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Abstract
This paper strives for spatio-temporal localization of human actions in videos. In the literature, the consensus is to achieve
localization by training on bounding box annotations provided for each frame of each training video. As annotating boxes in
video is expensive, cumbersome and error-prone, we propose to bypass box-supervision. Instead, we introduce action local-
ization based on point-supervision. We start from unsupervised spatio-temporal proposals, which provide a set of candidate
regions in videos. While normally used exclusively for inference, we show spatio-temporal proposals can also be leveraged
during training when guided by a sparse set of point annotations. We introduce an overlap measure between points and
spatio-temporal proposals and incorporate them all into a new objective of a multiple instance learning optimization. During
inference, we introduce pseudo-points, visual cues from videos, that automatically guide the selection of spatio-temporal
proposals. We outline five spatial and one temporal pseudo-point, as well as a measure to best leverage pseudo-points at test
time. Experimental evaluation on three action localization datasets shows our pointly-supervised approach (1) is as effective
as traditional box-supervision at a fraction of the annotation cost, (2) is robust to sparse and noisy point annotations, (3)
benefits from pseudo-points during inference, and (4) outperforms recent weakly-supervised alternatives. This leads us to
conclude that points provide a viable alternative to boxes for action localization.

Keywords Action localization · Point supervision · Spatio-temporal proposals

1 Introduction

This paper aims to recognize and localize actions such as ski-
ing, running, and getting out of a vehicle in videos. Action
recognition has been a vibrant topic in vision for several
decades, resulting in approaches based on local spatio-
temporal features (Dollár et al. 2005; Laptev 2005; Wang
et al. 2009), dense trajectories (Jain et al. 2013; Wang et al.
2013) two-streamneural networks (Simonyan andZisserman
2014; Feichtenhofer et al. 2016), 3D convolutions (Ji et al.
2013; Tran et al. 2015), and recurrent networks (Donahue
et al. 2015; Li et al. 2018; Srivastava et al. 2015). We aim to
not only recognize which actions occur in videos, but also
discover when and where the actions are present.
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Action localization in videos corresponds to finding tubes
of consecutive bounding boxes in frames for each action. Ini-
tial work aimed at localizing actions by finding local discrim-
inative parts and generating tubes through linking or sliding
windows (Lan et al. 2011; Tian et al. 2013a; Wang et al.
2014). State-of-the-art localizers classify boxes per frame
(or few frames) before linking them into tubes (Gkioxari and
Malik 2015; Weinzaepfel et al. 2015; Hou et al. 2017; Kalo-
geiton et al. 2017a). Regardless the approach, a requirement
for all these works is the need for box-supervision per frame
of each training video. As annotating boxes in videos is an
expensive, cumbersome and error-prone endeavor, we pre-
fer to perform action localization without the need for box
supervision.

The first contribution of this paper is to localize actions
in videos with the aid of point-supervision. For pointly-
supervised action localization, we start from (unsupervised)
spatio-temporal proposals. Spatio-temporal proposals reduce
the search space of actions in videos to a few hundred to
thousand tubes, where at least one tube matches well with
the ground truth action location (Jain et al. 2014; van Gemert
et al. 2015; Jain et al. 2017; Oneata et al. 2014). This is typ-
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Fig. 1 Pointly-supervised action localization using spatio-temporal
proposals and pseudo-points. During training, we start from point-
supervision for each video. Our overlap measure computes the match
between each proposal and the point annotations. We iteratively refine

the proposal selection by extending the max-margin multiple instance
learning formulation. During inference, we compute pseudo-points for
all video frames and use them in conjunction with the learned action
model to determine the top proposals per action over all test videos

ically achieved by clustering local representations such as
supervoxels or dense trajectories. In the literature, the use of
spatio-temporal proposals is restricted to the inference stage;
training of the action localizer that select the best proposal
still depends on box-supervision. While the spatio-temporal
proposals may be unsupervised, they do not relax the need
for box-supervision during the training stage of action local-
izers. We propose to bypass bounding box annotations by
training action localizers on spatio-temporal proposals from
training videos. We show that training on spatio-temporal
proposals guided by point annotations, yields similar action
localization performance to their box-supervised alternative
at a fraction of the annotation time.

As our second contribution, we propose an overlap mea-
sure that matches the centers of spatio-temporal proposals
with point annotations. To identify the best proposal to
train on, we adopt a multiple instance learning perspec-
tive (Andrews et al. 2002),with the spatio-temporal proposals
defining the instances and videos the bags. We employ
the max-margin multiple instance learning formulation and
extend it to incorporate information from the proposed over-
lap measure. This results in action localization using video
labels and point annotations as the sole action supervision.
Our first two contributions were previously presented in the
conference version of this paper (Mettes et al. 2016).

For our third contribution we are inspired by Mettes et al.
(2017), who propose to train action localizers with spatio-
temporal proposals selected by automatic visual cues. Rather
than employing the cues at training time, we prefer to exploit
the cues during inference and call them pseudo-points. The
pseudo-points are used as an unsupervised generalization of
point-supervision during the testing stage. The pseudo-points
cover cues from training point statistics, person detection

(Yu and Yuan 2015), independent motion (Jain et al. 2014),
spatio-temporal proposals (van Gemert et al. 2015), center
bias (Tseng et al. 2009), and temporal information. To link
the point-supervision in training videos to pseudo-points in
test videos, we propose a function that both weights and
selects pseudo-points based on how well they match with
points annotated during training. We use the weighting func-
tion to determine which pseudo-points are most effective and
how much they should contribute to the selection of spatio-
temporal proposals in test videos. A complete overview of
our proposed approach is shown in Fig. 1.

The rest of the paper is organized as follows. In Sect. 2,
we describe related work. Section 3 details our algorithm for
point-supervision during training. Section 4 presents pseudo-
points and explains how to leverage them during inference.
We detail our experimental setup on UCF Sports (Rodriguez
et al. 2008), UCF-101 (Soomro et al. 2012) and Holly-
wood2Tubes (Mettes et al. 2016) in Sect. 5. Ablation studies,
error diagnosis and comparisons are discussed in Sect. 6. We
conclude our work in Sect. 7.

2 RelatedWork

2.1 Action Localization with Box-supervision

The problem of action localization is commonly tackled by
supervision with video-level action class labels and frame-
level box annotations during training. Initial approaches do
so throughfigure-centric structures (Lan et al. 2011) and part-
based models (Tian et al. 2013a; Wang et al. 2014). Inspired
by the success of object proposals in images (Uijlings et al.
2013), several works have investigated spatio-temporal pro-
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posals for action localization in videos. Such spatio-temporal
proposals are typically generated by grouping supervox-
els (Jain et al. 2017; Oneata et al. 2014; Soomro et al. 2015)
or dense trajectories (van Gemert et al. 2015; Marian Pus-
cas et al. 2015). Spatio-temporal proposals reduce the search
space to a few hundred or thousand locations per video. In
the literature, the use of spatio-temporal proposals is limited
to the testing stage. Training is still performed on features
derived from bounding box annotations per frame. In this
paper, we extend the use of action proposals to the training
stage. We show that proposals provide high quality train-
ing examples when leveraging our multiple instance learning
variant, guided by point annotations, completely alleviating
the need for box annotations.

Recently, a number of works have achieved success in
action localization by separating spatial detection from tem-
poral linking (Gkioxari and Malik 2015; Weinzaepfel et al.
2015). Such approaches have been further improved with
better representations (Peng and Schmid 2016; Saha et al.
2016; Yang et al. 2017), joint linking algorithms (Singh et al.
2017), and by classifying a few consecutive frames before
linking (Hou et al. 2017; Kalogeiton et al. 2017a; Saha et al.
2017). While effective, these approaches have an inherent
requirement for box annotations to detect and regress the
boxes in video frames. We focus on the use of unsupervised
spatio-temporal proposals (Jain et al. 2014; van Gemert et al.
2015; Jain et al. 2017; Oneata et al. 2014), and we show
how to utilize them during training to bypass the need for
box-supervision.

2.2 Action LocalizationWithout Box-supervision

Given the annotation burden for box-supervision in action
localization, several works have investigated action local-
ization from weaker supervision signals. Most works focus
on localization from video labels only. Siva and Xiang
(2011) employ spatio-temporal proposals and optimize for
an action localization model throughmultiple instance learn-
ing (Andrews et al. 2002), where the videos are the bags
and the proposals are the instances. We show that multi-
ple instance learning yields suboptimal results for action
localization; extendingmultiple instance learningwith point-
supervision alleviates this problem.

Chen and Corso (2015) also employ spatio-temporal
proposals and video labels, but skip the multiple instance
learning step. Instead, they train on the most dominant
proposal per training video, without knowing whether the
proposal fits the action location well. Recent work by Li
et al. (2018) achieves action localization from video labels
through attention. The action location is determined by a box
around the center of attention in each frame, followed by a
linking procedure. These approaches provide action localiza-
tion without box annotations. However, using only the video

label restricts the localization performance. We show that
point annotations have a direct impact on the performance
at the expense of a small additional annotation cost, outper-
forming approaches using video labels only.

Several recent works have investigated action localization
in a zero-shot setting, where no video training examples are
provided for test actions. This is typically achieved through
semantic word embeddings (Mikolov et al. 2013) between
actions and objects as found in text corpora. Initial work by
Jain et al. (2015) employed spatio-temporal proposals and
assigned object classifier scores to each proposal. The object
scores are combined with the word embedding scores given
an action and the highest scoring proposal is selected for
each test video. Mettes and Snoek (2017) perform zero-shot
action localization by linking boxes that are scored based on
a spatial-aware embedding between actors and objects. Kalo-
geiton et al. (2017b) perform zero-shot localization through
joint localization of actions and objects. Soomro and Shah
(2017) aim for unsupervised action localization through dis-
criminative clustering on videos and spatio-temporal action
proposal generation with 0-1 Knapsack. Such works are
promising but do not perform on the level of (weakly) super-
vised alternatives, as detailed in our final experiment.

2.3 Speeding-up Box Annotations

Easing the annotation burden of bounding box annotations in
videos has been investigated by Vondrick et al. (2013). They
investigate different strategies to annotate boxes in videos,
e.g., with expert annotators and tracking. Furthermore, sev-
eral works have attempted faster ways to annotate boxes,
e.g., through human verification (Russakovsky et al. 2015;
Papadopoulos et al. 2016) or by clicking the extremes of
objects (Papadopoulos et al. 2017).While such investigations
and approaches provide faster alternatives to the costly Ima-
geNet standard for box annotation (Su et al. 2012), annotating
boxes remains a slow and manually expensive endeavor In
this work, we avoid box annotations and show that action
localization can be done efficiently through simple point
annotations.

Several recent works have investigated the merit of point
annotations in other visual recognition challenges. Bearman
et al. (2016) investigate point-supervision for semantic seg-
mentation in images,which constitutes a fraction of the anno-
tation cost compared to pixel-wise segmentation. In the video
domain, Jain andGrauman (2016) investigate object segmen-
tation based on point clicks. Similar in spirit to our work,
Manen et al. (2017) show the spatio-temporal tracks from
consecutive point annotations provide a rich supervision for
multiple object tracking in videos. In this work, we investi-
gate the potential of point-supervision for action localization
in videos, showing we can reach comparable performance to
full box-supervision approaches based on action proposals.
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3 Point-supervision for Training

For pointly-supervised action localization with spatio-
temporal proposals, we start from the hypothesis that the pro-
posals themselves, normally used for testing, can substitute
the ground truth box annotations during training without a
significant loss in performance. Our main goal is to mine out
of a set of action proposals the best one during training while
minimizing the annotation effort. The first level of supervi-
sion constitutes the action class label for the whole video.
Given such global labels, we follow the traditional approach
of mining the best proposals through multiple instance learn-
ing, as introduced for object detection by Cinbis et al. (2017).
In the context of action localization, each video is interpreted
as a bag and the proposals in each video are interpreted as
its instances. The goal of Multiple Instance Learning is to
train a classifier that selects the top proposals and separates
proposals from different actions.

Next to the global action class label we leverage easy to
obtain annotations within each video: we simply point at the
action. Point-supervision allows us to easily exclude those
proposals that have no overlap with any annotated point.
Nevertheless, there are still many proposals that intersect
with at least one point, as points do not uniquely identify
each proposal. Therefore, we introduce an overlap measure
to associate proposals with points. We also extend the objec-
tive of multiple instance learning to include the proposed
overlap measure for proposal mining.

3.1 Overlap Between Proposals and Points

Let us first introduce the following notation. For a video
V of FV frames, an action tube proposal A = {BBi }mi= f
consists of connected bounding boxes through video frames
( f , . . . ,m) where 1 ≤ f < m ≤ FV . Let BBi denote
the center of a bounding box i . The point supervision C =
{(c(x)

i , c(y)
i )}K is a set of K ≤ FV sub-sampled video frames

where each frame i has a single annotated point (c(x)
i , c(y)

i ).
We propose an overlap measure that provides a continuous
bounded score based on the match between a proposal and
the point annotations.

Our overlap measure, inspired by a mild center-bias in
annotators (Tseng et al. 2009), consists of two terms. The
first term M(·) states how close the center of a bounding
box from a proposal is to an annotated point, relative to the
bounding box size, within the same frame. This center-bias
term normalizes the distance of a point annotation to the
center of a bounding box by the distance between the center
and closest edge of the bounding box. For point annotation
(c(x)

i , c(y)
i ) and for bounding box BBKi in the same frame,

the score is 1 if the box center BBKi is the same as the
point annotation. The score decreases linearly in value as

the distance between the point annotation and the box center
grows and the score becomes 0 if the point annotation is not
contained in BBKi :

M(A,C) = 1

K

∑K

i=1
max

(
0, 1 −

||(c(x)
i , c(y)

i ) − BBKi ||2
max

(u,v)∈e(BBKi )
||((u, v) − BBKi )||2

)
. (1)

In Eq. 1, (u, v) denotes the center point of each of the four
edges of box BBKi , given by the function e(BBKi ).

The second term S(·) serves as a form of regularization
on the overall size of a proposal. The regularization aims to
alleviate the bias of the first term towards large proposals,
since large proposals are more likely to contain points and
the box centers of large proposals are by default closer to the
center of the video frames. Since actions aremore likely to be
in the center of videos (Tseng et al. 2009), the first term M(·)
tends to be biased to large proposals. The size regularization
term S(·) addresses this bias by penalizing proposals with
large bounding boxes |BBi | ∈ A, compared to the size of a
video frame |Fi | ∈ V :

S(A, V ) =
(∑m

i= f |BBi |
∑|V |

i=1 |Fi |

)2

, (2)

where |b| = (b(xmax) − b(xmin)) · (b(ymax) − b(ymin))

denotes the size of box b. Using the center-bias term M(·)
regularized by S(·), our overlap measure O(·) is defined as

O(A,C, V ) = M(A,C) − S(A, V ). (3)

Recall that A are the proposals, C captures the point-
supervision and V the video. Overlap measure O(·) provides
an estimation of the quality of the proposals during training
and we use the measure in an iterative proposal mining algo-
rithm over all training videos in search for the best proposals.
InFig. 2,weprovide three visual examples of spatio-temporal
proposals ranked based on our overlap measure.

(a) (b) (c)

Overlap: 0.00 Overlap: 0.18 Overlap: 0.54

Fig. 2 a No overlap. b Small overlap. c High overlap. Illustration of
overlap between proposals and points
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3.2 Mining for Proposals with Points

To mine spatio-temporal proposals, we are given a training
set of videos {Ai , xi , yi ,Ci }Ni=1, where the collection of tubes
for the |Ai | proposals is denoted as Ai = {{BBj }mj= f }|Ai |.
Variable xi ∈ R

|Ai |×D is the D dimensional feature repre-
sentation of each proposal in video i . Annotations consist of
the action class label yi and the points Ci .

The proposal mining combines the use of the overlap
measure O(·) of Eq. 3 with a Multiple Instance Learning
optimization. The optimization aims to train a classification
model that can separate good and bad proposals for a given
action. We start from a standard MIL-SVM (Andrews et al.
2002; Cinbis et al. 2017) and adapt it’s objective to include a
mining score P(·) of each proposal, which incorporates our
function O(·) as:

min
w,b,ξ

1

2
||w||2 + λ

∑

i

ξi , s.t.

∀i : yi · (w · argmax
z∈xi

P(z|w, b, A(z)
i ,Ci , Vi ) + b) ≥ 1 − ξi ,

∀i : ξi ≥ 0,

(4)

where (w, b) denote the classifier parameters, ξi denotes the
slack variable and λ denotes the regularization parameter.
Variable z ∈ xi denotes the representation of a single pro-
posal in the set of all proposalsxi for trainingvideo i .Variable
A(z)
i denotes the tube corresponding to proposal representa-

tion z. The proposal with the highest mining score per video
is used to train the classifier.

Different from standard MIL-SVM, the proposals are not
only conditioned on the classifier parameters, but also on the
overlap scores from the point annotations. In other words,
the standard maximum likelihood optimization of MIL is
adapted to include point overlap scores that serve as a prior on
the individual proposals. The objective of Eq. 4 is non-convex
due to the joint minimization over the classifier parameters
(w, b) and the maximization over the mined proposals P(·).
Therefore, we perform iterative block coordinate descent
by alternating between clamping one and optimizing the
other. Given a fixed selection of proposals, the optimiza-
tion becomes a standard SVM optimization over the features
of selected proposals (Cortes and Vapnik 1995). For fixed
model parameters, the maximization over the proposals is
determined by scoring proposals as:

P(z|w, b, A(z)
i ,Ci , Vi ) ∝ (〈w, z〉 + b) +

O(A(z)
i ,Ci , Vi ).

(5)

InEq. 5, the score of a proposal is the sumof two components,
namely the score of the current model and the overlap with

the point annotations in the corresponding training video.
The mining and classifier optimizations are alternated for a
fixed amount of iterations. After the iterative optimization, a
final SVM is trained on the best mined proposals. Identical
to approaches using box-supervision, our model selects the
best proposals from test videos, without requiring any box
annotations during training.

4 Pseudo-pointing for Inference

Inference is typically achieved through a maximum likeli-
hood over all proposals in a test video. However, relying on a
maximum likelihood estimate of the model is rather limited,
as it only relies on the features of the proposals.We show that
visual cues within the test videos help to guide the selection
proposals during inference, similar to how point annotations
provide guidance during training. We dub these automatic
cues pseudo-points and investigate five of them. The pseudo-
points rely on training point annotations, self-supervision,
person detection, independent motion, and center bias. We
show how to exploit and combine these pseudo-points to
improve the action localization during inference. Lastly, we
also provide two forms of regularization to further boost the
localization results.

4.1 The Pseudo-points

In Fig. 3, we provide a visual overview of the visual cues for
multiple video frames. Next, we outline each pseudo-point
individually.

4.1.1 Training Point Statistics

The first pseudo-point focuses on the point annotations pro-
vided during training. Intuitively, actions do not occur at
random locations in video frames. Recall that we are given N
training videos, where yi ,Ci denote respectively the video
label and point annotation of training video i . We exploit this
observation by making a pseudo-point for an action class Y
as follows:

ppoints(F,Y) = 1
∑N

i=1[[yi = Y]]
N∑

i=1

[[yi = Y]] · Ci . (6)

The above Equation states that for an action Y , the pseudo-
point in a test video is determined as the average point
annotation location given the training videos of the same
action.The reasoningbehind this pseudo-point is that specific
actions tend to re-occur in similar locations across videos.
Note that the pseudo-point is independent of the frame F
itself and only depends on the training point statistics.
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(a)

(b)

(c)

(d)

(e)

(f)

Frame.

Person detection.

Independent motion.

Self-supervision.

Training point statistics.

Center bias.

Fig. 3 Pseudo-points for an example frame (a) from three videos show-
ing running, skateboarding, and diving. The pseudo-points derived from
(b) person detection, (c) independent motion, and (d) self-supervision

focus on the primary action in the video. The pseudo-points derived
from (d) training points and (e) center bias provide data-independent
prior statistics to steer better proposal selection during inference
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4.1.2 Self-Supervision from Proposals

The second pseudo-point we investigate does not require
external information; the pseudo-point relies on the spatio-
temporal proposals themselves. The main idea behind this
pseudo-point is that the distribution over all proposals in a
single frame provides information about its action uncer-
tainty. It relies on the following assumption: the more the
proposals are on the same spatial location, the higher the
likelihood that the action occurs in that location. The pseudo-
point can be seen as a form of self-supervision (Doersch et al.
2015; Fernando et al. 2017), since it provides an automatic
annotation from proposals to guide the selection of the very
same proposals.

More formally, for test video t , let At denote the spatio-
temporal proposals. Furthermore, let F denote a video frame
and let C�

At
(u, v, F) denote the number of proposals that

contain pixel (u, v) in F . We place an automatic pseudo-
point at the center of mass over these pixel counts:

pself(F) = 1∑
u,v C

�
At

(x, y, F)

∑

(u,v)∈F
C�

At
(u, v, F) · (u, v).

(7)

The function of Eq. 7 outputs a 2D coordinate in frame F ,
representing the center of mass over all pixels in F , with
the mass of each pixel (u, v) given by C�

At
(u, v, F). The 2D

output coordinate will serve as the pseudo-point in frame F .

4.1.3 Person Detection

The third pseudo-point follows earlier work on action
localization by incorporating knowledge about person detec-
tions (Siva and Xiang 2011; Yu and Yuan 2015). Actions are
typically person-oriented, so the presence or absence of a
person in a proposal provides valuable information. Here,
we employ a Faster R-CNN network (Ren et al. 2015), pre-
trained on MS-COCO (Lin et al. 2014), and use the person
class for the detections. This results in roughly 50 box detec-
tions per frame after non-maximum suppression. We select

the box in each frame with the maximum confidence score
as the automatic pseudo-point.

4.1.4 Independent Motion

The independent motion of a pixel (u, v) in frame F provides
information as to where foreground actions are occurring.
More precisely, independent motion states the deviation
from the global motion in a frame (Jain et al. 2017). Let
C�
I (u, v, F) ∈ [0, 1] denote the inverse of the residual in

the global motion estimation at pixel (u, v) in frame F . The
higher C�

I (u, v, F), the less likely it is the pixel contributes
to the global motion. Akin to the second pseudo-point, we
place an automatic pseudo-point at the center of mass, now
over the independent motion estimates:

pimotion(F) = 1∑
u,v C

�
I (u, v, F)

∑

u,v

C�
I (u, v, F) · (u, v).

(8)

Equation 8 outputs a 2D coordinate, but now using the inde-
pendent motion as mass for each pixel in F .

4.1.5 Direct Center Bias

Lastly, we again focus on an observation made during train-
ing; actions and annotators have a bias towards the center of
the video (Tseng et al. 2009). We exploit this bias directly in
our fifth pseudo-point by simply placing a point on the center
of each frame:

pcenter(F) = (FW /2, FH/2), (9)

where FW and FH denote the width and height of frame F
respectively.

Figure 4 provides the spatio-temporal evolution and focus
area of the pseudo-points for four example videos.

Fig. 4 Pseudo-point visualization on four example videos for training
points, center bias, self-supervision, independent motion, and person
detection (depicted as points for visualization). In general, the pseudo-

points are present around the action or even follow the action. When
actions are not in the frame however, as shown in the right example,
pseudo-points may place automatic annotations in phantom positions
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4.2 Exploiting Pseudo-points

4.2.1 Rescoring Test Proposals

Given a test video t , the standard approach in action local-
ization with spatio-temporal proposal for finding the best
proposal is done from a set of proposals {At i}|At |

i=1, given a
model (w, b) is given as:

t� = argmax
i=1,...,|At |

(〈w, zi 〉 + b) . (10)

We exploit the pseudo-points to adjust this likelihood esti-
mate:

t� = argmax
i=1,...,|At |

(〈w, zi 〉 + b) + λP · O(At i, P, tV ), (11)

where P denotes the pseudo-point of interest and tV denotes
the test video itself.

The above equation is similar in spirit to Eq. 5, but now
automatic cues are employed, rather thanmanual point anno-
tations. Adjusting the proposal selection using pseudo-points
during testing can be seen as a form of regularization. Rather
than a single-point maximum likelihood given a trained
model, we add continuous restrictions on the proposals based
on their match with automatic pseudo-points, which aid the
selection towards proposals with a high overlap to the ground
truth action location.

4.2.2 Weighting and Selecting Pseudo-points

Intuitively, not all pseudo-points are equally effective, stat-
ing the need for the weights in Eq. 11. However, setting
proper values for λP can not be done directly through stan-
dard (cross-)validation, as this requires box-supervision. To
overcome both problems, we provide a score function to esti-
mate the quality of each pseudo-point. This scorewill be used
to both determine which pseudo-point is most favourable to
select and directly serve as weighting value in Eq. 11.

The score function for the person detection pseudo-point
(the only pseudo-point that outputs boxes), is identical to the
overlap function in Eq. 1. This entails that if the center of
the top person detection in each frame of a training video
matches with the point annotations of the same video, a high
score is achieved. We compute the average match over all
training videos as the weight (λP ) for person detection. For
the other pseudo-points, we are only given points. In these
cases, we use the distance to the nearest image border to
normalize the distance between the manual point annotation
and the automatic pseudo-point annotation. The overall score
function is computed in identical fashion as for the person
detection.

By matching automatic pseudo-points in training videos
with the manual point annotations, we arrive at an automatic
quality measure for pseudo-points, which can be used to
weight and select pseudo-points.

4.3 Temporal Pseudo-points

Besides knowing where specific actions occur spatially over
a complete dataset, the temporal extent of actions is also
helpful for proposal selection. Here, we provide a temporal
pseudo-point, again relying on training point statistics. For
action Y , we retrieve its temporal extent by comparing the
temporal span of point annotations to the temporal extent of
the videos in which the actions occur. The fraction of the
annotation span relative to the video length is computed for
each action instance and averaged over a complete dataset.
Let FY denote the average temporal length of action Y and
letFt jk denote the temporal length of proposal k in test video
j . Then we compute this temporal pseudo-point as:

sY�
j = argmax

k∈{1,...,|x|}

( (〈w j , xk〉 + b j
) − λT · |FY − Ft jk |

FY

)
.

(12)

In Eq. 12, the match between the temporal pseudo-point of
an action and the temporal extent of a proposal also acts as
a regularization. The better the match, the lower the penalty
in the likelihood, resulting in a better selection of proposals.

With pseudo-points, we are able to guide the selection of
the top proposal per action per video for action localization,
akin to howpoint-supervision is used during training. Having
defined the complete pointly-supervised regime for training
and inference we are now ready for the experiments.

5 Experimental Setup

5.1 Datasets

5.1.1 UCF Sports

The UCF Sports dataset consists of 150 videos from 10 sport
action categories, such as Skateboarding, Horse riding, and
Walking (Rodriguez et al. 2008). We employ the train/test
split suggested in (Lan et al. 2011). Example frames from
the dataset are shown in Fig. 5a.

5.1.2 UCF-101

The UCF-101 dataset consists of 13,320 videos from 101
action categories, such as Skiing, Basketball dunk, and Surf-
ing (Soomro et al. 2012). For a subset of 3,204 videos
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Dive Golf swing Kick

Lift Skateboard Walk

(a)

Basketball Skijet Ski

Rope climb Salsa spin Cricket bowl

(b)

Answer phone Drive car Eat Fight Get our of car Shake hand

Hug Kiss Run Sit down Sit up Stand up

(c)

Fig. 5 Example frames of the UCF Sports, UCF-101, and Holly-
wood2Tubes dataset with box annotations. Different from the UCF
Sports and UCF-101 datasets, Hollywood2Tubes provides new chal-

lenges for spatio-temporal action localization, due to large occlusions,
small inter-class difference, and large action size variation. a UCF
sports. b UCF-101. c Hollywood2Tubes

and 24 categories, spatio-temporal annotations are pro-
vided (Soomro et al. 2012). We will use this subset in
the experiments and use the first train/test split suggested
in (Soomro et al. 2012). In Fig. 5b, we show dataset example
frames.

5.1.3 Hollywood2Tubes

The Hollywood2Tubes dataset consists of 1,707 videos from
12 action categories (Mettes et al. 2016), such as getting out
of a car, sitting down, and eating. The dataset is derived
from the Hollywood2 dataset (Marszałek et al. 2009), with
point annotations for training and box annotations for eval-
uation. Different from current action localization datasets,
Hollywood2Tubes is multi-label and actions can be multi-
shot, i.e., can span overmultiple non-continuous shot, adding
new challenges for action localization. We show an example
frame with box annotations for each of the 12 actions in the
dataset in Fig. 5c. Annotations are available at http://tinyurl.
com/hollywood2tubes.

5.2 Implementation Details

5.2.1 Proposals

Our proposal mining algorithm is agnostic to the underly-
ing spatio-temporal proposal algorithm. Through this work,
we employ the unsupervised APT proposals (van Gemert
et al. 2015), since the algorithm provides high action recall,
is fast to execute, and the code is publicly available. For
each proposal, we extract Improved Dense Trajectories and
compute HOG, HOF, Traj, and MBH features (Wang and
Schmid 2013). The combined features are concatenated and
aggregated into a fixed-size representation using Fisher Vec-
tors (Sánchez et al. 2013). We construct a codebook of 128
clusters, resulting in a 54,656-dimensional representation per
proposal. The same proposals and representations are also
used in (van Gemert et al. 2015; Mettes et al. 2016, 2017)
allowing for a fair comparison.
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5.2.2 Training

The proposal mining is performed for 5 iterations; more
iterations have little effect on performance. Following the
suggestions of Cinbis et al. (2017), the training videos are
randomly split into 3 splits to train and select the proposals.
For training a classification for one action, 100 proposals of
each video are randomly sampled from the other actions as
negatives. The regularization parameter λ in the max-margin
optimization is fixed to 10 throughout the experiments.

5.2.3 Evaluation

For an action, we select the top scoring proposal for each
test video given the trained model. To evaluate the action
localization performance, we compute the Intersection-over-
Union (IoU) between proposal p1 and the box annotations
of the corresponding test example p2 as: iou(p1, p2) =
1

|Γ |
∑

f ∈Γ I oUp1,p2( f ), where Γ is the set of frames where
at least one of (p1, p2) is present. The function I oU states
the box overlap within a specified frame. For IoU threshold
τ , a top selected proposal is deemed a positive detection if
iou(p1, p2) ≥ τ . After aggregating the top tubes from all
videos, we compute either the Average Precision score or
AUC using the proposal scores and positive/negative detec-
tion labels.

6 Results

6.1 Action Localization with Point-supervision

6.1.1 Setup

In the first experiment, we evaluate our main notion of
localizing actions using point-supervision. We perform this

evaluation on UCF Sports and UCF-101. We compare our
approach to the following three baselines:

– box-supervision This baseline follows the train-
ing protocol of van Gemert et al. (2015), where for each
action, a classifier is trained using the features from
ground truth boxes. Additionally, spatio-temporal pro-
posals with an overlap higher than 0.6 and lower than 0.1
are added as positives and negatives, respectively.

– best proposal This baseline trains an action local-
izer using the spatio-temporal proposal with the highest
overlap to the ground truth box tube.

– video label (ours) This baseline employs MIL
optimization with a uniform prior, i.e., only video labels
are used as annotations. This baseline is inspired by (Cin-
bis et al. 2017), but performed on action proposals in
videos instead of object proposals in images.

Unless stated otherwise,we employ the centers of the original
box annotations on UCF Sports and UCF-101 as the point
annotations throughout our experiments.

6.1.2 Results

The results onUCF Sports andUCF-101 are shown in Fig. 6a
(mean average precision) andFig. 6b (AUC).Wefirst observe
that traditional box-supervision yield identical results to
using the best possible spatio-temporal proposal. This result
validates our starting hypothesis that spatio-temporal propos-
als provide viable training examples. Second, we observe
that across both datasets and all overlap thresholds, point-
supervision performs similar to both the box-supervision and
best proposal approaches. This result highlights the effec-
tiveness of point-supervision for action localization. With
pointly-supervised action localization we no longer require

(a) (b)

Fig. 6 a Mean average precision. b AUC. Localization results on
UCF Sports and UCF-101 using box-supervision, point-supervision,
and video-labels only. Across both datasets and all overlap thresholds,
point-supervision is as effective as box-supervision, while they both

outperform video-label supervision. We conclude that spatial annota-
tions are vital and that points provide sufficient support for effective
localization
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(a)

(b)

Fig. 7 aUCFSports.bUCF-101.Action localization error diagnosis on
UCF Sports and UCF-101 when using point-supervision (left) and box-
supervision (right). On both datasets, we observe that averaged over all
actions, approaches using point- and box-supervision yield similar error
type distributions, explaining their similar localization performance

expensive box annotations.As results using video-labels only
are limited compared to points, we conclude that points pro-
vide vital information about the spatial location of actions.

6.1.3 Error Analysis

To gain insight into why point supervision is effective for
action localization, we perform an error diagnosis and corre-
sponding qualitative analysis. We perform the diagnosis on
the approaches using box-supervision and point-supervision.
Akin to error diagnosis for object detection (Hoiem et al.
2012), we quantify the types of errors made by each localiza-
tion approach. We take the top R detections for each action,
where R is equal to the number of ground truth instances in
the test set. We categorize each detection into five classes
relevant for action localization: (1) correct detection, (2)
localization error, (3) confusion with other action, (4) back-
ground from video containing the action, and (5) background
from video not containing the action. The categorization def-
inition is provided in “Appendix A”.

The error diagnosis, averaged over all actions, is shown
in Fig. 7 for UCF Sports and UCF-101. We observe that
overall, the types of errors made by both approaches are sim-
ilar. The predominant error type is localization error, which

means that proposals from positive videos with a low match
to the ground truth are the main errors. Proposals from back-
ground proposals of both positive and negative videos are
hardly ranked high. Overall, using boxes and points result in
similar errors, which matches with their similarity in local-
ization performance. A common limitation is the quality of
the spatio-temporal proposals themselves; only few propos-
als have a high overlap with the ground truth, making the
localization a needle in the haystack problem regardless of
the model. On UCF-101, a large part of the errors also comes
from confusion with the background from other videos. This
is because the UCF-101 dataset can have more than one
instance of the same action in each video. If such additional
instances are missed, non-distinct regions of negative videos
are automatically ranked higher.

6.1.4 Qualitative Analysis

In Fig. 8, we provide qualitative results on UCF Sports
and UCF-101. The results show where point- and box-
supervision yield similar anddissimilar action tubes. For sim-
ple actions likewalking and soccer juggling, both approaches
yield (near-)identical results. For actions such as skateboard-
ing andwalkingwith adog,weobserve that point-supervision
tends to focus on the invariant object (here: skateboard, horse,
and dog), since these are distinctive elements for the action.
This is because the spatial extent of actions is no longer
known with points, which means that the extent is learned
from examples, rather than from manual annotations. We
also note that limitations in the model can result in different
results, as shown in the leftmost example of Fig. 8b.

6.1.5 Conclusions

From the localization results, error diagnosis, and qualitative
analysis, we make the following conclusions: (i) point-
supervision yield results comparable to full box-supervision
for action localization, (ii) averaged over all actions, the
approaches using box and point annotations have approx-
imately similar error type distributions,and (iii) models
learned with point-supervision learn the spatial extent of
actions discriminatively from examples.

6.2 Influence of Spatio-temporal Proposal Quality

In the second experiment, we evaluate the influence of the
spatio-temporal proposals upon which our approach is built.
Spatio-temporal proposals optimize recall, i.e., for a video, at
least one proposal should have a high overlap to the ground
truth action localization. An inconvenient side-effect from
this requirement is that each video outputs many proposals
that have a low overlap, making the selection of the best
proposal during testing a needle in the haystack problem.
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Walking Skateboarding Lifting

(a)

Salsa spinning Fencing Ice dancing

Pole vaulting Soccer juggling Walking with a dog

(b)

Fig. 8 Qualitative results on (a) UCF Sports and (b) UCF-101 of
selected proposals using point- (red) and box-supervision (blue). For
simple actions with static backgrounds, such aswalking, salsa spinning
and soccer juggling, both approaches converge to similar locations. For
actions with a more dynamic background and interacting objects, point-

supervision might lead to a selection of different proposal locations.
Examples include fencing and walking with a dog. We conclude that
point- and box-supervision typically leads to similar results, although
point-supervision tends to focus more on the most discriminative ele-
ment of actions (Color figure online)

This problem was observed in the error diagnosis of the first
experiment.

Here, we investigate the influence of the high ratio of pro-
posals with a low overlap during training and testing. During
both training and testing, we add the oracle ground truth tube
to the proposals. We furthermore add a parameter ε, which
controls the fraction of proposals with an overlap below 0.5.
We train several models with varying values for ε. We eval-
uate this oracle experiment on UCF Sports.

6.2.1 Results

The localization performance for several values of ε is shown
in Fig. 9. The baseline is the result achieved in the first
experiment. From the Figure, it is evident that removing low
quality proposals positively affects the localization perfor-
mance. However, a large portion of low quality proposals
need to be removed to achieve better results. This is because
of the large amount of low quality proposals. OnUCFSports,
only 7% of the proposals have an overlap of at least 0.5 (!).
This means that when 50% of the low quality proposals are

Fig. 9 Influence of spatio-temporal proposal quality on UCF-Sports.
The baseline corresponds to the result from the first experiment. For the
others, the ground truth location is added as one of the proposals dur-
ing testing. Where, ε states the fraction of low quality (overlap ≤ 0.5)
proposals that are removed. Action localization performance increases
when large amounts of low quality proposals are removed. We con-
clude that better quality action proposals will have a positive impact on
pointly-supervised action localization
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Table 1 Action localization
performance on UCF-101 as a
function of the annotation stride
for point-supervision, compared
to box-supervision

Box supervision Point supervision

Annotation stride

1 2 5 10 20 50 100

mAP@0.2 0.399 0.393 0.404 0.389 0.384 0.395 0.379 0.371

mAP@0.5 0.074 0.063 0.060 0.068 0.064 0.061 0.064 0.053

Annotation speed-up 1.0 9.8 19.3 46.0 85.0 147.6 264.6 359.6

The annotation-speedup is relative to a box annotation in each frame. Fewer point annotations result in large
annotation-time speed-ups, while the performance is hardly affected
Bold values indicate the importance of the obtained speed-up

removed, the ratio of low to high quality proposals is still
6 to 1. When removing 50% of the low quality proposals,
the result increases from 0.23 to 0.32. This further increases
to 0.49 when removing 95% of the low quality proposals.
When only using the ground truth tube and high overlapping
proposals (i.e., ε = 1.0), we achieve a performance of 0.90,
indicating the large gap between current performance and
the upper bound given the current set of features. We con-
clude from this experiment that for pointly-supervised action
localization with spatio-temporal proposals, a limiting factor
is the quality of the proposals themselves. With better action
proposals, point-supervision can achieve even better results.

6.3 Sparse Point Annotations

In the third experiment, we evaluate: (i) how much faster is
point-supervision compared to box-supervision and (ii) how
many point annotations are sufficient for effective localiza-
tion. Intuitively, point-supervision is not required for every
frame, since the amount of change between consecutive
frames is small. We evaluate the influence of the annotation
stride and we also estimate how much faster the annotation
process becomes compared to dense box-supervision. We
perform this experiment on UCF-101, since the videos in
this dataset are the longest for action localization, allowing
for a wide range of annotation strides.

6.3.1 Annotation Times

To obtain an estimate of the annotation times for box- and
point-supervision, we have re-annotated several hundreds of
videos while keeping track of the annotation times.We found
that annotating a video with an action label takes roughly 5
s. Furthermore, annotating a box in a frame takes roughly
15 s. This estimate is in between the estimate for image
annotation of Su et al. (2012) (roughly 30s) and the estimate
of Russakovsky et al. (2015) (10 to 12s). Annotating a point
takes roughly 1.5 s, making points ten times faster than boxes
to annotate. This estimate is in line with point annotations in
images (0.9-2.4 s (Bearman et al. 2016)).

6.3.2 Results

In Table 1, we provide the localization performance for two
overlap thresholds and the annotation speed-up for point
supervision at seven annotation strides. The Table shows that
when annotating fewer frames, performance is retained.Only
when annotating fewer than 5%of the frames (i.e., for a stride
larger than 20), the performance dropsmarginally. This result
shows that our approach is robust to sparse annotation, a point
at every frame is not required. The bottom row of the Table
shows the corresponding speed-up in annotation time com-
pared to box-supervision. An almost 50-fold speed-up can
be achieved while maintaining comparable localization per-
formance. A 300-500 fold speed-up can be attained with a
marginal drop in localization performance. We conclude that
point-supervision is robust to sparse annotations, opening up
the possibility for further reductions in annotation cost for
action localization.

6.4 Noisy Point Annotations

Human annotators, while center biased (Tseng et al. 2009),
do not always precisely pinpoint center locations while anno-
tating (Bearman et al. 2016). In the fourth experiment, we
evaluate how robust the action localization performance is
with respect to noise in the point-supervision. We start from
the original point annotations and add zero-mean Gaussian
noise with varying levels of isotropic variance. This experi-
ment is performed on the UCF-101 dataset.

6.4.1 Results

The localization performance for six levels of annotation
noise is shown in Fig. 10. The performance for σ = 0 cor-
responds to the performance of point-supervision in the first
experiment. We observe that across all overlap thresholds,
the localization performance is unaffected for noise varia-
tions up to a σ of 5. For σ = 10, the results are only affected
for thresholds of 0.3 and 0.4, highlighting the robustness of
our approach to annotation noise. For large noise variations
(σ = 50 or 100), we observe a modest drop in performance

123



276 International Journal of Computer Vision (2019) 127:263–281

Fig. 10 Localization performance on UCF-101 for various levels of
noise in the point annotations. Up to a noise deviation of 10 pixels can
be handled robustly. For large deviations (50 pixels an up), performance
drops for lower overlap thresholds. Point-supervision can accommodate
human error in the point annotations up to 10 pixels

for the overlaps thresholds 0.1 to 0.4.We conclude that points
do not need to be annotated precisely at the center of actions.
Annotating points in the vicinity of the action is sufficient
for action localization.

6.5 Exploiting Pseudo-points

In the fifth experiment, we investigate the effect of each of the
pseudo-points on the action localization performance during
inference. We perform this experiment on both UCF Sports
and UCF-101.

6.5.1 Pseudo-point weights

To utilize the pseudo-points effectively during inference
and to know a priori which pseudo-point is most effec-
tive, we compute the weight per pseduo-point as outlined
in Sect. 4.2.2. This has resulted in the following values:

1. Person detection: λP = 0.76.
2. Independent motion: λP = 0.57.
3. Center bias: λP = 0.48.
4. Self-supervision: λP = 0.32.
5. Training points: λP = 0.25.

The weights computed based on the match with point-
supervision in training videos provide the degree to which
each pseudo-point should contribute to the selection of
spatio-temporal proposals in test videos and they also provide
a measure to select the best pseudo-point.

6.5.2 Results

In Fig. 11, we show the localization performance for over-
lap thresholds of 0.2 and 0.5. On UCF Sports, we observe
for an overlap of 0.2, the performance improves for training
points, self-supervision, and person detection. For center bias
and independent motion, there is a minimal drop in perfor-
mance. For an overlap of 0.5, the results divergemore clearly.
Independent motion (+6.7%), self-supervision (+6.8%), and
person detection (+20.0%) benefit directly from inclusion.
This does not hold for center bias and training points. While
pseudo-points can have a positive impact on the performance,
it is not effective for all types of pseudo-points. Discovering
which pseudo-points are most effective is a necessity. On
UCF-101, we observe similar trends. Person detection and
self-supervision yield increased localization performance,
while the data independent center bias and train points have
a negative effect. Video-specific visual cues, such as persons
and motion, are effective; generic statistics less so.

We observe that the order of the weights correlates with
the localization performance. This indicates the effectiveness
of the proposedweighting function, as it provides insight into
the quality of the pseudo-points without having to evaluate
their performance at test time. Person detection is the most
effective pseudo-point. The center bias and training points
score lower, which is also visible in their localization perfor-
mance. Only the self-supervision scores low, while it has a
positive effect on the localization. We conclude that the pro-
posed pseudo-point weighting is a reliable way to determine
the effectiveness of pseudo-points with point-supervision.

On both datasets, we also investigate the effect of tem-
poral pseudo-points on the localization performance. On
UCF Sports, we observe an increase in performance for both
overlap thresholds (+7.3% at 0.2, +2.4% at 0.5). On UCF-
101, we also observe a positive effect, albeit with smaller
improvements (+0.8% at 0.2, +0.6% at 0.5). We conclude
that regularizing spatio-temporal proposals using the tempo-
ral extent of actions, which is provided by point-supervision,
aids action localization in videos.

Based on the weights of the pseudo-annotations, we rec-
ommend to use person detection during inference. We will
use this setup for the state-of-the-art comparison.

6.5.3 Qualitative Results

To gain insight into which types of videos benefit from
pseudo-points, we provide a qualitative analysis on UCF
Sports. In Fig. 12a, we show three test videoswhere the local-
ization improved due to the effect of pseudo-points.We show
the effect for the independent motion, self-supervision, and
person detection respectively. In all three cases, the inclu-
sion of pseudo-points resulted in a better fit on the action
by enlarging its scope. For self-supervision and independent
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(a)

(b)

Fig. 11 a UCF Sports. b UCF-101. The effect of pseudo-points dur-
ing inference for action localization on UCF Sports and UCF-101 at
an overlap of 0.2 (left column) and 0.5 (right column). All results
are provided relative to the performance without pseudo-points. Data-
dependent pseudo-points such as person detection, self-supervision, and
independent motion have a positive effect on the localization perfor-

mance.Data-independent pseudo-points such as center bias and training
points are not effective for action localization. Incorporating the tempo-
ral extent of actions as a pseudo-point can further boost performance.We
conclude that pseudo-points, when chosen correctly, aid action local-
ization performance

motion, the wider motion evidence resulted in a better fitting
localization. For person detection, the evidence of the whole
person had a positive effect. These examples show the poten-
tial of pseudo-points to guide the selection of spatio-temporal
proposals during inference.

In Fig. 12b, we show three test videos where the inclusion
of pseudo-points resulted in a worse localization. We show
this effect for the less successful center bias and training
points, as well as for the most successful pseudo-point per-
son detection. For center bias, this resulted in a shift from
precise fit on the action (red) to a large generic location
(blue). This is because the center bias is data independent and
might undo correct localizations. This also holds for the train-
ing point statistics, which are identical for each test video.
Lastly, the person detection can yield diverging localizations
whenmany people are present in the scene.We conclude that
motion-based and person-based pseudo-points can aid action
localization, while data independent pseudo-points are less
suited.

6.6 Comparison to Others

In our final experiment, we compare pointly-supervised
action localization with alternatives using either box-

supervision, or weaker forms of supervision. We perform
this experiment on UCF Sports, UCF-101, and Holly-
wood2Tubes. To compare with as manymethods as possible,
we evaluatewithAUConUCFSports andwithmAPonUCF-
101 and Hollywood2Tubes. We evaluate action localization
for the standard overlap threshold of 0.2.

6.6.1 Results

We present results on all three datasets In Table 2. On UCF
Sports, we observe that our approach outperforms the state-
of-the-art in weakly-supervised action localization, as well
as the point-supervision in our previous work (Mettes et al.
2016) which lacks the pseudo-points during inference.

Naturally, our pointly-supervised approach also outper-
forms the state-of-the-art in zero-shot and unsupervised
action localization, emphasizing the effectiveness of points
as supervision. Lastly, we perform competitive or even better
than the state-of-the-art using box-supervision.1

On UCF-101, we also outperform all existing weakly-
supervised alternatives. Our approach reaches an mAP of
0.418, compared to 0.369 of Li et al. (2018) and 0.351 of

1 Note that we only use the top-1 proposal per action per video, as more
proposals per video skews AUC performance (Weinzaepfel et al. 2015).
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Fig. 12 Qualitative analysis of the effect of pseudo-points for action
localization on UCF Sports. Red indicates the localization without
pseudo-points, blue with pseudo-points. (a) The top row show three
examples where pseudo-points improve the localization. For the self-
supervision and independent motion examples, motion information
helped to widen the scope of the action. For person detection, infor-
mation from the whole person enhances the scope of the action. (b) The
second row shows failure cases. For data independent pseudo-points

such as center bias and training point statistics, the action can deviate
from its true location. Person detection can furthermore be problematic
when many people are present in the scene. The qualitative analysis
shows that pseudo-points can alleviate problems in pointly-supervised
action localization. To aid the performance, data-dependent pseudo-
points are informative, while data-independent pseudo-points appear
less effective (Color figure online)

Mettes et al. (2017), the state-of-the-art inweakly-supervised
action localization. In comparison to box-supervision, we
outperform the approach of van Gemert et al. (2015), which
employs identical spatio-temporal proposals and representa-
tions. On UCF-101, the state-of-the-art approaches in action
localization from box-supervision perform better (Kalo-
geiton et al. 2017a; Yang et al. 2017). These approaches score
and link 1 to 10 consecutive boxes into tubes, rather than
opting for spatio-temporal proposals. Based on our second
experiment, we posit that better spatio-temporal proposals
can narrow this gap in performance.

Lastly, we provide results with our approach on Holly-
wood2Tubes. We first observe that overall, the performance
on this dataset is lower than on UCF Sports and UCF-101 in
terms of mAP scores. This indicates the challenging nature
of the dataset. The combination of temporally untrimmed
videos, multi-shot actions, and actions of complex semantic
nature make for a difficult action localization. Our approach
provides a new state-of-the-art result in this dataset with an
mAP of 0.178, compared to 0.143 of (Mettes et al. 2016) and
0.172 of (Mettes et al. 2017).

7 Conclusions

This paper introduces point-supervision for action local-
ization in videos. We start from spatio-temporal proposals,
normally used during inference to determine the action loca-
tion. We propose to bypass the need for box-supervision by
learning directly from spatio-temporal proposals in training
videos, guided by point-supervision. Experimental evalu-
ation on three action localization datasets shows that our
approachyields similar results to box-supervision.Moreover,
our approach can handle sparse and noisy point annotations,
resulting in a 20 to 150 times speed-up for action supervision.
To help guide the selection of spatio-temporal proposals dur-
ing inference, we propose pseudo-points, automatic visual
cues in videos that hallucinate points in test videos. When
weighted and selected properly with our quality measure,
pseudo-points can have a positive impact on the action local-
ization performance. We conclude that points provide a fast
and viable alternative to boxes for spatio-temporal action
localization.
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Table 2 Comparative evaluation of pointly-supervised action localization to the state-of-the-art using box-supervision as well as weakly-supervised
alternatives

Proposals Supervision UCF sports(AUC) UCF-101(mAP) Hollywood2Tubes(mAP)

Lan et al. (2011) × Box 0.380 – –

Tian et al. (2013b) × Box 0.420 – –

Wang et al. (2014) × Box 0.470 – –

Jain et al. (2014) � Box 0.520 – –

van Gemert et al. (2015) � Box 0.546 0.345 –

Soomro et al. (2015) � Box 0.550 – –

Gkioxari and Malik (2015) × Box 0.559 – –

Weinzaepfel et al. (2015) × Box 0.559 0.468 –

Jain et al. (2017) � Box 0.570 0.475 –

Hou et al. (2017) × Box 0.580 0.471 –

Saha et al. (2017) × Box – 0.631 –

Yang et al. (2017) × Box – 0.735 –

Kalogeiton et al. (2017a) × Box – 0.772 –

Jain et al. (2015) � Zero-shot 0.232 – –

Mettes and Snoek (2017) × Zero-shot 0.393 – –

Soomro and Shah (2017) × Unsupervised 0.450 – –

Sharma et al. (2015) from (Li et al. 2018) × Video-label – 0.055 –

Cinbis et al. (2017) from (Mettes et al. 2016) � Video-label 0.278 0.136 0.009

Chen and Corso (2015) � Video-label 0.530 – –

Li et al. (2018) × Video-label – 0.369 –

Mettes et al. (2017) � Video-label 0.556 0.374 0.172

Mettes et al. (2016) � Point 0.545 0.348 0.143

This paper � Point 0.598 0.418 0.178

All results are shown for an overlap threshold of 0.2. On all datasets our approach compares favorably to all weakly-supervised localization
approaches, indicating the effectiveness of point-supervision. On UCF Sports, we perform comparable or better to approaches that require box-
supervision. On UCF-101, we outperform the approach based on box-supervision with the same proposals and features (van Gemert et al. 2015),
but we are outperformed by approaches that score and link individual boxes (Kalogeiton et al. 2017a; Saha et al. 2017; Yang et al. 2017). We expect
that higher quality spatio-temporal proposals, can narrow this gap (see Fig. 9). On Hollywood2Tubes, which only provides point annotations for
training, we set a new state-of-the-art
Bold values are used to correctly identify which methods perform best per dataset
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Appendix A: Types of Localization Errors

For the error diagnosis, we consider five types of detections,
parameterized by an overlap threshold τ . The first detection
type is a correct detection (detection from positive videowith
anoverlapof at least τ ). The second type is a localization error
(detection from positive video with an overlap less than τ ,
but greater than 0.1). The third type is confusionwith another
action (detection from negative video with an overlap of at
least 0.1). The fourth type is background detection from own
action (detection from positive video with an overlap less
than 0.1). The fifth and final type is background detection
from another action (detection from negative video with an
overlap less than 0.1). These five types cover all possible
types of detections. These types are similar to (Hoiem et al.
2012). Different from (Hoiem et al. 2012), we do not split
actions into similar and dissimilar (since no such subdivision

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


280 International Journal of Computer Vision (2019) 127:263–281

exists). Instead,we split backgrounddetections into detection
from own and other actions.
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