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a b s t r a c t 

This work incorporates the multi-modality of the data distribution into a Gaussian Process regression 

model. We approach the problem from a discriminative perspective by learning, jointly over the training 

data, the target space variance in the neighborhood of a certain sample through metric learning. We start 

by using data centers rather than all training samples. Subsequently, each center selects an individualized 

kernel metric. This enables each center to adjust the kernel space in its vicinity in correspondence with 

the topology of the targets — a multi-modal approach. We additionally add descriptiveness by allowing 

each center to learn a precision matrix. We demonstrate empirically the reliability of the model. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Departing from the standard Gaussian Process, we introduce a

regression approach that incorporates the multi-modality of the

data distribution. While in the Gaussian Process model we have

a global kernel metric that is shared by all the samples [34] , here

we propose to define a set of training data centers considerably

smaller than the number of training samples. Subsequently, we

learn from the numerous training samples an individualized kernel

metric per training data center. By doing so, we are able to use a

smaller training kernel matrix computed only on the training data

centers while retaining the descriptive power of the model. This is

highly efficient at test-time as it limits the size of the kernel ma-

trix. 

In our method we introduce two main changes to the standard

Gaussian Process regressor: (i) we define a number of centers over

the training data, by clustering or sampling; (ii) we learn indi-

vidual kernel metric parameters per data center, discriminatively

through metric learning, giving rise to a multi-modal approach

with an asymmetric kernel matrix. Fig. 1 illustrates these differ-

ences when comparing with the standard Gaussian Process trained

on either data centers or on all samples: we use fewer samples

in the kernel computation, while enhancing the descriptiveness of

the model by learning individualized metrics per center. We addi-

tionally expand the kernel parameters to a precision matrix, also

learned through metric learning per center, giving rise to a multi-

variate multi-modal approach. 
∗ Corresponding author. 

E-mail address: S.L.Pintea@tudelft.nl (S.L. Pintea). 
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The individual steps of our model are not specifically novel, yet

heir combination is what gives strength. Clustering of the data in

aussian Processes has been previously proposed [30,40] . Asym-

etric kernels have been studied in works such as [26,50] . While a

ultivariate lengthscale parameter has been used in [18,23,30] for

mproved descriptiveness. Here, we combine all these ideas into a

ew approach which is suitable for learning target data variance.

f we consider each training sample to be a data center, and en-

orce that all samples share the same kernel metric, and assume a

nivariate lengthscale in the kernel metric, we recover the stan-

ard Gaussian Process definition. We evaluate the proposed ap-

roach by gradually enabling these changes: center-based Gaus-

ian Process, univariate multi-modal asymmetric Gaussian Process,

nd multivariate multi-modal asymmetric Gaussian Process. The

xperiments validate our models on the regression datasets So2

nd Temp used in [42] , the large scale Airlines dataset of Hoang

t al. [14] , and two realistic image datasets: UCSD [4] and VOC-

007 [9] for pedestrian and generic-object counting, respectively. 

. Related work 

.1. Mixtures of Gaussian Processes 

Noteworthy work has been focusing on mixtures of Gaussian

rocesses [24,27,28,35,45,52] . In [45] a mixture of Gaussian Pro-

esses is proposed to effectively deal with large data. Meeds and

sindero [27] , Rasmussen and Ghahramani [35] extend this idea

o an infinite mixture of Gaussian Processes. Somewhat similarly, Li

25] splits the problem into subproblems in a divide-and-conquer

ashion and solves each such problem in a Gaussian Process model.

uan and Neubauer [52] proposes an elegant variational Bayesian

https://doi.org/10.1016/j.patrec.2018.02.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.02.026&domain=pdf
mailto:S.L.Pintea@tudelft.nl
https://doi.org/10.1016/j.patrec.2018.02.026
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Fig. 1. An intuitive illustration of the proposed asymmetric kernel metric optimization, when compared with the standard Gaussian Process on data centers or on all samples. 

Given that each data center learns both a personalized size and shape of the kernel, we obtain a more descriptive model than the standard Gaussian Process, while using a 

limited number of data centers in the kernel matrix computation. 
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lgorithm for training the mixture of Gaussian Process experts.

n effective model is proposed in [24] , where the authors sim-

lify the mixture of experts so no gating function is used to as-

ign samples to components and rather, trajectory clustering is

mployed. Nguyen and Bonilla [28] gracefully combines the mix-

ure of Gaussian Process experts with the idea of inducing points,

roviding fast approximate Gaussian Process models. Unlike these

orks, where the final prediction entails a combination of predic-

ions, each obtained within the metric space of individual compo-

ents, we learn the hyper-parameters associated with each training

ata centers in a single Gaussian Process. We do so by employ-

ng an asymmetric kernel. Therefore, at test-time for an input test

ample, rather than computing N × M kernel distances, where N is

he number of components and M is the number of training sam-

les, we only compute N distances. In our case N is the number of

ata centers, considerably smaller than M . 

.2. Efficiency in Gaussian Processes 

The work of Quiñonero-Candela and Rasmussen [31] reviews

he sparse approximations of Gaussian Process from a unified per-

pective by analyzing the implied prior of different methods. Csató

nd Opper [7] proposes learning iteratively, online, the sparse set

f inducing points in a Bayesian formalism by minimizing the

L divergence. Inspired from metric learning techniques, Lawrence

t al. [22] uses forward selection to obtain a sparse and time-

fficient model. Snelson and Ghahramani [39] proposes a graceful

olution of learning a set of sparse pseudo-inputs through gradi-

nt based optimization. A combination between sparse methods

ased on inducing points and local regression based on a multi-

ude of experts describing locally the target space, is proposed in

40] . In [43,44] variational approaches are used to learn sparse rep-

esentations. Titsias [43] jointly learns the inducing points and the

ernel hyper-parameters by minimizing a lower bound through KL

ivergence. The robust method of Hensman et al. [13] decomposes

he Gaussian Process model, variationally, such that it is factorized

ased on a set of global inducing variables. Bo and Sminchisescu

2] , Ranganathan et al. [33] focus on iterative updates of the Gaus-

ian Process. Rodner et al. [36] proposes the use of parameterized

istogram intersection kernels to bypass the hyper-parameter esti-

ation. Cao et al. [3] proposes a method to speed up the hyper-

arameter estimation by inducing sparsity in the model. Some-

hat similar to these methods, we only retain a set of data centers
s informative training samples. Yet, unlike the above approaches,

e subsequently add extra information into the Gaussian Process

odel by treating the data centers differently. 

.3. Descriptiveness in Gaussian Processes 

Full matrices in the kernel definition have been proposed in

30,47] , to make the model more descriptive. Here, we also learn

recision matrices, in the kernel metric definition. However in our

ork, each center has an individualized precision matrix. Paciorek

nd Schervish [29] proposes nonstationary covariance matrices in

he Gaussian Process model, tying the kernel metrics to the in-

ut samples. However, the final kernel matrix is symmetric as it is

efined using symmetric combinations of per-sample covariances,

imilar to RVM (Relevance Vector Machine). Kersting et al. [18] ,

ázaro-Gredilla and Titsias [23] propose well-founded approaches

o adding descriptiveness by extending the Gaussian Process defi-

ition to a heteroscedastic approach, by modeling the noise distri-

ution to be dependent on the training data. Kuss et al. [21] pro-

oses EP (Expectation Propagation) as an effective manner to train

hese models. Similarly, we also start with the assumption that

he kernel metric should be data dependent and learn an individ-

alized kernel metric. Titsias and Lázaro-Gredilla [42] proposes a

ompelling method for adjusting the kernel distances by assum-

ng the data is mapped in a feature space based on the Maha-

anobis kernel distance, estimated through variational inference.

nlike this work, we learn both the shape and the scale of the

ernels per data center by minimizing the predictive loss. 

.4. Asymmetric kernels 

The use of asymmetric kernel distances is not a recent idea

ut, rather, a well-matured topic [20,26,46,50] . In [46] asymmet-

ic kernels are proposed in the context of SVM classification. Wua

t al. [50] shows how similarity functions commonly used in real-

ife applications, can be related to asymmetric kernels, and gives a

ormal definition for the mathematical space described by asym-

etric kernels. The work in [26] proposes asymmetric kernel re-

ression in the context of neural networks and shows that such

odels are better behaved around the data boundaries. The re-

ent work of Kulis et al. [20] learns asymmetric distances for visual

omain adaptation in the context of object recognition. Similar to

hese methods, we also use asymmetric kernel distances, as these
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prove to have more descriptive power when limiting the number

of samples in the training kernel computation. 

2.5. Metric learning 

Rahimi and Recht [32] learns a lower dimensional mapping of

data while maintaining the distances between the data samples

— the kernel distances remain approximately equal to the ones

of the original features. In our work, we learn the kernel met-

ric given the targets, rather than the feature representation. In

[49] the kernel metric minimizes the leave-one-out regression er-

ror. Jain et al. [16] combines kernel learning with metric learning

by employing a linear transformation. In this work, we use a fixed

kernel — the squared exponential kernel, we additionally expand

the parameters of the kernel to full precision matrices. Glober-

son and Roweis [11] , Weinberger et al. [48] , Xing et al. [51] rep-

resent pioneering work in the field of metric learning. Xing et al.

[51] is the first paper to pose metric learning as a convex opti-

mization problem learned from similar/dissimilar pairs of points.

Globerson and Roweis [11] is one of the first works to propose

Mahalanobis distances for metric learning. In [48] the Mahalanobis

distance is learned in a nearest neighbor classifier, which induces

a large-margin separation of classes. Kedem et al. [17] , Kostinger

et al. [19] , Weinberger et al. [48] are recent works focusing on

metric learning for classification with kernels, while [15] focuses

on sparse kernel learning for regression. In this work we employ

metric learning rather than estimating the optimal model hyper-

parameters through marginal likelihood [34] . We do so, as each

data center has an associated lengthscale in the proposed model

and, thus, the marginal likelihood optimization is not straightfor-

ward in our case. 

3. Asymmetric kernel for Gaussian Processes 

We redefine the Gaussian Process model by allowing each train-

ing data center to learn an individualized kernel metric. This en-

tails that the kernel matrix ceases to be symmetric in our case.

However, this comes at extra gain in descriptive power, as despite

using a small set of samples in the training kernel matrix, we opti-

mize the individualized kernel metrics over the numerous available

training samples. 

3.1. Standard Gaussian Process revisited 

We shortly revisit the standard Gaussian Process formulation,

to unify the notations. The mean of the predictive distribution is

[34] : 

f (x 

∗) = k (X , x 

∗) T 
(
k (X , X ) + σ 2 I 

)−1 
y , (1)

Where x ∗ represents an input test sample, X represents the train-

ing samples used for the training kernel matrix computation, y

represents the training targets, f ( x ∗) is the prediction over the in-

put x ∗ and k ( · , · ) is the kernel metric used for estimating sample

distances, and σ is the noise hyper-parameter. 

3.2. Center-based Gaussian Process 

As Eq. (1) indicates, the training procedure requires the compu-

tation of the inverse of the training kernel-matrix, k ( X, X ), which

is prohibitive on larger datasets. The first alteration of the Gaus-

sian Process model that we investigate, is considering a set of data

centers rather than individual training samples. We do so by either

sampling the data or clustering it into a set of centers, X . Despite

its simplicity, this is very effective in getting a fair overview over

the variation in the training data while not having to use all sam-

ples during training. 
More principled manners of defining data centers such as effec-

ive sampling techniques are possible. However, the focus here is

ot on the center definition, which is just meant as a first step to-

ards reducing the size of the training kernel matrix. The strength

f our model comes from allowing these centers to learn individu-

lized metrics. 

.3. Multi-modal asymmetric kernel 

Given that we have sparsified the training data by keeping

nly the training data centers, we lost information regarding the

moothness or variability of the target function in different regions

f the data space. Therefore, we allow each training center, x i ∈ X ,

o define individualized kernel metrics in its data neighborhood.

he lengthscale hyper-parameter is the one defining the size of the

ernel space, thus, we propose individualized lengthscale hyper-

arameters, l i for each center x i . This entails the second alteration

f the standard Gaussian Process model. In this case the predic-

ion function uses training and test kernel terms with per-center

etrics: 

f (x 

∗) = 

ˆ k ( X , x 

∗) T 
(

ˆ k ( X , X ) + σ 2 I 

)−1 

y , (2)

here ˆ k (·, ·) is a non-symmetric kernel whose size depends on its

orresponding training center — ˆ k ( x i , x j ) = k i ( x i , x j ) , and x i , x j ∈ X

re data centers. Thus, the distance from a training center to the

thers is computed within the associated kernel space of that

enter. At test-time ˆ k ( X , x ∗) = ( k 1 ( x 1 , x 
∗) , k 2 ( x 2 , x ∗) , ..k N ( x N , x ∗) ) ,

here N is the number of training centers, and x ∗ is a test sam-

le. In this work we restrain our focus to the squared exponential

ernel distance: 

ˆ 
 ( x i , x j ) = k i ( x i , x j ) = exp 

(
− 1 

2 l 2 
i 

( x i − x j )( x i − x j ) 
T 

)
. (3)

here l i is the lengthscale associated with data center x i . 

Given the use of individualized metrics per data center, the ker-

el ceases to be symmetric. Therefore, we can no longer employ

he standard Cholesky decomposition for estimating the kernel-

atrix inverse. We compute the kernel matrix inversion through

VD (Singular Value Decomposition). Despite this drawback, the in-

ividualized kernel metrics allow us to optimize the scale of the

ernel locally, in the neighborhood of each data center. 

.4. Multivariate multi-modal asymmetric kernel 

By allowing each center to define its own kernel metric, we

hange the model such that we can locally resize the kernel space

o better map the target space. As highlighted in [6] , not only the

ize of the kernel space is important but also the shape. Therefore,

e also consider a multivariate extension of the model that allows

or optimizing also the kernel shape per training center. 

ˆ 
 ( x i , x j ) = k i ( x i , x j ) = exp 

(
−1 

2 

( x i − x j ) P i ( x i − x j ) 
T 
)
. (4)

here P i is the precision matrix associated with the data center

 i , to be learned from training data samples other than the ones

efining data centers. 

.5. Kernel metric optimization 

Standardly in the literature, the Gaussian Process hyper-

arameters are learned through gradient methods by maximizing

he marginal likelihood over the weights. Given that we aim to

ptimize a kernel metric, following the metric learning literature

6,11,48,51] we approach this problem discriminatively, and opti-

ize the hyper-parameters with respect to the squared loss. 
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Thus, we learn the appropriate kernel metric for each data cen-
er, x i ∈ X , from training samples other than the data centers, x n ∈
 \ X . We add a regularization term to the squared loss weighted
y μ. We use the regularized squared loss over the targets as the
unction to be minimized and we employ SGD (Stochastic Gradi-
nt Descent) by estimating the gradients with respect to each per-
enter lengthscale, l i in the univariate case and P i in the multivari-
te case. 

 ( f, y ∗) = 

{ ∑ N 
i =1 

(∑ 

x n ∈ X \ X ( f (x n ) −y ∗n ) 
2 + μl 2 

i 

)
, if univariate; ∑ N 

i =1 

(∑ 

x n ∈ X \ X ( f ( x n ) −y ∗n ) 
2 + μ || P i || 

)
, multivariate. 

(5)

e denote by y ∗ the training target vector composed of values y ∗n 
or input training samples x n , where x n ∈ X \ X are not data cen-

ers, and N is the number of data centers, || · || denotes the Frobe-

ius norm in the multivariate case, and f ( · ) is the predictive func-

ion following Eq. (2) . At each iteration we perform one gradient

pdate step for all hyper-parameters, therefore, allowing them to

e jointly learned. 

.5.1. Univariate multi-modal kernel optimization 

The derivative of the loss with respect to the lengthscale per

enter, l i , for the univariate case is given by the following formula-

ion: 

∂L ( f, y ∗) 
∂ l i 

= 

N ∑ 

i =1 

{ ∑ 

x n ∈ X \ X 
2( f (x n ) − y ∗n ) 

[
∂ ̂  k (·, x n ) 

∂ l i 
αi + ̂

 k (·, x n ) 

(
− ˆ K 

−1 ∂ ̂  K 

∂ l i 
ˆ K 

−1 y 

)]
+ 2 μl i 

}
, (6) 

∂ ̂  k (·, x n ) 
∂ l i 

= 

{
1 
l 3 
i 

( x j − x n )( x j − x n ) T ˆ k ( x j , x n ) , x j ∈ X , j = i ;
0 , x j ∈ X , j � = i. 

(7) 

∂ ̂  K 

∂ l i 
= 

(
∂ ̂  k (·, x m 

) 

∂ l i 

)
x m ∈ X 

, (8) 

ˆ 
 

−1 = 

(
ˆ k ( X , X ) + σ 2 I 

)−1 

, (9) 

= 

(
ˆ k ( X , X ) + σ 2 I 

)−1 

y , (10) 

here we denote by X the data centers, ˆ K represents the asym-

etric training kernel matrix, and y ∗ is a vector of training targets

 

∗
n for training samples x n ∈ X \ X that are not data centers. The

engthscale hyper-parameters, l i , are estimated per training data

enter rather than globally. 1 

.5.2. Multivariate multi-modal kernel optimization 

In the multivariate case we learn a precision matrix, P i , rather

han a scalar lengthscale per data center, x i ∈ X . Therefore, we have

o ensure that the precision matrix learned is symmetric. For this,

n the gradient computation, we apply the derivations for symmet-

ic matrices. 

∂L ( f, y ∗) 
∂P i 

= 

[
∂L ( f, y ∗) 

∂P i 

]
+ 

[
∂L ( f, y ∗) 

∂P i 

]T 

− diag 

[
∂L ( f, y ∗) 

∂P i 

]
(11) 
1 A simple univariate torch implementation can be found at: https:// 

ilvialaurapintea.github.io/code/gp.lua . 

t  

w  

c  

c  
or gradient computation, the only change in the multivariate case

s in the derivative of the kernels with respect to the per-center

recision matrices, P i : 

∂ ̂  k (·, x n ) 

∂P i 
= 

{
− 1 

2 
( x j − x n ) T ( x j − x n ) ̂ k ( x j , x n ) , x j ∈ X , j = i ;

0 , x j ∈ X , j � = i. 

(12) 

∂ ̂  K 

∂P i 
= 

(
∂ ̂  k (·, x m 

) 

∂P i 

)
x m ∈ X 

. (13) 

n this case, an additional cone projection step [48] is applied after

ach update to ensure that the precision matrix remains positive

efinite. 

.6. Model properties 

We analyze the properties considered in [1] , from the metric

earning perspective: 

– Learning paradigm. Fully supervised, as we learn from training

data the best lengthscale hyper-parameters with respect to the

L 2 prediction loss. 

– Form of metric. Non-linear and local with respect to the predic-

tive function. Different metrics are learned for different regions

in the target space. 

– Scalability. Scales with the number of data centers in the uni-

variate case, because the kernel matrix is computed over the

data centers. Thus, is more efficient than using all training sam-

ples. In the multivariate case, we learn a precision matrix, and

the method scales also with the number of data dimensions,

making it more difficult to optimize. 

– Optimality of the solution. Our learning formulation, given in

Eqs. (6) and (11) , is a non-convex function with respect to the

hyper-parameters and a global optimum is not guaranteed. For

this reason we use an additional validation set during training

on which we select among the local optima. 

. Illustrative results 

Fig. 2 illustrates the need for the asymmetric model. If all sam-

les share the same kernel metric, Fig. 2 (ii) and (iii) would not

e possible. When restricting our attention to few training sam-

les, we lose the information of how the target function varies be-

ween the samples, yet the per-center kernel metrics help recover

his information. In this illustration, we fix the training centers to

he centers of the two ellipses. The [0, 1]-normalized pixel coordi-

ates are the input features, and the pixel intensities are the tar-

ets. We visualize three models: (i) center-GP — standard GP on

he 2 data centers, and the optimal lengthscale hyper-parameter

s found through cross validations over 100 randomly sampled

raining pixels; (ii) univariate-AGP — using Eq. (3) with the opti-

al lengthscale per center estimated as in Section 3.5.1 , and (iii)

ultivariate-AGP — using Eq. (4) . In Fig. 2 the univariate asym-

etric model estimates better the sizes of the two blobs, when

ompared to its center-based counterpart, while the multivariate

symmetric model has the lowest error, as it learns both the sizes

nd the shapes of the blobs. We also show the training and valida-

ion losses in Fig. 2 (iv). We additionally analyze the consistency of

ur approach, numerically. For this, we sample on a uniform grid a

tandard 1 D Gaussian Process with a fixed lengthscale set to 13.5.

he aim is to test if the lengthscales estimated by our method

end to the true lengthscale of the Gaussian Process from which

e have sampled, as we add more training data. We use two data

enters for the kernel computation. Fig. 3 shows in red the Eu-

lidian distance between the two estimated hyper-parameters by

https://silvialaurapintea.github.io/code/gp.lua
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Fig. 2. Pixel intensity prediction from input normalized pixel location: (i) center-GP — standard GP trained on training centers; (ii) univariate AGP — proposed asymmetric 

model using per-center univariate lengthscale in the kernel — Eq. (3) ; (iii) multivariate AGP — proposed asymmetric model using per-center multivariate legnthscale — Eq. 

(4) ; (iv) losses — training and validation losses on this data. 

Fig. 3. Numeric consistency: In red, the Euclidian distance between the estimated 

hyper-parameters by our method, using two data centers, and the optimal hyper- 

parameter of the Gaussian Process we have sampled from. We plot standard devia- 

tion over 3 repetitions. In blue, the distance between the optimal hyper-parameter 

and the one of the standard GP on the two centers. With more data, our estimated 

lengthscales approach the optimal value. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this arti- 

cle.) 

Table 1 

Datasets statistics. 

Baseline #Trainval #Test #Features 

Temp [42] 7117 3558 106 

So2 [42] 15,304 7652 27 

Airlines [14] 2,055 K 102 K 8 

UCSD [4] 1200 2800 10 0 0 

VOC-2007 [5] 5011 4952 10 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

The effect of the center selection method when considering: K-means, random sam- 

pling, spectral clustering and GMM center definition on the Temp dataset. 

# Centers NRMSE scores 

K-Means Sampling Spectral GMM 

10 0.602 0.557 0.579 0.606 

50 0.482 0.467 0.482 0.523 
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t  
our method and the optimal one. We report standard deviation

over 3 repetitions. In blue, we show the distance between the op-

timal hyper-parameter and the one estimated by the standard GP

through grid search, using two data centers. With more training

samples, our estimated lengthscale parameters approach the opti-

mal value. The distance does not converge to 0 as we use only two

data centers in the training kernel matrix. 

5. Experiments 

5.1. Experimental setup 

Data splitting and center selection. Table 1 depicts the

specifics of each dataset used. Each dataset is split into trainval and

test, following the standard way. Given the non-convexity of the

problem, we evaluate the hyper-parameters on a small validation

set after each training epoch, and keep the best. For all datasets

the validation set is obtained as 100 random samples taken from

the trainval dataset. These samples are not used for defining the
ata centers or for training data statistics. Different center selec-

ion approaches are considered in Section 5.2 . We standardize the

ata to zero mean and unit variance per dimension, by extracting

tatistics over the training data excluding the validation set. 

Parameter setting. In the SGD, the initial learning rate is set

y looking at the plots of validation and training losses during

raining. We use a starting learning rate of 1 . 0 e − 5 for So2, Temp

nd Airlines datasets, and an initial learning rate of 1 . 0 e − 11 for

CSD and VOC-2007 , where the data dimensionality is consider-

bly higher. We use batch-SGD with mini-batches of 64 randomly

elected training samples. Given the non-convexity of the solved

roblem, we make use of momentum and set it to 0.9 as advised

n [41] . The regularization term in the loss function, μ, is set to

 . 0 e − 5 . For the standard GP models as well as for center-GP —

aussian Process trained on data centers only — we estimate the

odel hyper-parameters by performing grid-search and evaluating

n the validation samples. We use the same procedure for initial-

zing our per-center lengthscales, before optimizing them in the

GD. 

Evaluation metric. For comparison with existing work we re-

ort MSE (Mean Squared Error), RMSE (Root Mean Squared Error),

r NRMSE (Normalized Root Mean Squared Error) defined as: 

RMSE (y , y ∗) = 

√ 

1 

N 

N ∑ 

n 

(y n − y ∗n ) 2 

var (y train ) 
, (14)

here var (y train ) is the label variance on the training data, y ∗ are

he test targets, and y the predictions. 

.2. Center selection 

Here we analyze the effect of the center selection method

n the overall performance of our method. For this we use the

emp dataset which has 106 dimensions per sample. We consider

our center selection methods: K-Means, random sampling, spec-

ral clustering and GMM (Guassian Mixture Model). We test on

ur univariate-AGP — using univariate individualized lengthscales

with 10 and 50 centers, respectively. 

Table 2 indicates that the choice of the centers is not essen-

ial as all methods perform similar. Given that the strength of the
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Table 3 

Evaluation of the proposed models — univariate-AGP and multivariate-AGP on the 

large scale dataset used in [14] . Our proposed models are trained on 50 data cen- 

ters. We compare our results with the methods analyzed in [14] : PIC, FITC, DTC. 

AGP PIC FITC DTC 

Univariate Multivariate 

30.093 ( ± 2.285) 30.805 ( ± 2.950) 33.351 39.530 39.531 
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Fig. 4. (a) MSE results on the UCSD pedestrians counting dataset when compared 

with three prior works [4,8,10] . We obtain comparable performance with prior 

work, though we use only global deep learning features, while [4] relies on motion 

segmentation masks. (b) The training and validation squared losses on the UCSD 

pedestrian counting dataset. 
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odel is in learning individualized hyper-parameters and less in

he method used for defining centers, in our subsequent experi-

ents we rely on k-means clustering. 

.3. Multi-modal approach evaluation 

Table 4 depicts the results of our approaches on the So2

nd Temp datasets when compared to Titsias and Lázaro-Gredilla

42] and with the standard Gaussian Process model. The gain

rought by the multi-modal asymmetric methods over the center-

ased Gaussian Process and the standard Gaussian Process is more

bvious for the Temp dataset. This can be explained by the larger

umber of dimensions to learn from, in the multivariate case. On

oth datasets, the proposed models outperform [42] , while using

nly 50 data centers. 

The performance decreases slightly with the increase in the

umber of data centers for the multivariate asymmetric models.

his is due to the model being trained for the same number of iter-

tions as the univariate case, while having to learn a larger number

f parameters — a precision matrix of size D × D . With the increase

n data dimensionality, the multivariate model becomes consider-

bly slower and harder to optimize. This represents a drawback of

he proposed multivariate approach. The variability in the target

pace also affects the ease with which a good solution is found. 

.4. State-of-the-art comparison 

.4.1. Large scale regression problem 

Here, we consider a more challenging task where the number

f training samples is markedly high. We compare against effec-

ive state-of-the-art methods that focus on the same problem as

e do — representing the data using an informative subset while

etaining the descriptiveness of the model [14] . We use the Air-

ines dataset of Hoang et al. [14] containing over 2,0 0 0,0 0 0 train-

ng samples. The models considered are: DTC (Deterministic Train-

ng Conditional) [38] , FITC (Fully Independent Training Conditional)

39] , and PIC (Partially Independent Conditional) [40] . For evalu-

ting our models we repeat each experiment three times and re-

ort the mean RMSE (Root Mean Squared Error) together with the

tandard deviation. Table 3 shows that our proposed AGP models

erform well when dealing with a prohibitive number of train-

ng samples. Our approach outperforms existing methods [38–

0] while using only a limited number of data centers. 

.4.2. Realistic data: counting from images 

We test our regression approach on two realistic image datasets

UCSD [4] and VOC-2007 [9] — for people and generic object

ounting, respectively. Given the image data, we rely on deep

earning features. We extract 1,0 0 0 dimensional features as the

utput of the fully-connected layer of the ResNet-50 [12] pre-

rained on ImageNet [37] . For computational efficiency here we use

nly the univariate version of our approach with 25 centers, since

he multivariate version requires optimizing a precision matrix of

ize 1, 0 0 0 × 1, 0 0 0. 

Pedestrian counting. Fig. 4 shows the results of our approach

n the realistic problem of pedestrian counting from images on

he UCSD dataset, together with the training and validation losses.
e compare with [8] that uses low level image features, [10] re-

ying on a person detection method specifically trained for the

ask, and [4] which employs motion segmentation masks. Unlike

hese methods, we do not use either motion segmentation masks

r class specific detectors. We use only global image features ex-

racted from a pretrained deep network, and we manage to ob-

ain comparable performance with [4] , while greatly outperform-

ng [8,10] . 

Generic object counting. In Table 5 the goal is generic ob-

ect counting on the VOC-2007 generic object dataset. We compare

ith the set of models proposed in the very recent deep learn-

ng method of [5] . Our features are extracted from a pretrained

eep learning model, while theirs are specifically fine-tuned for

his counting task. We outperform their “glance” models, which

imilar to us, rely on global image features. We additionally obtain

omparable performance to aso-sub-ft-1L-3 × 3 and seq-sub-ft-3 × 3

hich rely on local image information, as they divide each image

nto a 3 × 3 grid and extract features from each cell. It is worth-

hile noting that we use only 25 data centers for computing the

ernel matrix, and achieve comparable performance with methods

elying on stronger features. These results support our approach. 

. Conclusions 

This work brings forth an asymmetric kernel for the Gaussian

rocess model. This encompasses three components: (i) training

n training centers only, (ii) learning individualized kernel metrics

er center and, (iii) extending the lengthscale hyper-parameter to

 precision matrix, thus learning not only the appropriate size but

lso the shape in the kernel metric. Due to the limitations imposed

y the dependency between per-center hyper-parameters, we dis-
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Table 4 

NRMSE on the So2 and Temp datasets for the 3 methods: center-GP — trained on training centers only, univariate-AGP — the univariate asymmetric model using the 

kernel metrics defined in Eq. (3) and, multivariate-AGP — the multivariate asymmetric model with kernel metrics as defined in Eq. (4) . Results compared with Titsias and 

Lázaro-Gredilla [42] and GP — standard GP trained on randomly sampled examples. We show in bold the results outperforming the baseline and underline the best result. 

# Samples NRMSE # Samples NRMSE 

Titsias and Lázaro-Gredilla [42] 100 1.004 Titsias and Lázaro-Gredilla [42] 100 0.489 

GP 100 0.985 GP 100 0.533 

center-GP 50 0.984 center-GP 50 0.559 

univariate-AGP 50 0.846 univariate-AGP 50 0.482 

multivariate-AGP 50 0.863 multivariate-AGP 50 0.445 

center-GP 10 0.985 center-GP 10 0.642 

univariate-AGP 10 0.818 univariate-AGP 10 0.602 

multivariate-AGP 10 0.808 multivariate-AGP 10 0.493 

(a) So2 data evaluation. (b) Temp data evaluation. 

Table 5 

RMSE results on the VOC-2007 general object counting dataset. The 

first two “glance” models use global image features learned in a 

deep learning framework, which is similar to us. The last two mod- 

els use local information by dividing the image into a 3 × 3 grid and 

extracting deep learning features from each cell. Our method out- 

performs the models relying on global image features. 

Chattopadhyay et al. [5] glance-noft-2L 0.50 ( ± 0.02) 

Chattopadhyay et al. [5] glance-sos-2L 0.51 ( ± 0.02) 

Chattopadhyay et al. [5] aso-sub-ft-1L-3 × 3L 0.43 ( ± 0.01) 

Chattopadhyay et al. [5] seq-sub-ft-3 × 3 0.42 ( ± 0.01) 

AGP-25 Univariate 0.43 ( ± 0.002) 
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criminatively solve the problem through metric learning. Individu-

alized kernel metrics entail the loss of the symmetry in the kernel

matrix. However, this has the gain of better describing the target

function in the neighborhood of the center points, used for kernel

computation. 
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