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ABSTRACT
This paper aims to automatically generate a summary of an unedited
video, guided by an externally provided music-track. The tempo,
energy and beats in the music determine the choices and cuts in
the video summarization. To solve this challenging task, we model
video summarization as a quadratic assignment problem. We assign
frames to the summary, using rewards based on frame interesting-
ness, plot coherency, audio-visual match, and cut properties. Ex-
perimentally we validate our approach on the SumMe dataset. The
results show that our music guided summaries are more appealing,
and even outperform the current state-of-the-art summarization
methods when evaluated on the F1 measure of precision and recall.

CCS CONCEPTS
• Information systems→Multimedia content creation; •Math-
ematics of computing → Permutations and combinations;
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1 INTRO
The goal of this paper is to create high-quality video summariza-
tions, guided by an externally provided music-track. Consider for
example that after a day of skiing with your GoPro camera, you
re�ect your mood by selecting a music-track and the computer will
automatically create a video summary of your skiing day �tted on
this speci�c music-track. Clearly a summary with classical music
should have di�erent dynamics, plots, and cuts than a summary
based on funk music, even when the summaries are created from
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Figure 1: Illustration of key factors included in our model
for automatically generating music-guided summaries.
the same source video. Such an adaptive summarization method
could be useful for creating video summarizations of social events
by social media services or to personalize video summarizations.

The key key factors used in our music-guided summarization
model are illustrated in Fig. 1. We are inspired by a large body of
research focused on video summarization, either using only the
visual source video [5, 8, 11–13, 18, 22], or combining multiple video
modalities [4, 10, 20]. In contrast to these works, we aim to create
a video summary �tted on a given music-track, which to the best
of our knowledge has never been considered before.

1.1 Related work
Video summarization is often simpli�ed to a frame interestingness
problem [18], where interestingness can be measured using a vari-
ety of approaches, including object detections [11, 13], saliency [5,
8, 14], person detection [17], and landmark detection [12]. However,
frame interestingness does not include any clues about the aesthet-
ics of the summarization itself. Rather than relying exclusively on
heterogeneous measures of interestingness for our video summa-
rization, we emphasize on creating summaries, with a coherent plot
and logical cuts.

Several works have previously incorporated coherency to make
video summaries more viewer friendly. Such coherency can be per-
formed by selecting sets of consecutive frames [5] or by adding tem-
poral regularization [11]. The balance between interestingness and
coherency, can be obtained using pre-segmentation methods [5],
submodular optimization [6, 19] or recurrent neural networks [22].
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Figure 2: Overview of the Quadratic Assignment Problem formulation for audio-guided video summarization.

Here, we propose a model that jointly incorporates interestingness,
coherency, and which is capable of adjusting the summaries based
on a user-provided music-track.

Beyond exploiting just the visual content of videos for summa-
rization, a number of works have proposed to jointly model the
visual and audio modalities of videos [4, 10, 20]. For example, in [10]
features from the visual, audio, and textual (subtitles) modalities are
used to highlight interesting frames. In this work, we have an or-
thogonal goal, namely to align the summarization of videos with an
externally provided music-track. Aligning video with a music-track
is important for viewer experience, as indicated by [21].

Existing computational models for video summarization can
not incorporate music-guidance. For example pre-segmentation
methods are unlikely to yield segments which match the music
properties, indicating we need a frame-based model. In contrast to
seeing summarization as a selection process [5, 6], we see it as an
assignment problem. Where for each summary slot the most suit-
able frame from the source video is assigned. Therefore we model
our approach using the classical Quadratic Assignment Problem.

1.2 Contributions
We make the following contributions:

• we propose to summarize videos based on joint audio-
visual information from the original video and a user-
provided music-track,

• we model interestingness, coherency, and audio-match of
the summaries jointly as a Quadratic Assignment Problem,

• we introduce measures for matching the dynamics and the
beats of the music-track to the summary.

We include experimental evaluation to show that our approach is
competitive to state-of-the-art summarization methods and gener-
ates audio-visual summaries that are tailored to the user provided
music-tracks.

2 AUDIO-GUIDED SUMMARIZATION AS A
QUADRATIC ASSIGNMENT PROBLEM

We see video summarization as classical assignment problem, where
to each summary location s ∈ S , the most suitable frame n ∈ N
from the source-video is assigned. The suitability (or reward) of the
assignment depends on three major factors:

• the interestingness of the frame;

• the match between the music in the summary and the
visuals of the speci�c frame;

• the match with the previous frame in the summary, to
model a story-line, segments, and cuts.

While frame-relevance yields a selection problem, and the music-
video match can be modeled as a linear assignment problem, to
model the cost for the subsequent frames we need to resort to
quadratic assignment problems (QAP). Originally introduced for
allocating facilities to certain locations in 1957 by Koopmans and
Beckman [9], the QAP suits our model for music-guided video
summarization. It enables to start from the summary, without the
need of any pre-segmentation which would limit the �exibility to
adjust to a speci�c music-track.

The QAP is a permutation problem, which aims to �nd the per-
mutation P ∈ P with the highest reward:

fQAP (P ) = tr
((
FPR> + B

)
P>

)
, (1)

Where, F denotes the �ow matrix de�ned over the slots in the
summary, and R de�nes a reward matrix between the frames in
the source video, the last term B is a linear summary-source re-
ward matrix, see Fig. 2 for an overview. Note that our permutation
P ∈ P also encompasses a selection, since the summary contains
less frames than the original source video. Therefore for any valid
permutation P holds:

∑N
j=1 pi j = 1 and

∑S
i=1 pi j = 1.

Below, we introduce 6 summary components to model the three
major factors of a good summarization, mentioned above. These
components include, frame interestingness (I), Uniformity of sto-
ryline (U), Audio-Video Dynamics (AVD), Segment Length (SL),
Motion Boundaries (MB), and Beat Cuts (BC). Each of these compo-
nent is modeled as an assignment problem, and our �nal model is a
weighted combination of these c components:

fAVsummary (P ) =
∑
c

wc f cQAP (P ). (2)

In general, solving a QAP, or its ϵ-approximate solution, is a NP-
hard problem [16], in Section 2.4 we discuss our search strategy.

2.1 Frame interestingness
The �rst factor is the interestingness of each frame, for which we
learn a frame-based interestingness classi�er, using the human
selected summaries as positive examples and the remaining frames
as negative examples. For each frame we extract a set of M features,
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Figure 3: Illustration of the uniform reward BU. Highest re-
ward (white) obtained when following a uniform storyline.

and compute the interestingness score for frame k based on unary
and pairwise terms, following [5, 11] we use:

ik = w0 +
M∑

m=1
wm xkm +

M∑
m=1

M∑
n=m+1

wmn xkm xkn , (3)

where xkm denotes the score of them-th feature of the k-th frame.
Maximizing the interestingness of a summary is in principle

(just) a selection problem, to remain within the QAP formulation,
we de�ne the linear matrix BI to have identical values for each
location s , given a frame k , as follows:

BI
sk = i

k . (4)

Uniform Storyline. Besides the frame interestingness factor, we
also observe that the source videos tell a roughly temporal uniform
coherent story. This was also observed in [6], and indicates that a
priori a good summary samples frames uniformly from the source
video. Such a uniform sampling reward can be modeled as the linear
part of the QAP, measuring the distance between summary position
s and its uniform sampled frame p̃s from the source video:

p̃s =
N
S

(
s − 1

2
)
, (5)

BU (s,n) = 1 − 1
N 2 (p̃s − n)

2 , (6)

where BU is normalized between 1 (when n = p̃s ) and 0, illustrated
in Fig. 3. This could be seen as a prior model to retain uniform
temporal coherency of the source video.

2.2 Music-Video Match
The second factor is the match between the music-track in the
summary and the visuals of the source video. In this paper we
aim to let the summary follow the audio dynamics, and therefore
that the music dynamics should be similar to visual dynamics. To
determine the audio dynamics we compute the relative amplitude
for each summary frame location: âs = as − 1

S
∑
s ′ a

s ′ , where as

is the amplitude at time s . For the video dynamics we compute
the relative motion per frame: f̂ n = f n − 1

N
∑
k ′ f

k ′ , where f n

indicates the motion in frame n, based on the computation of the
optical �ow. We use the following linear rewards:

BAVD (s,m) = 1 − γ |âs − f̂m |, (7)

where γ is a constant normalizing all rewards between 0 and 1.

Figure 4: Illustration of length prior, given the segment
length, the reward is based on lm and lp (5 and 25 in this �g).

2.3 Subsequent Frames
The last factor is to model the relation between two subsequent
frames in the summary. This is important given that our model does
not use pre-segmentations of the video. Subsequent frames could
either form a consecutive segment, or de�ne a cut (jump). The �nal
model should balance between the length of series of consecutive
frames, the placing of the cuts based on the frame features and
based on the alignment with the music-track, and to represent the
story-line of the original video.

Segment length. First, we model the length of a segment, since
too short segments results in many cuts and makes the summary
chaotic, while too long segments make the summary boring. There-
fore we include a score based on the segment length l :

s (l ) = max(0, lp − |l − lp | − lm ) (8)

where l is the length of a segment, lp the prior length, and lm the
minimum length, see Fig. 4 (top). In QAP formulation, this entails
the following �ow and reward matrices:

RSL (m,n) =




2 if n=m + lp , 2 ifm=n + lp ,
1 if n=m + 2lp − lm , 1 ifm=n + 2lp − lm ,
1 if n=m + lm , and 0 otherwise,

(9)

F SL (s, t ) = δ (s=t+lm ) − δ (s=t+lp ) + δ (s=t+2lp−lm ) − δ (s=t−lm ),
(10)

where the �ow matrix F uses the Dirac delta function δ (·), which
returns 1 if and only if the condition is true. The complexity of
these matrices originate to ensure that coincidental rewards are
canceled, e.g. a jump of exactly lp frames would normally add an
additional reward for a good sequence, yet due to the jump this
needs to be zeroed.

Motion boundaries. Besides the segment length, we also have an
aesthetic view on cuts, namely, a cut should take place when there
is a minimum of motion in the frames, see Fig. 5. This is included
in the QAP, by using the following �ow and reward matrices:

RMB (m,n) =
−1
2
δ (m > n+1) (xmm + x

m
n ), (11)

FMB (s, t ) = δ (s = t+1), (12)

where xm denotes the estimated motion magnitude, based on the
KLT tracker. The reward matrix uses negative rewards between
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Figure 5: Illustration of Motion boundaries (top) and Beat
cuts (bottom). Motion boundaries promote cuts between
frames with low motion. Beat cuts promote cuts in the sum-
mary aligned with the music beat.

frames with high-motion. The �ow matrix aggregates the motion
magnitude scores for neighboring frames in the summary. This com-
ponent is inspired by the pre-segmentation criterion used by [5].

Beat Cuts. A �nal consideration is the placement of cuts in the
summary with respect to the music-track. We believe that cuts
should be placed on the beat of the music, as illustrated in Fig. 5.
Therefore we reward beat cuts with the following QAP:

RBC (m,n) = δ (m > n+1), (13)

FBC (s, t ) = δ (s = t+1) δ (s ∈ B), (14)

where B denotes the set of summary slots matching a beat. The
reward matrix returns a one, if and only if the frames in are not
neighboring in the source video, and F aggregates these scores only
when there is a beat.

2.4 Greedy search
The search space, for a summary of S frames, from a source video
with N frames, is huge, even though we constraint the search
space to a forward selection process only. Consider a 5 minute
source video (N=9000) and a 30 seconds summary (S=900), for the
�rst frame we can select (N-S) frames, the second frame is then
selected from (N-f1-S-1), i.e. pick any frame between the previous
selected frame and the S-1 last frames, etc etc. This is in the order
of O (N !/(N − S )!), and yield zillions of possible permutations. As
said before, for a general QAP (or its ϵ-approximate solution) there
exist no e�ciently optimal solution. Therefore we resort to a greedy
search which selects one frame at the time.

Given a partial permutation Pд , consisting of the permutation
of the �rst д summary frames, we add the next frame pд+1 = t .
We select the best frame t , based on the current reward and an
approximation of the (expected) future rewards. We approximate
the future rewards of frame t , by evaluating Eq. (2) with the partial
permutation when adding frames t , t+1, t+2, . . . consecutively to the
summary, to the mani�station of the next 1 to 4 beats. This yields
per frame t four scores, which we normalize for their di�erent
lengths, and we select the frame with the highest score. We call our
approximation the beat-look-ahead score.

To further reduce the search we (1) require each segment to last
at least one second, i.e. for a new segment the next 25 frames are

Figure 6: A frame from each of the 25 videos of SumMe [5].

also added, this is identical to adding a reward of −∞ on segments
shorter than lm = 25; and (2) consider only frames in a small
window around the previous selected frame, if pд = v , then frame
t is selected from v + 1 ≤ t ≤ v + N

5 . This window size is based on
preliminary experiments.

3 EXPERIMENTS
In this section we experimentally validate our proposed methods.
First, we describe the experimental setup. Then, we present visual-
only summarization results to compare to recent work. Finally, we
present the results of our music-guided video summarization.

3.1 Dataset and experimental setup
SumMe dataset [5]. For all experiments we use the recently intro-

duced SumMe dataset, which contains 25 amateur-shot raw videos
(40-400 seconds) covering holiday moments, events and sports. The
videos are illustrated in Fig. 6. For each video, 15-18 human par-
ticipants have been asked to create a video summary of 5-15% of
the original length. The diversity of the videos and the availabil-
ity of multiple annotations make the dataset perfectly suited for
illustrating performance of our summarization methods.

Evaluation. To evaluate a video summarization we use the pro-
vided human summaries. First, we compute precision and recall of
frames between a generated summary and a human summary, and
use the F1-score to balance precision and recall. To incorporate the
fact that summaries are highly subjective, we follow [6] and use the
highest F1 score between an automatically generated summary and
any of the human summaries, we denote this as the Best F1 score.
It ensures that the generated summary is rewarded if it matches
closely to one of the human annotators.
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Best F1 Recall Precision

Random 16.8 17.5 16.6
Uniform 27.1 29.4 25.1

Gygli et. al. [5] 39.3 44.4 35.3
Gygli et. al. [6] 39.7 43.0 36.8

Single Frames* 34.7 38.4 33.5
Super Frames* [5] 36.4 40.4 34.2
QAP Model* 38.3 42.4 36.6

Table 1: Comparison to state-of-the-art. Methods indicated
with * use the same features. Our QAP model allows to di-
rectly use frame-based interestingness prediction, without
resorting to pre-segmentation methods

Interestingness Features. For the interestingness prediction, we
use a subset of the features used in [5]. This is a collection of
features modeling attention, using spatial and temporal salience [3,
7]; and modelling aesthetics, based on colourfulness, contrast, and
distribution of edges [1, 8]. The other features used in [5], a.o.
landmark detection and person detection, were not reproducible,
and therefore not used in our experiments.

We extend this collection of features, with a high-level frame
description based on ImageNet objects [2]. In order to do so, we
extract per frame the penultimate layer of the deep network, pro-
vided by [15]. This is a 1024 dimensional feature, which we reduce
to 64 dimensions using PCA, so that we can learn both the unary
and pairwise terms in the interestingness prediction.

We learn the parameters w of Eq. (3), by random sampling 100
frames from each video in the dataset and train a predictor. The
�nal model is an average over 50 repetitions of this training.

3.2 Visual-only Summaries
In this set of experiments we evaluate the performance of our
proposed models and compare them to the current state-of-the-art.

Tuning summarization components. In a set of preliminary re-
sults, we tune the weights, used in Eq. (2), of each component.
Starting with an equal weighting (∀c : wc = 1), we tune the com-
ponents one by one. For each component, we use leave-one-out
performance to vote for a speci�c parameter value, and the value
with the highest number of votes is selected. Since parameters in-
teract, repeating this search could result in di�erent weight values.
The obtained weights are: I = 1, MB = 2, SL = 1, and U = 1

2 .

Experimental results. The goal of this experiment is to see whether
the QAP model is able to generate high quality summarizations
without the need for pre-segmentation methods. We compare our
QAP model with current state-of-the-art methods on this dataset
and we add a model based on Single Frame interestingness predic-
tions and on the Super Frames pre-segmentation used in [5]. The
latter methods use exactly the same raw interestingness predictions,
which makes them comparable.

The results are presented in Table 1. We observe that any of
the computational methods outperform random or uniform seg-
mentation. Furthermore we observe that our implementation of [5]

Fire Domino

Scuba

St. Maarten

Figure 7: Illustration of summaries guided by di�erent mu-
sic styles. Selected frames are indicated in blue, the (aver-
age) human summary in red. Clearly our model combines
frame interestingnesswithmusic properties (energy / beats),
resulting in di�erent summaries for di�erent songs.

(denoted as Super Frames) scores about 3% worse compared to the
published results, this is due to di�erences in the used features. Fi-
nally, when looking at models using the same features, we observe
that adding structure to the single frame interestingness predictions
is bene�cial, given that super frames outperform single frames, and
our QAP model outperforms both.

In Table 2, we show per video performance of our di�erent mod-
els, Single, Super Frames, and QAP. We observe that in general, the
performance of the QAP model is superior. However, we can see
some outliers: the single model performs exceptionally well on the
video “Playing ball" (75.8% vs 36.0% for QAP), the super frames
on the video “Ei�el tower” (47.9% vs 30.6% for QAP), and the QAP
model for the “Jumps" video (93.8% vs 41.0/35.7% for single/super
frames). These large di�erences indicate that the relative impor-
tance of speci�c model components vary for some of these videos.

3.3 Music-Guided Summaries
In this set of experiments we validate our model for creating sum-
maries guided by an externally provided soundtrack, we coin our
method QAP-AV. For illustrating the in�uence of di�erent styles,
we use four songs of di�erent genres: classical, swing, funk and
downtempo. In the provided supplementary material, we show a
composition of several summaries �tted on these music-tracks.

Weighing audio-visual summarization components. To determine
the weights of the di�erent components we resort to the same
heuristic grid search as used for the visual-only method. We start
from an equal weighting (∀c : wc = 1) of all components, and tune
all weights based on the swing music-track, using leave-one-out
voting based on the Best F1 score. The obtained weights are: I = 5,
MB = 2, SL = 5, U = 1, AVD= 5 and BC= 1.

Results. In Table 2, we show the results of the QAP-AV method
evaluated for the four di�erent music-tracks for each video. For
comparison we have also included the visual-only QAP models.
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Visual only Music - Guided
Single Frames Super Frames [5] QAP Funk Downtempo Swing Classical Best Song

eg
o.

Base jumping 21.7 32.7 21.6 31.0 28.9 29.3 29.0 31.0
Bike polo 37.5 39.2 39.0 47.9 47.7 45.7 46.3 47.9
Scuba 39.3 56.5 37.2 57.0 44.4 55.7 56.7 57.0
Valparaiso downhill 26.3 29.8 26.9 39.7 43.1 36.1 33.3 43.1

m
ov

in
g

Bearpark climbing 27.6 29.3 24.3 33.0 26.9 22.3 28.4 33.0
Bus in rock tunnel 39.5 46.1 34.9 37.8 43.3 39.4 42.5 43.3
Car rail crossing 39.3 30.6 31.0 22.0 23.4 20.0 23.8 23.8
Cockpit landing 38.8 39.9 52.0 53.5 56.0 56.4 56.8 56.8
Cooking 20.9 22.3 30.2 27.7 27.2 36.6 25.6 36.6
Ei�el tower 42.3 47.9 30.6 42.1 40.8 42.4 43.9 43.9
Excavators river crossing 22.6 23.3 33.5 29.0 28.9 28.9 28.8 29.0
Jumps 41.0 35.7 93.8 70.8 71.5 71.5 72.9 72.9
Kids playing in leaves 38.2 39.3 28.4 47.3 50.3 50.3 48.4 50.3
Playing on water slide 44.0 44.0 35.3 24.2 48.3 50.1 50.1 50.1
Saving dolphins 21.3 29.3 46.9 23.6 25.2 27.5 29.8 29.8
St. Maarten Landing 37.9 26.7 39.6 28.1 44.6 26.2 42.3 44.6
Statue of Liberty 22.7 26.0 24.4 25.0 22.2 22.6 16.7 25.0
Uncut evening �ight 19.3 20.4 36.8 33.3 33.8 34.6 33.3 34.6
Paluma jump 25.0 21.9 50.6 36.3 35.8 37.6 30.5 37.6
Playing ball 75.8 72.0 36.0 56.2 66.2 65.4 67.5 67.5
Notre Dame 28.6 28.2 21.8 23.6 22.1 22.4 22.9 23.6

st
at

ic

Air Force One 32.1 36.2 27.3 35.0 26.4 24.3 24.4 35.0
Fire domino 40.8 44.2 49.7 62.2 67.2 69.7 71.0 71.0
Car over camera 44.6 48.7 65.8 66.3 68.1 67.3 70.6 70.6
Paintball 36.2 40.1 39.3 48.9 40.5 42.7 41.6 48.9

Mean Best-F1 34.7 36.4 38.3 40.1 41.3 41.0 41.5 44.3

Segment statistics
Avg. # of cuts 154.4 5.1 8.6 5.9 6.5 6.5 6.8
On-beat cuts (%) ± 5* 89.8 94.4 99.4 95.9

Table 2: Per video results on the SumMe dataset using the Best F1measure, comparing visual-only to audio-guidedmethods on
4 di�erent audio-tracks. (*) Average on-beat cuts over all songs (for QAP). Surprisingly the audio-guided methods outperform
the visual-onlymethods by up to 6% absolute performancewhen an oracle could provide themost suited audio-track per video.

First, we observe that our music-guided methods, surprisingly, ob-
tain better results than any of visual-only methods, even better
than the state-of-the-art summarization method of [6] (39.7%, see
Table 1). Our results are also better than the recent work of [22],
where 38.6% is reported using slightly di�erent evaluation settings
and on par with their method that uses extensive additional labeled
data to train interestingness and hyper-parameters (41.8%). Further,
the relatively stable average Best F1 for the di�erent music-tracks,
indicate that the weighting of the components is not music-track
speci�c per se. Still the large variation in performance between
di�erent models for a speci�c video, indicate that the relative im-
portance of model components vary. Finally, when we compare
statistics about the cuts in the video summary, it is apparent that
the no-music QAP model generates more cuts, and have hardly any
aligned with the audio (averaged over all songs), while the music
guided model has almost all cuts aligned with music. In conclusion,
the music guidance (in audio-visual match and beat cuts), enables
to generate higher quality video summarizations.

In Fig. 7 we show the selection of frames for the QAP-AV model
for di�erent soundtracks for three di�erent videos, and as reference
show the average human summary selection. Video examples are
included in the supplementary material.

4 CONCLUSION
In this paper we have introduced a model for music-guided video
summarization, which we have modeled as a quadratic assignment
problem (QAP). The QAP formulation allows to dynamically cre-
ate video segments, match the music-dynamics, have boundaries
with low motion, and with cuts (mostly) on the beat of a provided
music-track. Experimentally we have validated our approach on
the SumMe dataset, showing that our QAP model is on par with
current state-of-the-art video summarization and that our music-
guided models even outperform these. In conclusion our QAP model
yields high quality summaries (in terms of F1), which are also more
appealing to watch (see examples in supplementary material).

For future work, we aim to extend our method to exploit the
audio track of the source video as input modality, to allow for
repetitions (e.g. for the chorus of a song), and to include basic video
e�ects (panning, crop, zoom, speed-up and slowmotion). This will
search the limits of the QAP, since rewards for these e�ects require
higher-order dependencies than only neighboring dependencies,
which could be based either on parametrized �ow and reward
matrices, or by another search strategy to evaluate permutations.
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