetition counting, motion
segmentation or other frequency-based measurements. We
target the general case in which moving objects may exhibit
non-stationary periodicity or have a non-static appearance
due to camera motion or repetition superposed on transla-
tion. Our method, summarized in Fig. 8, comprises motion
estimation and two consecutive filtering steps: first we spa-
tially filter themotion fields to arrive at first-order differential
geometric motion maps, and then we determine the video’s
repetitive contents by applying the continuous wavelet trans-
form densely over the motion maps. Task-dependent post-
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Fig. 8 Overviewof ourmethod for repetition estimation in video.Given
an input video as RGB frames we first estimate the motion between
consecutive frames using optical flow. We perform spatial Gaussian fil-
tering to obtain six (differential) motion representations. Next, we apply
the continuous wavelet transform (CWT) through temporal convolution
over all six representations individually. We combine all power maps

by summation to arrive at a single power map for a moment in time.
Finally, we spatially segment repetitive motion by mean-thresholding
of the power maps. To estimate repetition, we median-pool the wavelet
scales over the motion segmentation producing an instantaneous fre-
quency measurement

processing steps may give the desired output; here we focus
on repetition counting as it enables straightforward eval-
uation of our method in the presence of non-stationary
repetitions.

4.1 Differential Geometric MotionMaps

Given a sequence of video frames, we first estimate the
motion between pairs of consecutive frames to obtain the
motion field F(x′, t) = (Fx , Fy) for all timesteps. Next, the
theory implies decomposition of the motion field into the
primitive first-order differentials. For a moment in time t , we
compute the differentialmotionmaps by spatially convolving
the flow field with first-order Gaussian derivative filters:

Gx (x′; σ) = − x

2πσ 4 exp

(
− x2 + y2

2σ 2

)
(11)

Gy(x′; σ) = − y

2πσ 4 exp

(
− x2 + y2

2σ 2

)
, (12)

where σ denotes the spatial scale parameter and image coor-
dinates are given by x′ = (x, y). Through convolution with
Gaussian kernels we obtain the first-order spatial derivatives
∇x Fx ,∇y Fx ,∇x Fy and ∇y Fy for a moment in time. Given
the spatial partial derivatives of the motion, we compute∇·F
and∇×F using the 2D equivalents of Eqs. (5) and (7). For the
2D case, curl is a single-component vector field perpendicu-
lar to the image plane whereas the divergence is a scalar field.
To effectively handle all cases of repetitive motion (Fig. 6),
we compute six motion maps for each frame:

{∇·F,∇×F, ∇x Fx ,∇y Fy, Fx , Fy
}

(13)

Periodicity in ∇·F or ∇×F will only occur for the frontal
view. For oscillatory or intermittent motion from the side
view, ∇x Fx and ∇y Fy will produce the strongest periodicity
while the zeroth-order flow field Fx and Fy will deliver a
stronger response for the cases of repetitive periodic appear-
ances at constant motion.

Figure 9displays an example framewith four of sixmotion
maps (the two are omitted here). The six motion maps rep-
resent the video for each moment in time and address the
diversity in repetitive motion. In our experiments, we will
evaluate the individual and joint representative power asso-
ciated with the motion maps. A priori it is unknown which
motion we are dealing with, to which we return later by com-
bining the temporal responses of all motion maps.

4.2 Dense Temporal Filtering

So far we have only considered spatial filtering to obtain
the motion maps for a moment in time. Here we include
time and proceed by temporal filtering of the motion maps
to estimate the video’s repetitive motion. This is where
the current method diverges from our previous work. In
(Runia et al. 2018), we relied on the same motion maps
but performed max-pooling over the foreground motion seg-
mentation obtained separately from Papazoglou and Ferrari
(2013). The max-pooled values over time construct a one-
dimensional signal acting as a surrogate for the dynamics in
a particular motion map. Spectral decomposition for each of
the signals led to six (possibly contrasting) time-frequency
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Fig. 9 Intermediatemotionmaps for a video displaying aman brushing
wood from the QUVA Repetition dataset displaying a brushing motion.
We perform wavelet filtering over six motion maps, due to space con-
straints only four are shown while ∇xFx and ∇yFy are omitted. Notice

how the regions with repetitive motion appear in the wavelet power
maps. By thresholding the wavelet power map with the mean power
we obtain a repetitive motion map. The temporal scale maps indicate
spatial regions with motion of low- and high-frequency
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estimates. To select the most discriminative representation,
we employed a self-quality assessment based on the spectral
power in the signals.

We found two problems with this approach: (1) the decou-
pled motion segmentation may not be optimal for estimating
repetitive motion dynamics, and (2) max-pooling over the
foreground motion mask discards most information and is
unable to deal with multiple moving parts. We here address
these problems by dense temporal filtering over all locations
in the motion map instead of operating on the max-pooled
signals. Spatially dense estimation of the local spectral power
enables us to localize regions likely containing repetitive
motion. The temporal filtering can be implemented in several
ways, for example, as Fourier transform through temporal
convolution. To handle non-stationary video dynamics, we
perform the continuous wavelet transform by convolution to
obtain a time-varying spectral decomposition.

4.3 ContinuousWavelet Transform

Given a discrete signal hn for timesteps n = 1, . . . , N −
1 sampled at equally spaced intervals δt . Let ψ0(η) be
some admissible wavelet function, depending on the non-
dimensional time parameter η. The continuous wavelet
transform (Grossmann and Morlet 1984) is defined as the
convolution of hn with a “daughter” wavelet generated by
scaling and translating the wavelet function ψ0(η):

Wn(s) =
N−1∑
n′=0

hn′ψ∗
[
(n′ − n)δt

s

]
, (14)

where the asterisk represents the complex conjugate. By
varying time parameter n and the scale parameter s, the
wavelet transform generates a time-scale representation
describing how the amplitude of the signal changes with time
and scale. We use theMorlet wavelet, a complex exponential
carrier modulated by a Gaussian envelope:

ψ0(η) = π−1/4eiω0ηeη2/2. (15)

In all our experiments we set ω0 = 6 as it provides a good
balance between time and frequency localization. Since the
Morlet wavelet is complex, the wavelet transform Wn(s) is
also complex. Therefore, it is useful to define the wavelet
power spectrum or scalogram as |Wn(s)|2 representing the
time-frequency localized energy. Figure 10 gives a non-
stationary signal example and plots its wavelet power. It is
clear that the scalogram is effective in revealing the signal’s
non-stationary repetitive dynamics.

The resolution of the scalogram |Wn(s)|2 is defined by
the distribution of scale parameter s. In practice, we use a
discrete scale set that is logarithmically distributed:

Fig. 10 Exponential chirp signal and the corresponding scalogram
obtained from the continuous wavelet transform. Note increasing scale
(period) in the scalogram as the signal’s frequency decreases

s j = s02
jδ j , j = 0, 1, . . . , J (16)

J = δ j−1 log2 (Nδt/s0) . (17)

The smallest measurable scale s0 and the number of scales
J determines the range of the detectable frequencies. The
smallest scale should be chosen such that the Fourier period
of the wavelet is approximately 2δt .

For a moment in time, the scalogram’s maximum power
will give the wavelet scale s producing the strongest filter
response. Often the temporal frequency associated with the
scale s will be a more convenient measurement. Therefore,
the wavelet scale can be converted to a temporal frequency.
For a Morlet wavelet, the relationship between scale and
wavelength is given by (Torrence and Compo 1998):

λ = 4π

ω0 + √
2 + ω2

, (18)

whereω0 corresponds to the non-dimensional frequency. For
ω0 = 6 corresponds to λ = 1.03s for the Morlet wavelet,
thus having the attractive property of wavelet scale being
almost identical to the wavelength. We use (18) to obtain the
frequency estimate for each time t and location x′.

4.4 Combining Spectral Power Maps

We compute the time-localized frequency estimates by tem-
poral convolution densely over the six individual motion
representations. For each representation this produces a time-
varyingmaximum powermap and scalemap. The powermap
contains the spatial distribution of maximum wavelet power
over all temporal scales; the scale map holds the temporal
scales corresponding to the wavelets with maximum power.
What remains is combining the wavelet responses from all
motion representations.

Rather than selecting the single most discriminative rep-
resentation (Runia et al. 2018), we combine the spectral
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Fig. 11 Video displaying a man lifting weights from our video dataset
and its corresponding wavelet power maps for individual representa-
tions (we omit ∇x Fx and ∇y Fy). On the right, the total wavelet power
obtained through the summation of all six responses. We normalize

the power maps for displaying purpose. The vertical flow and curl pro-
duce the power maps with the largest norm for this moment in time.
Summation of the individual power map combines the responses by
emphasizing on the strongest repetitive motion appearance

power maps by summation on a per-frame basis. To illus-
trate this, we visualize four (out of six) individual power
maps and their combined response in Fig. 11. Summation of
the spectral powermaps has a number of attractive properties.
Most importantly, the motion maps with the strongest repet-
itive appearance will contribute most to the final power map
whereas weakly-periodic motion maps will have a negligible
contribution. This effectively serves as a dynamic selection of
the most discriminative motion representation. Moreover, as
the spectral power is time-localized, the relative contribution
per motion representation will be evolving over time. This
is appealing because motion appearance can be non-static in
realistic video due to camera motion or gradual change in
motion type.

4.5 Spatial Segmentation

The combined wavelet power map gives a time-varying
spatial distribution of spectral power over all motion rep-
resentations, whereas the corresponding effective scale map
relates to the temporal scale with maximum spectral power.
We propose to use the spatial distribution of spectral power
for segmentation of the regions with strongest repetitive
appearance. Subsequently, we use the scale map to infer the
dominant temporal scale (related to the motion frequency)
over the localized region.

The spatial segmentation of repetitivemotion is performed
in a straightforwardmanner. For amoment in time,we simply
mean-threshold the combined wavelet power map to obtain a
binary segmentationmask associatedwith regions containing
significant spectral power. More precisely, the wavelet-based
motion segmentationwill attend to regions inwhich themax-
imum spectral power over all temporal scales is significant.
Figure 9 (bottom row) illustrates this by displaying the com-
bined power map and corresponding scale map. In general,
performing motion segmentation directly from the spatial
distribution of spectral power is appealing as it couples the
localization and subsequent frequency measurements. Our
experiments will verify this claim and compare them with
specialized motion segmentation methods. We would like to
mention that our segmentation method leaves the door open
for multiple repetitively moving objects whereas most state-

of-the-art segmentation methods assume a single dominant
foreground motion (Tokmakov et al. 2017).

4.6 Repetition Counting

To obtain an instantaneous frequency estimate of the salient
motion, wemedian-pool the temporal wavelet scales over the
segmentation mask. Median-pooling is preferred over mean-
pooling as it relatively robust to outliers and will produce a
better estimate of the dominant frequency.The corresponding
temporal wavelet scale is then converted to an instantaneous
frequency using Eq. 18. For a moment in time, this will
deliver a frequency estimate for the salient repetitive motion.
Counting the number of repetitions follows temporal inte-
gration of the consecutive frequency measurements with the
temporal sampling spacing inferred from the video’s frame
rate.

We emphasize ourmethod’s ability to count the number of
cycles in non-stationary video. For a stationary periodic sig-
nal, the median-pooled temporal scales will be constant over
time, while non-stationarity motion produces time-varying
frequency estimates. Although the videos considered in our
experiments are temporally segmented, the time-localized
wavelet responses could also be used for temporal local-
ization of repetitive actions. Moreover, although the current
approach performsmedian-pooling over the motion segmen-
tation mask, the spatial distribution of wavelet power also
enables the identification of multiple periodically moving
parts.

5 Experiments

We perform experiments to show the effectiveness of our
method on the task of counting repetitions in video. Prior
to evaluating our full method, we demonstrate the strength
of the continuous wavelet transform for estimating repeti-
tion in non-stationary signals, show the need for diversified
motion maps to deal with the wide variety in motion appear-
ance, and investigate our method’s ability to handle dynamic
viewpoints. Before discussing the actual experiments, we
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introduce the video datasets for testing, give implementation
details and specify our counting evaluation metrics.

5.1 Datasets and Evaluation

Themain experiments consider two video datasets: the exist-
ing YTSegments and our new QUVA Repetition dataset; both
collected for the purpose of evaluating repetition estima-
tion in video. The two real-world datasets contain a single
dominant repetitive motion only for the ease of evalua-
tion. Additionally, we perform a controlled experiment on
viewpoint estimation with synthetic video that we generated
through 3D modeling in Blender.

YTSegments Dataset For the purpose of evaluating repe-
tition counting in video, Levy and Wolf (2015) introduced
a new video benchmark. The 100 videos downloaded from
YouTube are purely for evaluation purpose as training the net-
work is performed with synthesized videos. A wide range of
actions appears in the videos: several sports, cooking and ani-
malmovement. Eachvideo is temporally segmented such that
only the repetitive action is covered. The clips are annotated
with a total repetition count. While the dataset serves as a
good initial benchmark for repetition estimation, it is limited
in terms of cycle length variation (non-stationarity), motion
appearances and camera motion. As our goal is to evaluate
ourmethod onmore realistic video, we introduce a newvideo
dataset that is more challenging in terms of non-stationarity,
motion appearance, camera motion and background clutter.

QUVA Repetition Dataset In Runia et al. (2018) we intro-
duced amore realistic video benchmark for repetition estima-
tion. TheQUVA Repetition consists of 100 videos displaying
awide variety of repetitive video dynamics, including various
kinds of sport, music-making, cooking, grooming, construc-
tion and animal behavior. The videos are collected from
YouTube with emphasis on creating a diverse collection of
videos suitable for evaluating our method’s ability to deal
with non-stationary motion, camera motion and significant
evolution of motion appearance over the course of a video.

After video collection, we adopt a multi-stage annotation
process to obtain the final dataset. First, we asked two human
annotators to label the temporal bounds of each interval con-
taining at least four unambiguous repetitions. We found high
inter-agreement between the annotators and keep the 100
intervals with the highest overlap to increase clarity. Final
video clips are obtained by temporal clipping of the inter-
section of the two intervals. As a result, some motion cycles
may be partial either at the beginning or end of the video. In
the last round of annotation, we ask the annotators to mark
all individual cycle bounds in the video clips (also producing
the final repetition count). We also mark the individual cycle
bounds for the videos of the YTSegments dataset to com-

Table 1 Dataset statistics of YTSegments and QUVA Repetition

YTSegments QUVA repetition

Number of videos 100 100

Duration min/max (s) 2.1/68.9 2.5/64.2

Duration avg. (s) 14.9 ± 9.8 17.6 ± 13.3

Count avg.±SD 10.8 ± 6.5 12.5 ± 10.4

Count min/max 4/51 4/63

Cycle length variation 0.22 0.36

Camera motion 21 53

Superposed translation 7 27

The cycle length variation is defined as the average value of the absolute
difference between theminimum andmaximum cycle length divided by
the average cycle length. To determine this, we annotate all individual
cycle bounds for both datasets. The last two rows are also obtained by
manual annotation

pare the inter-cycle length variability representing the level
of non-stationarity.

The characteristics for both datasets are reported in
Table 1. It is apparent that our videos havemore variability in
cycle length, motion appearance, camera motion and back-
ground clutter. The increased difficulty in both appearance
and temporal dynamics give a more realistic benchmark for
repetition estimation in thewild. Figure 12 displays a number
of examples from both datasets. The project page1 contains
the dataset download link and several video previews.

EvaluationMetricsGiven a set of N videos, we evaluate the
performance between ground truth count ci and the count
prediction ĉi for all videos i ∈ {1, . . . , N }. We report the
mean absolute error following prior work (Levy and Wolf
2015) and also record the off-by-one-accuracy (OBOA) over
the entire dataset:

MAE = 1

N

N∑
i=1

|̂ci − ci | /ci (19)

OBOA = 1

N

N∑
i=1

[ ∣∣ĉi − ci
∣∣ ≤ 1

]
(20)

Themean-absolute error is preferred over the commonmean-
squared error as it is relative to the true count. To account for
rounding errors and possible cycle cut-offs at both ends of
the video, the off-by-one-accuracy is more suitable than the
traditional accuracy (Fig. 13).

5.2 Implementation Details

Optical Flow Our method takes two consecutive video
frames as input and first estimates the motion using optical

1 http://tomrunia.github.io/projects/repetition/.
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YTSegments Dataset

QUVA Repetition Dataset

Fig. 12 Four examples from the YTSegments dataset (Levy and Wolf
2015) and eight examples from our QUVA Repetition dataset. The
YTSegments dataset as released by the authors features a final repeti-
tion count annotation (indicated); Our dataset is additionally annotated
with individual cycle bounds suitable for determining the level of non-

stationarity. The blue timeline in the first frame displays the individual
cycle annotations for the given video. The final count is determined
by summing the number of individual cycles. Note variation in cycle
length and the increased difficulty of our dataset due to camera motion,
occlusions and background clutter (Color figure online)
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Fig. 13 Distribution of repetition count versus video duration for the
YTSegments and QUVA Repetition dataset. The radius of each data-
point is proportional to the cycle length variation of the video. Note
the increased variability in non-stationarity and repetition count of our
dataset in comparison to YTSegments

flow. As the quality of motion estimation may be important,
we measure our method’s sensitivity to three flow estima-
tion methods. To evaluate a more traditional flow estimation
method we choose TV-L1 (Zach et al. 2007). This variational
based method is still competitive with more recent methods.
Current state-of-the-art motion estimation methods all use
convolutional neural networks for the purpose. We compare
the deep learning based methods EpicFlow (Revaud et al.
2015) and FlowNet 2.0 (Ilg et al. 2017). Both deep networks
are trained on large (synthetic) video datasets to estimate the
motion in complex video. As default we use FlowNet 2.0.

Motion Segmentation Complex videos with background
clutter or camera motion demand segmentation of the fore-
groundmotion prior to further analysis.Although ourmethod
directly performs localization from the densely computed
wavelet power, we also evaluate with state-of-the-art motion
segmentation methods. The fast video segmentation method
of Papazoglou and Ferrari (2013) is chosen as classical
approach and was also used in Runia et al. (2018). This
approach separates foreground objects from the background
in a video by combining motion boundaries followed by
segmentation refinement. We also evaluate the more recent
deep learning based method of Tokmakov et al. (2017). The
method trains a two-stream convolutional neural network
with a long-short term memory (LSTM) module to cap-
ture the evolution over time. The network parameters are
optimized using the large FlyingThings 3D dataset (Mayer
et al. 2016). To refine the motion masks from the trained
networks, a conditional random field is applied for refine-
ment. For both methods we use the official implementations
made available by the authors.While bothmethods generally
attain excellent segmentations, we observed that segmenta-

tion fails completely for some more difficult frames (either
all or none pixels selected as foreground). To remedy incor-
rect segmentation masks we reuse the segmentation of the
previous frame if the fraction of foreground pixels is less
than 1% of the entire frame.

Differential Geometric Motion Maps To compute the
motionmaps we perform spatial filtering by first-order Gaus-
sian kernels. The filtering is implemented in PyTorch and
runs in large batches on the GPU to accelerate computa-
tion. Spatial convolution is performed with σ = 4 for all
experiments. We also evaluated σ = {2, 8, 16} but found
only minor variation in performance. In practice, a combi-
nation of multiple spatial scales may produce best results.
Once the spatial first-order derivatives ∇x Fx ,∇y Fx ,∇x Fy

and ∇y Fy have been obtained through convolution, the dif-
ferential motion maps are computed as specified in Sect. 4.1.

Continuous Wavelet Transform We use the continuous
wavelet filtering implementation as outlined in Torrence and
Compo (1998). In comparison to the previous version of our
work, we now also perform temporal filtering on the GPU2

resulting in a considerable speed-up. This enables us to apply
the wavelet transform in large batches over all spatial loca-
tions in the video. As previously mentioned, we use a Morlet
wavelet (ω0 = 6) with logarithmic scales (δ j = 0.125,
s0 = 2δt). We limit the range of J corresponding to a mini-
mum of four repetitions by setting smin and smax accordingly
in (16) and (17). Depending on the video length, there are
typically between 50 and 60 temporal scales levels. When
compute budget is tight, computational efficiency can be
improved by pruning the filter bank with scale selection, for
example using the maximum response of a Laplacian filter
(Lindeberg 2017). Alternatively, learning could be employed
to infer the relationship between motion-speed and relevant
wavelet scale-levels to prune the filter bank.

RepetitionCountingThe instantaneous frequency estimates
are obtained from the dense wavelet power by pooling over
the motion foregroundmask. As detailed in Sect. 4.6, the fre-
quencies are integrated over time to arrive at a final repetition
count. To remove frequency estimate outliers inconsistent
with adjacent frames, we apply a median filter of 9 timesteps
(frames) to enforce local smoothness. This gives a slight
improvement on both video datasets. The final Count pre-
dictions are not rounded, hence evaluation metrics may be
slightly off due to incomplete cycles.

Reimplementation of Baselines We compare our method
against two existing works for repetition estimation. The
method of Pogalin et al. (2008) is chosen to represent the
class of Fourier-based methods. Our reimplementation uses
a more recent object tracker (Henriques et al. 2012) but is

2 https://github.com/tomrunia/PyTorchWavelets.
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Fig. 14 Idealized signal for a difficult non-stationary video displaying
a violin player. The blue markers indicate the cycle bounds, manually
annotated for each video in ourQUVA Repetition dataset. Note how the
wavelet scalogram correctly exposes the rhythmic slowdown (around
20s). On the right, the green line corresponds to the local frequency pre-

dictions from the scalogramwhereas the red (straight) line indicates the
stationary Fourier-based frequency measurement. This demonstrates
the effectiveness of wavelet analysis for optical non-stationary video
signals (Color figure online)

identical otherwise. The tracker is initialized by manually
drawing a box on the first frame. Converting the frequency
to a count is trivial using the video length and frame rate.
Additionally, we compare with the deep learning method of
Levy andWolf (2015) using their publicly available code and
pretrained model without any modifications.

5.3 Temporal Filtering: Fourier VersusWavelets

Setup The goal of our first experiment is to demonstrate the
effectiveness of the continuous wavelet transform for count-
ing repetitions in non-stationary signals. We compare the
stationary Fourier-based periodogram with the time-scale
representation given by the wavelet scalogram. To isolate
the effect of frequency measurements, we generate ideal-
ized signals of the videos in our QUVA Repetition dataset.
Specifically, we fit sinusoidal signals through the individual
cycle bounds for each video to obtain simple 1D waveforms
representing the video. Figure 14 shows an idealized sig-
nal example and the corresponding wavelet spectrum with
count predictions. To compare with the Fourier-based mea-
surement, we compute the periodogram, detect themaximum
frequency peak and convert the corresponding frequency to
a count using the video’s duration. This yields a repetition
count prediction for both the stationary and non-stationary
measurements that we evaluate over the entire dataset.

Results From the results in Fig. 15 it is clear that wavelet-
based counting outperforms the periodogram on idealized
signals. As expected, we observe that the Fourier-basedmea-
surements generally fail on videos with significant cycle
length variation as they give a global frequency prediction.
Wavelets naturally handle non-stationary repetition and are
less sensitive to cycle length variability. We also tried adding
a substantial amount of Gaussian noise (σ = 0.5) to the
signals; this resulted in a minor negative effect on both meth-
ods (data not shown). This controlled experiment shows the
effectiveness of wavelets for repetition estimation assuming
a clear signal can be distilled from the videos.

Fig. 15 Fourier- versus wavelet-based repetition counting on idealized
signals videos from the QUVA Repetition dataset. Our wavelet-based
method outperforms a Fourier-based baseline for 83 out of 100 videos.
High cycle length variation results in notable error for Fourier mea-
surements, whereas the time-localized wavelets are less sensitive to
non-stationary repetition

5.4 Viewpoint Invariance

Setup The theory of repetition considers two viewpoint
extremes (Fig. 6). In this experiment we evaluate our
method’s ability to handle a continuous transition from one
viewpoint extreme to the other. The designated mechanism
for this is the use of multiple motion representations and the
summation of their spectral power obtained from the contin-
uous wavelet transform. To test this, we set-up a controlled
experiment in which we synthesize a video clip from 3D
modeled data in Blender. This enables full control over the
object’s motion and the viewpoint. Specifically, we choose to
build a simple 3D scene containing a ball periodically bounc-
ing on the floor as displayed in the top rowof Fig. 16. Initially,
the camera captures the bouncing ball from the side view but
after a number of full motion cycles, the camera smoothly
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Fig. 16 Top: synthetized video sequence for a controlled experiment
on the influence of viewpoint relative to the motion. This video clip
shows a 3D modeled scene containing a bouncing ball. At the mid-
point of the animation, the camera smoothly transitions from side view
to frontal view. Bottom Left: the time-varying magnitude of vertical

flow and divergence measured over the foreground segmentation. Ini-
tially, the vertical flow is dominant and divergence is negligible. This
reverses with the viewpoint transition. Bottom Right: the combined
wavelet spectrum of both signals. Notice the spectrum’s invariance to
viewpoint change as a result of wavelet power summation

Fig. 17 Top: real-world example of dynamic viewpoint change for the
video displayed in Fig. 7. Bottom Left: the time-varying magnitude of
horizontal flow and divergence measured over the foreground segmen-
tation. Bottom Right: the combined wavelet spectrum of both signals.

Again, by combining multiple representations through summation of
the wavelet spectra, we obtain a representation that is invariant to view-
point changes

transitions to frontal view (case 3 to case 6 in Fig. 6). We
record the median-pooled vertical flow and divergence over
the foreground region to obtain two time-varying signals.
The spectral power for both signals is individually esti-
mated using the continuous wavelet transform, after which
we combine the power by summation. In addition to a syn-
thetic experiment, we also include the result of a real-world
videowith significant dynamic viewpoint change (previously
shown in Fig. 7).

Results Figures 16 and 17 plot the two median-pooled flow
signals and their joint wavelet power obtained by summa-
tion. Initially, as the moving object is captured from the side
view, vertical flow is best measurable. Upon the viewpoint
transition, vertical flow vanishes while the divergent flow
becomes dominant. As a result of the camera motion, the
measurement of the spectral power for both individual sig-
nals will only give a strong response for either the first or
second half of the video. However, the summation of the
spectra gives a clear measurement over the complete video as
is apparent from the combined wavelet power spectrum. This
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illustrates our method’s ability to handle viewpoint changes
by the combination of the wavelet power contained in multi-
ple motion representations. By summation of the spectra, the
best measurablemotion representationwill naturally give the
largest contribution to the combined power. Therefore, this
mechanism acts as a replacement of the global representa-
tion selection used in (Runia et al. 2018) by dynamically
leveraging information in all representations.

5.5 Diversity in MotionMaps

SetupAswavelets prove to be effective for repetition estima-
tion and multiple representations show value on a synthetic
video, we now assess the value of a diversified video rep-
resentation on real videos of our QUVA Repetition dataset.
We hypothesize that, due to the high variability in motion
pattern and viewpoint, no single representation is powerful
but their joint diversity is effective. To test this, we per-
form repetition counting over all individual motion maps
listed in Eq. (13). Instead of summing the wavelet power
for all representations, we test the performance of the six
motion representations individually. For each representation
we densely compute te wavelet power and count the number
of repetitions as outlined in the method’s section. For a fair
comparison, we exclude our motion segmentation mecha-
nism based on wavelet power and instead use the motion
segmentation proposed by Papazoglou and Ferrari (2013).
Again, we evaluate repetition counting on our QUVA Repe-
tition dataset. To obtain a lower-bound on the error, we also
select the best representation per video in an oracle fashion.

Results The results in Table 2 reveal that for the wide vari-
ability of repetitive appearance there is no one size fits all
solution. The individual motion maps are unable to handle
the variety of repetitive motion appearances by themselves,
resulting in poor count performance over the dataset. How-
ever, their joint diversity produces a good lower-bound by
oracle selection of the most discriminative motion map. We
notice the superiority of vertical flow Fy as it performs best
and is selected most often by the oracle. We explain this bias
towards vertical flow by the observation that our dataset con-
tains several sports videos in which the gravity is often used
as opposing force.

5.6 Video Acceleration Sensitivity

Setup In this experiment, we examine our method’s sen-
sitivity to acceleration by artificially speeding-up videos.
Starting from the YTSegments dataset, in which most videos
exhibit strong periodic motion, we induce significant non-
stationarity by artificially accelerating the videos halfway.
More precisely, we modify the videos such that after the
midpoint frame, the speed is increased by dropping every

Table 2 Value of diversity in six motion maps for videos from QUVA
Repetition

MAE OBOA # Selected

∇·F 77.8 ± 90.8 0.21 10

∇×F 53.0 ± 65.5 0.32 11

∇x Fx 58.1 ± 63.5 0.29 15

∇y Fy 59.5 ± 68.4 0.31 9

Fx 49.6 ± 48.0 0.35 25

Fy 42.0 ± 45.3 0.43 30

Oracle best 24.1 ± 33.5 0.63 100

The last column denotes how often each signal is selected by the oracle.
While the individual signals struggle to obtain good performance by
themselves, exploiting their joint diversity is beneficial

Fig. 18 The effect of midpoint acceleration on the YTSegments dataset.
Our method increases 4.4 in mean absolute error whereas the method
of Levy and Wolf (2015) rises with 10.8 points. The deep learning
method has difficulty dealing with non-stationary acceleration, whereas
our method is more robust due to the wavelet transform

second frame. What follows are 100 videos with a 2×
acceleration starting halfway. We compare against the deep
learningmethod ofLevy andWolf (2015)which handles non-
stationarity by running the period-predicting convolutional
neural network in sliding-window fashion over the video.
Fourier-based analysis was left out as it will inevitably fail
on this task.

Results The bar chart of Fig. 18 presents the mean abso-
lute error in both original and accelerated setting. On their
own dataset, the system of Levy and Wolf (2015) slightly
outperforms our method. Acceleration reverses the results
as our method suffers less and obtains a lower error on the
accelerated videos. It reveals their sensitivity to accelera-
tion, whereas our method deteriorates less. This shows the
effectiveness of wavelets for dealing with non-stationarity
in realistic videos. To illustrate how our method deals with
midpoint acceleration, we also plot the count increments and
cumulative counts throughout the video; see Fig. 19. As is
evident from the plot, there is a distinct increase in count
increments per timestep when upon enabling acceleration.
This is observed for most videos in the dataset. This could be
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Fig. 19 Count increments and cumulative count over time for the first
video of YTSegments with midpoint acceleration. The red marker on
the right corresponds to the ground truth count. Note how the increase
in speed around 9s is clearly reflected in the count increments (Color
figure online)

beneficial for detecting acceleration or temporal localization
of transient phenomena in video.

5.7 Motion Segmentation

Setup In this experiment we investigate the effectiveness
of the motion segmentations obtained directly from the
wavelet power for repetition estimation. We visually com-
pare the motion segmentations and test whether replacing
our localization mechanism with a state-of-the-art motion
segmentation method improves repetition estimation per-
formance. We keep the method identical except for the
segmentation method to obtain a motion mask. In addi-
tion to our wavelet-based motion segmentation to obtain
the discriminative motion mask we compare our method’s
performance without any localization (full-frame), the video
segmentation method of Papazoglou and Ferrari (2013) and
the deep learning approach of Tokmakov et al. (2017).

ResultsWe visually compare the three different motion seg-
mentation methods in Fig. 20. For most videos, our method
is able to localize the repetitive motion. As the emphasis
of our work is on repetition estimation, where the segmen-
tation masks are a byproduct, the state-of-the-art specifi-
cally devoted to foreground motion segmentation naturally
produce the visually best results and lowest intersection-
over-union error with respect to the ground truth mask.
Our intention is to obtain a motion mask best suitable for
repetition estimation which not necessarily overlaps with
the foreground motion. By thresholding the wavelet power
maps, our method seems to emphasize on regions with most
discriminative repetitive motion. This is best recognizable
from the bottom two rows where the motion segmentation
includes background regions that periodically change due

to the motion. If maximum intersection-over-union overlap
with respect to the ground truth foreground motion mask is
desired, we observe a number of failure cases. For the rower
(bottom row), the periodicity contained in the movement of
the paddles yields a significantly stronger wavelet response
than the body itself hence the body is excluded from the
segmentation mask due to mean-thresholding of the wavelet
power. In case of football keep-ups (third row), the domi-
nant repetitive motion is the football moving up-and-down
but the actor also rotates around its axis which is not revealed
in the static images. However, the oscillating ball dominates
the scene and our segmentation masks should not include the
actor’s torso for this reason. The threshold is currently fixed
to the mean wavelet power – setting it higher or adaptively
could improve the segmentation masks.

In Table 3 we report quantitative results of our method
with different motion segmentation methods. Our localiza-
tion mechanism produces significantly better results than
the existing motion segmentation methods. To complement
this quantitative analysis, we visualize the segmentation
masks and corresponding counts for three example videos in
Fig. 21. For our method, this convincingly demonstrates that
the segmentation directly obtained from the wavelet spec-
trum are more suitable than decoupled motion segmentation
approaches.

5.8 Comparison to the State-of-the-Art

Setup In this experiment, we perform a full comparison on
the task of repetition counting for both video datasets. We
compare against the Fourier-based method of Pogalin et al.
(2008) and the deep learning approach of Levy and Wolf
(2015).

Results The full count evaluation is presented in Table 4. On
their own YTSegments dataset, the method of Levy and Wolf
(2015) performs best with anMAE of 6.5, where our method
achieves a comparable error of 9.4 and near-identical off-by-
one accuracy. Despite the stationary nature of most videos
in this dataset, the Fourier-based approach of Pogalin et al.
(2008) performs unfavorably compared to all other methods.
A closer look at the intermediate steps of the Fourier-based
method reveals the inferior performance is largely due to
tracking failures and the Fourier transform’s sensitivity to
such failures. The neural network is better able to handle
imprecise localization results.

The results change dramatically when considering our
challengingQUVARepetition dataset; notably the deep learn-
ing approach of Levy and Wolf (2015) now performs the
worst,with anMAEof 48.2. This could possibly be explained
by the fact that their networkonly considers fourmotion types
during training or the convolutional network’s fixed tem-
poral input dimension posing a constraint on the effective
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(a) (b) (c)

Fig. 20 Comparison of different motion segmentation masks. In most
cases, our method succeeds to spatially segment the repetitive motion.
In comparison to methods specifically devoted to the task of motion
segmentation, our masks are less precise. However, as our numerical
evaluation shows, our segmentation masks are more suitable for the

task of repetition estimation. The most informative repetitive cues do
not necessarily overlap with the foreground motion. In the last exam-
ple, the regions through which the paddles moves produce the strongest
repetitive response
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Table 3 Repetition counting
results of our method with
different motion segmentation
mechanism

YTSegments QUVA repetition

Motion segmentation
method

MAE ↓ OBOA ↑ MAE ↓ OBOA ↑

Full-frame 46.0 ± 67.2 0.28 60.8 ± 49.4 0.22

Papazoglou and Ferrari
(2013)

13.1 ± 20.3 0.78 42.6 ± 49.2 0.44

Tokmakov et al. (2017) 21.6 ± 57.2 0.76 38.9 ± 39.2 0.42

Differential geometry
(this paper)

9.4 ± 17.4 0.89 26.1 ± 39.6 0.62

While the state-of-the-artmotion segmentationmethods produce visually excellent results, their segmentations
are suboptimal for the task of repetition estimation. This is expected as the most discriminative repetitive cues
are not always contained in the foregroundmotion. See Fig. 20 for a visual comparison of segmentation masks
Bold values indicate the best results per dataset

Table 4 Comparison with the
state-of-the-art on repetition
counting for the YTSegments and
our QUVA Repetition dataset

YTSegments QUVA repetition

MAE ↓ OBOA ↑ MAE ↓ OBOA ↑
Pogalin et al. (2008) 21.9 ± 30.1 0.68 38.5 ± 37.6 0.49

Levy and Wolf (2015) 6.5 ± 9.2 0.90 48.2 ± 61.5 0.45

This paper 9.4 ± 17.4 0.89 26.1 ± 39.6 0.62

The deep learning-based method of Levy and Wolf (2015) achieves good results on their own dataset of rela-
tively clean videos. On our more realistic and challenging dataset, the current method improves considerably
over the existing approaches. In comparison to our previous work, our method segments the repetitive motion
directly rather than relying on decoupled motion segmentation
Bold values indicate the best results per dataset

(b)(a) (c)

Fig. 21 Complementing the quantitative results of Table 3, we visual-
ize segmentation results on the YTSegments dataset and its effect on
the count error. The predicted count is indicated in the top-left cor-
ner. From top-to-bottom, the ground-truth counts are 10, 10, 11. Top
row: our method accurately segments the repetitive foreground motion
whereas the other methods fail. As a consequence, we achieve a perfect
count whereas the others do not. Center row: Again, the wavelet-based
localization extracts the repetitive foreground motion, yielding an accu-
rate count result. Bottom row: Whereas all methods localize the person
with the football, the foregroundmask is too coarse resulting in a wrong
count in all cases

motion periods (ranging from 0.2 to 2.33 seconds). Deal-
ing with motion periods outside of this range most likely
requires retraining the network. The Fourier-based method

of Pogalin et al. (2008) scores an MAE of 38.5, whereas we
obtain an average error of 26.1. On the YTSegments dataset
our simplified method slightly improves over the MAE of
10.3±19.8 reported in (Runia et al. 2018), while giving com-
parable results to previously reported MAE of 23.2 ± 34.4
on theQUVA Repetition dataset. The Fourier-based and deep
learning-based approaches are unable to effectively handle
the increased non-stationarity and motion complexity found
in our challenging video dataset. The method proposed here
improves the ability to handle such difficult videos without
relying on explicit motion segmentation methods.

We also report the repetition count results using TV-L1

(Zach et al. 2007) and EpicFlow (Revaud et al. 2015) to
investigate our method’s sensitivity to optical flow quality.
The results in Table 5 show the robustness to different flow
methods as the algorithm of choice has limited effect on the
count performance for both datasets.

To gain a better understanding of our method’s charac-
teristics we study success and failure cases. We observe
that our wavelet-based motion segmentation struggles with
scenes containing dynamic textures such as sand or water
(e.g. Fig. 12, bottom row). Based on our analysis, we believe
the reason for this is two-fold: (1) For such regions, motion
estimation using optical flow is difficult (Adelson 2001);
and (2) Dynamic textures produce visual repetitive dynamics
resulting in a strong wavelet response over its entire surface.
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Table 5 Sensitivity of our method with respect to different optical flow
methods

YTSegments QUVA repetition

MAE ↓ OBOA ↑ MAE ↓ OBOA ↑
TV-L1 9.8 ± 17.9 0.89 26.5 ± 67.5 0.67

EpicFlow 9.7 ± 17.9 0.88 30.8 ± 38.2 0.55

FlowNet 2.0 9.4 ± 17.4 0.89 26.1 ± 39.6 0.62

We report repetition counting results over both datasets. Only slight
variation in the performance is observed, demonstrating our method’s
robustness to optical flow quality
Bold values indicate the best results per dataset

Consequently, motion segmentation by mean-thresholding
of the spectral power will fail inevitably; and subsequent
measurements over the foreground motion mask will be
incorrect as well. For such videos, we observe an enor-
mous over-count as the frequency estimates correspond to the
high-frequent rippling water. The error associated with these
videos explains the limited improvement over our previous
method (Runia et al. 2018) which relied on Papazoglou and
Ferrari (2013) for motion segmentation, being less prone to
such segmentation failures. To remedy the problem of coarse
and inaccurate segmentation masks, a post-processing step
(e.g. conditional randomfield) is likely to improve the overall
segmentation quality.

We also observe that allmethodsmake a commonmistake:
over-counting videos with a factor of two. The similarity in
these videos is that one full cycle contains the exact same
motion first with one arm (or leg) followed by the other (e.g.
walking lunges or swimming front-crawl). As the perceived
motion is almost identical for both limbs, the estimated
temporal dynamics are twice as fast. Again, the significant
over-estimate of themotion frequency produces a large count
error for all methods. Solving this problem is not easy, as cur-
rent repetition estimates in those cases are essentially also
a correct prediction; however, the human annotators define
salient motion as a full cycle with both limbs.

6 Conclusion

We have categorized 3D intrinsic periodic motion as trans-
lation, rotation or expansion depending on the first-order
differential decomposition of the motion field. Additionally,
we distinguish three periodic motion continuities: constant,
intermittent and oscillatory motion. For the 2D perception
of 3D periodicity, the camera will be somewhere in the
continuous range between two viewpoint extremes. What
follows are 18 fundamentally different cases of repetitive
motion appearance in 2D. The practical challenges associ-
ated with repetition estimation are the wide variety in motion
appearance, non-stationary temporal dynamics and camera

motion. Our method addresses all these challenges by com-
puting a diversified motion representation, employing the
continuouswavelet transformand combining the power spec-
tra of all representations to support viewpoint invariance.
Whereas related work explicitly localizes the foreground
motion, ourmethod performs repetitivemotion segmentation
directly from thewavelet powermaps resulting in a simplified
approach. We verify our claims by improving the state-of-
the-art on the task of repetition counting on our challenging
new video dataset. The method requires no training and
requires only aminimum number of hyper-parameters which
are fixed throughout the paper. We envision applications
beyond repetition estimation as the wavelet power and scale
maps can support localization of low- and high-frequency
regions suitable for region pruning or action classification.
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