
Exploiting Relational Information in Social Networks using
Geometric Deep Learning on Hypergraphs
Devanshu Arya
Informatics Institute

University of Amsterdam
d.arya@uva.nl

Marcel Worring
Informatics Institute

University of Amsterdam
m.worring@uva.nl

ABSTRACT
Online social networks are constituted by a diverse set of entities
including users, images and posts which makes the task of pre-
dicting interdependencies between entities challenging. We need
a model that transfers information from a given type of relations
between entities to predict other types of relations, irrespective of
the type of entity. In order to devise a generic framework, one needs
to capture the relational information between entities without any
entity dependent information. However, there are two challenges:
(a) a social network has an intrinsic community structure. In these
communities, some relations are much more complicated than pair-
wise relations, thus cannot be simply modeled by a graph; (b) there
are different types of entities and relations in a social network,
taking into account all of them makes it difficult to formulate a
model. In this paper, we claim that representing social networks
using hypergraphs improves the task of predicting missing informa-
tion about an entity by capturing higher-order relations. We study
the behavior of our method by performing experiments on CLEF
dataset consisting of images from Flickr, an online photo sharing
social network.
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1 INTRODUCTION
The structure of an online social network contains an enormous
amount of information within the intrinsic relationships among
entities. Capturing implicit relations within these structure allows
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Figure 1: Figure (a) represents the overlapping community
structure within a social network with the size of node pro-
portional to its degree. As can be seen, the higher degree
nodes forms a sub-unit to which other low degree nodes are
densely connected. Figure (b) shows a comparison between
the hypergraph and traditional graph representation. The
higher-order relation between vertices cannot be captured
using the pairwise edges. However, it can be easily captured
using the hyperedges e1,e2 and e3.

to perform tasks such as clustering, classification and link predic-
tion. In order to extract these relational information sources, data
representation plays a key role. In multimedia, the problem of learn-
ing one type of relations between entities to predict other types of
relations has been a topic of significant interest. In particular, ex-
ploiting relations in online social networks, brings up the problem
of generalization across different types of entities. The entities can
be users in social communication networks (Facebook, Twitter),
images/videos in media sharing networks (Flickr, Instagram), posts
in discussion forums (Reddit, Quora) or resources in ’sharing econ-
omy’ networks (Airbnb, Uber). There exists a multitude of relations
within these social networks, even for a small dataset which reveals
another hindrance to extract meaningful information. One of the
key solutions for these problems is to design a model that can effi-
ciently capture large amounts of relational information between
entities, so one can perform tasks irrespective of any entity specific
knowledge. Hence, there is a need for a representation which is
scalable and a formulation which is neutral to all kinds of social
networks.

Traditional graph-based representations of a social network leads
to a loss in information, as it implicitly takes into account only pair-
wise connections between the entities. These pairwise relations fail
to represent higher-order relations among the entities. Moreover,
a simple binary representation of relations does not depict a col-
lective flow of information. For instance, consider Twitter which
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Figure 2: An example of the proposed method on the CLEF dataset of Flickr. The goal is to predict any type of metadata for
images given two sets of input. Input 1 is the partial information about the images in one of the metadata spaces represented
by an incomplete hypergraph (implying an incomplete incidence matrix). Input 2 is the complete information for the images
in the other metadata space. Finally, the output is the set of predicted hyperedges between the images in the partial metadata
space.

has users, tweets, hashtags, lists etc.. Representing even a ternary
relation of a user releasing a tweet containing multiple hashtags
is infeasible using traditional graphs [24]. Or even in the simple
case of a co-authorship network, one cannot know whether three
or more authors that link together in the network were co-authors
of the same paper or not [50] as seen in Fig.1(b). Thus to capture
higher-order relations in social networks, traditional graph-based
representation of the network proves to be insufficient.

Another characteristic of social networks is the presence of over-
lapping communities [28]. Most importantly a social network pos-
sesses the special property of being a scale-free network [32] [35].
Scale-free networks are a class of power-law networks where the
nodes that have many connections (high-degree nodes) tend to be
connected to other nodes with many connections, while they are
surrounded by many small clusters of low-degree nodes. In other
words, social networks contain a structure of communities, where
smaller communities in the network are joined to larger communi-
ties by highly connected nodes that play the role of local hubs [39].
Graphically, these communities form subunits within the network
which show relatively high levels of connection within them and
a lower connectivity among them as seen in Fig.1(a). This implies
that high-degree nodes in the core of a subunit are crucial for an
efficient flow of information and to maintain strong connectivity
in these networks. To efficiently capture the relational information
within a social network one needs to exploit this dense overlapping
community structure.

Various approaches have been proposed in the past to exploit
relational information in social networks [31] [10] [36] [19] [29].
However, they do not fully capture the structural features shared
within the overlapping community structure of the entities. In order
to utilize this property, in this paper we represent social networks
as hypergraphs where each entity is represented as a set of vertices
and the edges represent the overlapping relations between them.
A hypergraph [3] is a generalization of the simple graph in which
the edges, called hyperedges, are arbitrary non-empty subsets of
the vertex set and may therefore connect any number of vertices.
The hyperedges form the key difference between a hypergraph and
a traditional graph. The nodes are kept the same as in a simple
graph but a hyperedge can connect even all the nodes at once as
compared to a traditional graph where an edge is always a connec-
tion between 2 nodes. Especially, a set of multimodal entities in a
social network can be viewed as a hypergraph whose vertices are
the individuals and whose hyperedges are the communities. Finally,
a hypergraph representation can be computationally advantageous
as compared to the simple graph model since the incidence ma-
trix of a hypergraph requires less storage space in depicting the
same volume of information [47]. In this way, a hypergraph is a
natural framework to capture the community structure as well as
higher-order relations between nodes in the network.

In order to infer relations between entities using only its rela-
tional information requires not only a good representation of data,
but also a robust powerful model to integrate them. In this work,
we propose a methodology which can perform multiple tasks and
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can be generalized to all social networks. We develop a model to
predict missing information (metadata) about an entity by learning
relations between entities, without requiring any content-specific
features of the entity. To build a multi-functional model for predict-
ing missing metadata, we introduce a multi-graph convolutional
neural networkmodel for hypergraphs based on the recent works in
deep learning on graphs, specifically graph convolutional networks.

Deep convolutional neural networks [22] have been proven to
offer an efficient framework to extract deep meaningful statistical
patterns in signals like image, speech or video, in which there is
a latent Euclidean structure. However, most of the definitions of
convolution, utilize the properties of stationarity and locality which
holds for Euclidean data spaces. Recent works [13] [21] on geometric
deep learning aims to extend the framework of convolutional neural
networks to data represented on graphs. The key idea in geometric
deep learning is to devise a method for representation learning
that can capture structural information within non-Euclidean do-
mains, especially graphs. The applications of graph convolutional
network ranges from describing shapes in different human poses
[42], semi-supervised classification of authors in citation networks
[21] and learning molecular fingerprints [11]. However, regular
graph CNNs provide only a partial solution for learning dense in-
formation within a group of nodes. The two basic drawbacks of
such models in a social network scenario have been due to the
compact structure of data which makes the model unscalabale and
the inability to share relational information across entities. Hence,
we focus on developing a framework that can represent the scale-
free properties of a social network and is generalizable to all social
networks.

The points below highlight the contributions of this paper:
• We propose a generic framework which can transfer rela-
tional information from one type of relation to predict other
types of relations between entities. Our approach is entity
independent and captures higher-order relations by using
hypergraph-based representation of a social network.

• We formulate a model for geometric deep learning on hy-
pergraphs to perform tasks such as multi-label classification,
link prediction and recommendation. Our results shows sig-
nificant improvement as compared to previous graph-based
methods.

• We further establish that a hypergraph-based representation
of a social network is the most efficient way to build a model
for learning the same volume of information in a network as
compared to traditional pairwise simple or weighted graphs.

2 BACKGROUND
In this section, we introduce some background on the three con-
cepts on which we base our methodology i.e. hypergraphs, matrix
completion and geometric deep learning.

2.1 Notation and Formulation of a Hypergraph
A hypergraph G is formally represented as H = (V ,E), where V is
a set of vertices and E is a set of hyperedges where each e ∈ E is
a subset of V . The degree of a hyperedge e , denoted as δ (e), is the
number of vertices in e . In case of a simple graph, δ (e) = 2 and hence
they are known as "2-graph". The diagonal matrices containing the

degrees of all vertices (v) and hyperedges (e) are denoted byDv and
De respectively.We say that there is a hyperpath between verticesv1
andvk when there is a sequence of distinct vertices and hyperedges
v1, e1,v2, e2, ..., ek−1,vk such that {vi ,vi+1} ⊆ ei for 1 ≤ i ≤ k − 1.
One of the key differences of hypergraphs as compared to pairwise
simple graphs is its representation using an incidence matrix. It
is represented by a |V | × |E | matrix H with entries h(v, e) = 1 if
v ∈ e and 0 otherwise. A simple graph is commonly represented
by a square |V | × |V | matrix A which is known as the adjacency
matrix, such that its element ai j is 1 when there is an edge from
vertex i to vertex j and 0 when there is no edge. There are many
advantages of the incidence matrix (H ) over the adjacency matrix
(A) to model relational data [47]. The three key advantages are: (i)
the incidencematrix of the hypergraph requires less storage space in
comparison with the graph adjacency matrix to represent the same
volume of information; (ii) hypergraph incidence matrices require
fewer operations for matrix-vector multiplication; and (iii) most
importantly, the benefits of using the Laplacian of a hypergraph
incidence matrix which will be discussed in detail in section 4.2.

2.2 Matrix Completion
Matrix completion is the task of finding the missing values of a
partially observed p ×q matrixM . That is, we only observe a sparse
set E of observations Mi, j : ∀(i, j) ∈ E, with |E | << pq. The goal
is to estimate the rest of the values Mi, j < E. A particularly pop-
ular model is to assume that the values lie in a smaller subspace,
resulting in M being a low-rank matrix, which leads to solving a
rank minimization problem. Let Ξ(•) be the projection operator
selecting only those entries that lie in the set E and let R be the
target matrix to be reconstructed using Mi, j : ∀(i, j) ∈ E. Then the
rank minimization problem is given by:

R̃ = min
RϵRp×q

rank(R) s.t. Ξ(R) = Ξ(M), (1)

However, in reality the observed entries always contain a small
amount of noise. For example, in movie recommmender systems
the rating given by user contains noisy input and in wireless com-
munications the signals received are contaminated with noise. To
make the low-rankmatrix completion problemmore robust to noise,
Candes et.al. [8] relaxed eq.1 by nuclear norm minimization given
by eq.2.

R̃ = min
R

1
2
| |R | |∗ + λR | |Ξ(M − R)| |2F (2)

The number of unknown variables in this formulation are in
the order of p × q which makes it practically unscalable for large
matrices. One of the solutions is to use a factorized representation
of matrix R i.e. R = XYT , where X , Y are p × r and q × r , matrices
respectively with r << min(p,q), which formulates as eq.3 [43].

X̃ , Ỹ = min
X ,Y

1
2
| |X | |2F +

1
2
| |Y | |2F + λX ,Y | |Ξ(M − XYT )| |2F (3)

Low-rank further implies linear dependence of rows/columns
ofM which can be utilized to constraint the space of solutions to
be smooth. In many scenarios, the rows/columns form commu-
nities which can further optimize computation by incorporating
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proximity information among rows/columns. Recent work on geo-
metric matrix completion has shown the importance of these rela-
tions by using them as side information to the matrix completion
problem [20] [34] [2] [38]. It assumes that there exists a graph
Gr = (VX ,EX ) whose adjacency matrix encodes the relationships
between the p rows of X and a graph Gc = (VY ,EY ) for q rows of
Y . The geometric matrix completion can then be written as

min
X ,Y

1
2
| |X | |2Gr

+
1
2
| |Y | |2Gc

+ λX ,Y | |Ξ(M − XYT )| |2F (4)

where, | |X | |2Gr
= trace(X∆rX

T ) and | |Y | |2Gc
= trace(Y∆cY

T ) are
the graph Dirichlet semi-norm for rows and columns respectively.
∆r and ∆c are the row and column laplacian matrices.

2.3 Geometric Deep Learning
As defined by Bronstein et.al. [5]; "Geometric deep learning is an
umbrella term for emerging techniques attempting to generalize
(structured) deep neural models to non-Euclidean domains such as
graphs and manifolds". One of the early attempts on generalizing
neural network to graphs are due to Scarselli et.al. in 2005 [15],
who proposed a combination of recurrent neural networks and
random walk models called Graph Neural Networks (GNN). The
first formulation of convolution neural networks on graphs used
the definition of convolutions from graph signal processing in the
spectral domain [6].
In this work, we focus on applying convolution network on graphs
in order to learn the intrinsic relations in social networks. A convo-
lutional layer in the spectral domain is defined as

f outl = ξ (

p∑
l ′=1

ΦkĜl,l ′Φ
T
K f inl ′ ) (5)

where, Fn×pin = (f in1 ... f
in
p ) and F

n×q
out = (f out1 ... f outp ) represent

the p and q−dimensional input and output signals on the vertices
of the graph. Φk is the n × k matrix of the eigenvectors from the
spectral decomposition of the graph. Ĝl,l ′ are the learnable spectral
filters and ξ is the ReLU non-linearity. Further advancement to this
definition have been proposed in order to make aGraph Convolution
Network (GCN) generic and scalable [16] [11] [21].

3 RELATEDWORK
We review two categories of relatedwork: studies on context/network
based learning of relational information in social networks and ap-
plications of deep learning approaches on graphs.

3.1 Learning Relational Information in Social
Networks

Several approaches have been introduced for learning relations
within a social network. They can be grouped in fivemain categories
based on their representation of social network data.

In the first one, [26] proposed one of the earliest approaches
where they use network topology in which, they model a social
network as a simple homogeneous graph where each node rep-
resents an entity and each link denotes social relationships. [45]
proposed Link Prediction using Social Features (LPSF ), based on
features extracted from patterns of prominent interactions across
the network for each entity pair. These features are very useful

in identifying similar node pairs, even when they are far away.
They propose a simple yet powerful model to capture relations
between entities. However, these approaches are not made generic
across all networks and lack scalability due to their dependence on
pre-defined methods for feature extraction.

In the second type of approach [48] proposed to model social
networks as pairwise heterogeneous graphs as opposed to homo-
geneous ones and apply a random walk algorithm to calculate link
proximity. Online photo sharing networks have been of particu-
lar interest in learning relations due to the generation of large
amounts of metadata. [31] proposed a graphical model that treats
image classification as a problem of simultaneously predicting bi-
nary labels for a network of photos. They represent each image by
a node while the edges are formed between images that have some
common property. The first two approaches model social relations
between entities as pairs and then apply a structural learning al-
gorithm. These approaches can be scalable to large networks but
they still fail to capture any higher-order relations. Therefore, they
cannot make use of the community structure in social networks
leading to loss in information. Moreover, their applicability to real-
world networks is confined as they use parametric methods for
modeling relations [19].

The third category of approaches represents data on an ego net-
work, which consist of a focal node ("ego") and the nodes to whom
ego is directly connected to ("alters"). Egos and alters are tied to
each other by social relations, in [12] and [23], the authors propose
to learn social circles by representing the data in ego networks. Li
et. al. [25] further study the problem of profiling user attributes in
social networks by capturing the correlation between attributes and
social connections in an ego network. These approaches however
does not generalize for all types of social networks and to learn all
kinds of relations between entities and metadata.

Another kind of approaches are based on hypergraph theory.
Hypergraph-based models have been widely used in the multi-
media domain for solving the problems of community detection
[49] [27], multi-label classification [9] [44], tag-based social image
searching [14], music recommendation [7] and link prediction in
social networks [24]. In this work, we use hypergraph-based ap-
proach to represent data, for precisely capturing the high-order
relations, in order to build a generic framework for classification,
recommendation and link prediction.

Several "non-graph" based approaches to exploit relational in-
formation across domains have also been a field of particular inter-
est. Earlier works on multi-domain collaborative filtering includes
interaction-associated information of users and items as side infor-
mation for recommendation. Cross-domain collaborative filtering
(CDCF) [18] has recently started to draw significant research at-
tention. The basic concept of CDCF is to borrow rating knowledge
for each user from some related auxiliary domains, whose rating
matrices are relatively dense, to alleviate the rating sparsity prob-
lem in the sparse target domain. These approaches rely mostly
on implicit domain correlations that are mined solely from user
preference data, and and no explicit links are exploited. There are
two major questions surrounding this approach [41]. First, what
could be the common knowledge that can be transferred/shared
between different domains, and, second, what could be the optimal
way to transfer/share knowledge between different domains [37].
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Figure 3: A block-diagram of the proposed model. The input to the model are the partial Hθ
p
i and complete Hθ

c
0 hypergraphs

corresponding to the two types of metadata θi and θ0 respectively. Iθ c0 and Iθ
p
i are the incidencematrices (the grey color depicts

data used for training whereas white represents missing data). The model updates the hypergraph incrementally by updating
the incidence matrix using geometric deep learning based model.

3.2 Application of Deep Learning based
Approaches on Graphs

There has been a recent surge of interest to formulate deep learn-
ing methods on non-euclidean domain especially in graphs. The
effectiveness of deep learning graph-based approaches ranges from
computer graphics [4] to chemistry [13]. The spectral graph con-
volutional neural networks (GCN ), originally proposed in [6] and
extended in [11] have proven effective in classification of hand-
written digits and news texts. [21] proposed a simplified GCN for
semi-supervised classification of authors in a citation network. In
the computer vision community,GCN has been extended by [30] to
describe shapes in different human poses, [42] to demonstrate clas-
sification of point clouds and [33] for image and 3D shape analysis.
In multimedia, [40] proposed an approach to categorize user posts
for political extremism content based on their discussion topics.
Deep learning on graphs for social networks is yet to be explored for
their ability to uncover hidden relations between multimedia items.
In this paper, we take a step further to devise a generic model for
learning relations in social networks using geometric deep learning
methods.

4 PROPOSED MODEL
In this work, we define a trainable graphical model that treats pre-
dicting metadata for an entity, as the unified problem of generating
sets of hyperedges across entities. The basic hypothesis of the model
is that entities related through one set of metadata carry imper-
ative information which can be learnt to predict other relational
properties between them. In this paper, we will use H

p/c
Θ (with

I
p/c
Θ as its incidence matrix) to denote a partial(p) or a complete
(c) hypergraph. The subscript Θ is the type of metadata used to

construct the hyperedges i.e. Θ = t/l/д/u for tags (t ), labels (l),
groups (д) and users (u) respectively. The inputs to the model are:
(a) a complete hypergraph of entities constructed using one type of
metadata denoted by Hc

Θand (b) a partial hypergraph on the same
sets of entities constructed from the required metadata denoted by
H
p
Θ. The training of the model has three phases: constructing the

model by formulating it as a factorized matrix completion problem,
relational feature extraction using geometric deep learning and
finally updating the partial hypergraph by predicting hyperedges
across entities. Fig.3 shows these three phases as a block diagram.

4.1 Formulating Hyperedge Prediction as
Matrix Completion

The computational advantage of using a hypergraph for the above
mentioned problems instead of a simple graph is the representation
of its vertices and edges by an incidence matrix. As compared to
traditional graphs where the incidence matrix has an additional
constraint of only two non-zero values in each column ("2-graph"
property), the incidence matrix of a hypergraph can have as many
as all non-zero values in each column. Therefore, generating hy-
peredges in a hypergraph can be termed equivalent to the problem
of filling missing entries in its corresponding incidence matrix. In
this work, we represent the relation between entities using their
metadata by hypergraphs. Each entity corresponds to a vertex and
the edges depict all unique values of the corresponding metadata.
The respective incidence matrix (Ip/cΘ ) is of dimension n × θ , where
n is the total number of entities and θ are the unique values cor-
responding to the metadata Θ. Hence, the problem of predicting
hyperedges between entities in H

p
Θ reduces to completing the in-

cidence matrix IpΘ with multiple missing entries corresponding to
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each column and at least one known entry in each row, where each
row is an entity and the columns are values of the metadata.

In order to incorporate relational information from Hc
Θ to fill

I
p
Θ, we further take motivation from geometric matrix completion.
This is achieved by factorizing I

p
Θ into its row (Xp ) and column

(Yp ) matrices such that IpΘ = XpY
T
p . The matrix X with dimension

n × q represents the entities (vertices) and Y with dimension θ × q
represents values of metadata (edges), with q << min(n,θ ). The
implicit relation between the individual entities in Xp (row matrix)
is captured usingHc

Θ. We consider identity relations between values
in the column-matrix Yp i.e. each value of the metadata is related
to itself only. This is because the unique values of metadata (Θ) do
not contain any relational information among them. That is, we
treat all the values of a metadata to be independent and uniformly
distributed in space. Thus eq.4 can be re-formulated with Hc

Θ ≡ Gr ,
I
p
Θ as the partially filled matrixM and | |Y | |Gc as a constant, which
leads to the following minimization problem

min
X

| |X | |2H c
Θ
+ λX | |Ξ ◦ (I

p
Θ − XYT )| |2F (6)

4.2 Feature Extraction using Multi-Graph
CNNs on Hypergraph

The second phase of our model aims at jointly extracting features
from Hc

Θ and Hp
Θ. In this way, we can transfer the relational infor-

mation from the complete hypergraph Hc
Θ to predict the missing

hyperedges in H
p
Θ. In this paper, we devise our solution based on

recent work on multi-graph convolution (MGCNN ) [34]. It uses
the formulation for GCN using recurrent Chebyshev polynomials
which simplifies eq.5 [11]. The motivation behind multi-graph con-
volution is that, a Fourier transform of a 2-dimensional signal can be
simplified by formulating it as applying a one-dimensional Fourier
transform to its rows and columns. In particular, multi-graph convo-
lution proposes a method of matrix completion, given the rows and
columns of a matrix possess relational information within them-
selves. In our framework, we extract features combining IpΘ and IcΘ
by stacking multi-graph CNN layers given by

X ′
t =

q∑
j=0

ΦjTj (∆r )Xt (7)

where Φj are the learnable filter coefficients, ∆n×nr is the row-
hypergraph Laplacian and Tj is the representation of filters using
Chebyshev polynomials. In this way a multi-graph CNN on X

n×q
t

with a single channel produces a k dimensional output X ′n×q×k
t .

The other advantage of the above formulation is the use of the
Laplacian to encode information from data defined on hypergraph
Hc
Θ. The Laplacianmatrix of a hypergraph has been shown to be use-

ful for learning higher-order relations [1] [44], spectral clustering
of edges [50] and to measure the relatedness between two entities
[7]. In this paper, we use the normalized hypergraph Laplacian
matrix (∆r ) [50] given by

∆r = I − D
− 1

2
v IcΘD

−1
e IcTΘ D

− 1
2

v (8)

where Dv and De are the vertex and edge degree matrices of hy-
pergraph Hc

Θ respectively, I is the identity matrix and IcTΘ is the

Task1 Task2 Task3 Task4
θ0 Tags (t ) Tags(t ) Tags (t ) Labels (l )
θi Labels (l ) User (u) Groups (д) Tags (t )

| |relθi | | 613,014 51,804 70,226,414 91,485,864
| |rel(Hc

θ0
)| | 45,766 45,766 45,766 55,396

| |rel(Gc
θ0
)| | 85,802 85,802 85,802 95,766

Table 1: Table showing the details about the 4 tasks. The goal
is to predict relations given a partial set of relθi and complete
set of relations represented on hypergraph (rel(Hc

θ0
)) or on

simple and weighted-graph (rel(Gc
θ0
)).

transpose of incidence matrix IcΘ. The Laplacian will be used for
incorporating the structure of the hypergraph Hc

Θ in eq.7. In this
way, we extract relational features using combined information
from the complete and the partial hypergraph.

4.3 Incremental Updates of the Hypergraph
The next step is to diffuse the features extracted by coupling the
structures of the two hypergraphs (Hc

Θ and Hp
Θ). The partial hyper-

graph is updated incrementally as a consequence of the completion
of its incidence matrix. We use a Recurrent Neural Network (RNN)
[17] to predict small incremental changes (dX ) to the matrix X [34].
One of the main advantages of using an RNN for predicting accurate
small changes is its ability to store information for longer temporal
steps. The model is finally trained by feeding the features extracted
from multi-graph CNN (X ′

t ) to an RNN and perform training by
using the minimization eq.6 in geometric matrix completion as the
loss function.

L(Φ,σ ) = | |X ′
t,σ∆rX

′
t,σ

T | |2 + λX | |Ξ ◦ (X ′
t,σY

T − IPθ )| |2 (9)

where X ′t is the feature extracted by multi-graph convolution with
Φ as the learning coefficient, σ denotes the parameter for RNN and
the subscript t denotes the number of diffusion iterations.

5 EXPERIMENTS
In this section, we perform extensive experiments to show the
advantages of learning higher-order relations in a social network
using geometric deep learning on hypergraphs as compared to
other approaches. We design our experiments to investigate the
following:

• Performance of the proposed generic framework to predict
multiple types of relations between entities

• Advantages of using geometric deep learning over existing
simple graph as well as hypergraph-based learning

• Efficiency in representing relational information of a net-
work using hypergraphs as compared to pairwise simple
graph representation

To evaluate our model, we explore the online photo sharing so-
cial network Flickr, which generates a huge amount of metadata
and hence relations for each image. Flickr has been particularly
very popular in using social network metadata for image classifi-
cation among other implications [19] [31]. The metadata, such as
user-generated tags and community-curated groups in Flickr are
used by people as a means to communicate with other people, and
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(a) Task1: Multi-Label Image Classification (b) Task2: Image-User Link Prediction

(c) Task3: Group Recommendation (d) Task4: Tag Recommendation

Figure 4: Experiment 1 - Receiver Operating Characteristics (ROC) curve showing the performance of the models on each of the 4 tasks. The
hypergraph-based geometric deep learning model (HGDL ) has significant advantage as compared to other methods.

as a means to describe the image and its location. But not every
image is annotated with all the information, hence using relational
information can be highly informative in unveiling the missing
information of every image.
Data Setup For our experiments, we study the CLEF dataset [31]
comprising of images from Flickr which has social network meta-
data and has labels provided by human annotators for each image.
The dataset consists of 4,546 images with 99 labels (l), 21,192 tags
(t ), 10,575 groups (д) and 2,663 users (u). We show that our frame-
work can be used as a generic multi-functional setup for generating
information for an image by performing 4 types of tasks using our
model: Task1 : Multi-Label Image Classification, Task2 : Image-
User Link Prediction, Task3 : Group Recommendation and Task4 :
Tag Recommendation. Given a set of known-metadata (θ0) for each
image, we first construct the complete hypergraph Hc

θ0
. Our goal

is to predict other sets of partially known metadata (θi ) associated
with the images.

Training The total number of relations, | |relθi | | between the
images and the target metadata (θi ) is tabulated in Table1. As seen
from the table, each image has multiple values of metadata in com-
mon with other images, resulting in a multitude of relations. We
randomly sample 40% of these relations and keep them aside to
use them as test set. The remaining relations are used to construct
the partial hypergraph H

p
θi

for training the model along with the
complete hypergraph Hc

θ0
.

Evaluation To show the efficiency in representing social network
information with a hypergraph, we compare our result with the
data represented by hypergraph (H ), simple graph (G) and weighted

graph (wG) using the same model. Simple graph (G) indicates a bi-
nary relation between entities with a value 1 if the two entities share
at least one common value of the metadata. The weighted graph
(wG) is constructed by assigning weights equal to the count of val-
ues of the metadata common between two entities. The hypergraph-
based representation reduces the total number of relations between
entities and the known metadata significantly by representing
higher-order relations as community. This can be seen from Table1
where | |rel(Hc

θ0
)| | and | |rel(Gc

θ0
)| | denote the total number of rela-

tions in a hypergraph and graph based representation respectively.
We evaluate the performance of our geometric deep learning

based model as compared to the previous hypergraph based al-
gorithm (MRH ) [7] [24] and a graph-based model trained on so-
cial network features (LPSF ) [45] [46] for the same tasks. LPSF as
mentioned under the first approach in section 3.1, trains a neural
network on popular features like Page Rank, Number of Common
Neighbors, Preferential Attachment etc. extracted from a social
network. We use the notation HGDL , wGGDL and GGDL for our
geometric deep learning (GDL) model on hypergraph, weighted
graph and regular graph respectively.

5.1 Experiment 1: Learning Relational
Information in a Social Network

We start our experimental evaluation by showing the performance
of our model,MRH and LPSF on the 4 tasks. To evaluate the perfor-
mance of our model and show its advantages over other methods,
we show the Receiver Operating Characteristic (ROC) curves for
each tasks. The ROC curve depicts how well a model is able to
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(a) Task1: Multi-Label Image Classification (b) Task2: Image-User Link Prediction

(c) Task3: Group Recommendation (d) Task4: Tag Recommendation

Figure 5: Experiment 2 - Figure showing the rate of learning with each iteration of the proposed model using hypergraph (HGDL ), weighted
graph (wG) and simple graph (G). As can be seen, the hypergraph-based model converges faster for all the 4 tasks implying a better represen-
tation to learn relational information.

predict the presence/absence of a relation among images with the
correspondingmetadata. Fig.4 shows the performance of themodels
on the 4 tasks. The Geometric Deep Learning based approach out-
performs existing hypergraph-basedMRH and graph-based LPSH
methods in all the 4 tasks. This confirms, the significant advan-
tage of using a hypergraph representation of the network as com-
pared to simple and weighted graphs using the same model. Most
importantly, this proves the advantage of learning relations us-
ing geometric deep learning techniques as compared to existing
hypergraph-based model.

5.2 Experiment 2: Measuring the efficiency of
representing data from social network

To explore the advantage of representing a social network using
hypergraphs as compared to traditional graphs, we evaluate their
efficiency in learning relational information. We compare the rate
of convergence of our algorithm on the three graph frameworks
mentioned above i.e. hypergraph (H ), weighted graph (wG) and
simple graph (G) on the 4 tasks. The faster the algorithm converges,
the better the framework is in capturing the same volume of rela-
tional information. We plot the area under the ROC curve against
the number of iterations used to update the matrix incrementally.
As can be seen from Fig.5, the hypergraph-based representation
converges faster than simple and weighted graphs for all the 4
tasks. This concludes the efficiency of a hypergraph in capturing
information which makes it the best choice to represent data on a
social network.

6 CONCLUSIONS
In this paper, a generic method to exploit relational information
between entities in a social network for predicting missing informa-
tion about an entity has been presented. In contrast with traditional
graph representation, wemodel a social network using hypergraphs.
We show the importance of using hypergraphs in order to capture
all types of entities and either the pair wise or high-order rela-
tions among them to avoid loss of any information. Moreover, our
approach is content independent i.e. it does not depend on any
entity-specific information and hence can be generalized to all
types of social networks. We formulate the learning problem as
matrix completion on graphs and extend the methods on geometric
deep learning to hypergraphs. We evaluate our model on 4 tasks:
multi-label image classification, image-user link prediction, group
and tag recommendation in a Flickr dataset. Experimental results
show a significant advantage in representing social networks by
hypergraphs and using deep learning based method for exploit-
ing relational information within the network. We also prove the
computational effectiveness of representing the same volume of
information from a social network on a hypergraph as compared
to the traditional pairwise graphs.
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