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Abstract
Deep neural network algorithms are difficult to
analyze because they lack structure allowing to
understand the properties of underlying trans-
forms and invariants. Multiscale Hierarchical
Convolutional Networks are a theoretical class
of structured deep convolutional networks that
constitute a framework to understand neural net-
work classification properties. However, a naive
implementation of such networks is infeasible
due to the exponential growth of parameters with
depth, so their empirical properties remain to
be studied. We introduce a subclass of them
that overcomes this issue, called Hierarchical At-
tribute Convolutional Networks, where individ-
ual layers are indexed by progressively higher-
dimensional and increasingly invariant attributes.
Each new layer is computed with multidimen-
sional convolutions along spatial and attribute
variables. The dimensionality is kept constant
by averaging intermediate layers along attributes,
allowing to control the size of the layers while
reducing their parameters. This permits to train
Hierarchical Attribute CNNs on CIFAR image
databases where they obtain comparable accu-
racy to state of the art networks while having
much fewer trainable parameters. We study some
properties of the attributes learned from Cifar-10.

1. Introduction
Deep convolutional neural networks have demonstrated im-
pressive performance for classification and regression tasks
over a wide range of generic problems including images,
audio signals, but also for game strategy, biological, medi-
cal, chemical and physics data (LeCun et al., 2015). How-
ever, their mathematical properties remain mysterious and
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we are currently not able to relate their performance to the
properties of the classification problem.

Classifying signals in high dimension requires to eliminate
non-informative variables, and hence contract and reduce
space dimensionality in appropriate directions. Convolu-
tional Neural Networks (CNNs) discover these directions
via backpropagation algorithms (LeCun et al., 1989). Sev-
eral studies show numerically that linearization increases
with depth (Zeiler & Fergus, 2014), but we do not know
what type of information is preserved or eliminated. The
variabilities which can be eliminated are mathematically
defined as the group of symmetries of the classification
function (Mallat, 2016). It is the group of transformations
which preserves the labels of the classification problem.
Translations usually belong to the symmetry group, and in-
variants to translations are computed with spatial convolu-
tions, followed by a final averaging.

Much recent work has focused on incorporating geomet-
rical knowledge and the notion of symmetries into deep
network representations. Either in a fully handcrafted
way (Bruna & Mallat, 2013; Oyallon & Mallat, 2015; Co-
hen & Welling, 2016; Worrall et al., 2016), or by learning
invariance with respect to known geometrical transforma-
tions (Bruna et al., 2013; Gens & Domingos, 2014; Dai
et al., 2017; Jaderberg et al., 2015; Jacobsen et al., 2017).
However, understanding a deep neural network classifier
requires specifying its symmetry group and invariants be-
sides low-dimensional transformations, especially of non-
geometrical nature.

To achieve this goal, we introduce Hierarchical Attribute
CNNs, a computationally feasible subclass of Multiscale
Hierarchical CNNs. The latter are a generic theoretical
class of deep network algorithms introduced in (Mallat,
2016). Multiscale Hierarchical CNNs give explicit infor-
mation on invariants by disentangling, progressively more
signal attributes as depth increases. The CNN operators are
multidimensional convolutions along attribute indices. As
such, the number of parameters of the operators increases
exponentially with depth of the network, making it chal-
lenging to learn general Multiscale Hierarchical CNNs in
practice. We overcome this issue with our proposed Hier-
archical Attribute CNN by indexing layers with progres-
sively higher-dimensional attributes that are increasingly
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invariant with respect to attributes not discriminative for
the classification problem. This additional constraint is in-
corporated via cascades of intermediary averaging along
attributes, permitting to keep the dimensionality constant
as depth increases and allowing to control the number of
trainable parameters.

Section 2 reviews important properties of generic CNN
architectures (LeCun et al., 2015). Section 3 describes
generic Multiscale Hierarchical CNNs, which are particu-
lar CNNs where linear operators are multidimensional con-
volutions along progressively more attributes. Section 4
describes Hierarchical Attribute CNNs, which reduce in-
ner layers dimensions by computing invariants with an av-
eraging along attributes, making it feasible to train Hier-
archical CNNs in practice. Numerical experiments on the
CIFAR database show that our proposed Hierarchical At-
tribute CNN obtains comparable performances to state of
the art CNN architectures, while having organized channel
dimensions (illustrated in figure 1) and a reduced number
of parameters.

Our Hierarchical Attribute CNN (HCNN) presents the first
empirical result of a Hierarchical CNN that learns to rep-
resent symmetry groups as multidimensional translations
along non-linear attributes via generic organization of the
channel dimensions in every layer. In section 5 we study
the organization obtained by this deep network. The pre-
sented architecture provides a mathematical and experi-
mental framework to understand deep neural network clas-
sification properties. The numerical results are repro-
ducible and code is available online 1.

2. Deep Convolutional Networks and Group
Invariants

A classification problem associates a class y = f(x) to any
vector x ∈ RN of N parameters. Deep convolutional net-
works transforms x into multiple layers xj of coefficients at
depths j, whose dimensions are progressively reduced af-
ter a certain depth (LeCun et al., 2010). We briefly review
their properties.

We shall numerically concentrate on color images x(u, v)
where u = (u1, u2) are the spatial coordinates and 1 ≤
v ≤ 3 is the index of a color channel. The input x(u, v)
may, however, correspond to any other type of signals. For
sounds, u = u1 is time and v may be the index of audio
channels recorded at different spatial locations.

Each layer is an array of signals xj(u, v) where u is the
native index of x, and v is a 1-dimensional channel param-
eter. A deep convolutional network iteratively computes
xj+1 = ρWj+1 xj with x0 = x. Each Wj+1 computes

1https://github.com/jhjacobsen/HierarchicalCNN

sums over v of convolutions along u, with filters of small
support. It usually also incorporates a batch normalization
(Ioffe & Szegedy, 2015). The resolution of xj(u, v) along
u is progressively reduced by a subsampling as j increases
until an averaging in the final output layer. The operator
ρ(z) is a pointwise non-linearity In this work, we shall use
exponential linear units ELU (Clevert et al., 2015). It trans-
forms each coefficient z(t) plus a bias c = z(t) + b into c
if c < 0 and ec − 1 if c < 0.

As the depth increases, the discriminative variations of x
along u are progressively transferred to the channel index
v. At the last layer xJ , v stands for the class index and u has
disappeared. An estimation ỹ of the signal class y = f(x)
is computed by applying a soft-max to xJ(v). It is difficult
to understand the meaning of this channel index v whose
size and properties changes with depth. It mixes multiple
unknown signal attributes with an arbitrary ordering. Mul-
tiscale Hierarchical CNNs will adress this issue by impos-
ing a high-dimensional hierarchical structure on v, with an
ordering specified by the translation group.

In standard CNN, each xj = Φjx is computed with a cas-
cade of convolutions and non-linearities

Φj = ρWj ... ρW1,

whose supports along u increase with the depth j. These
multiscale operators replace x by the variables xj to esti-
mate the class y = f(x). To avoid errors, this change of
variable must be discriminative, despite the dimensionality
reduction, in the sense that

∀(x, x′) ∈ R2N Φj(x) = Φj(x
′) ⇒ f(x) = f(x′) .

(1)
This is necessary and sufficient to guarantee that there ex-
ists a classification function fj such that f = fj Φj and
hence

∀x ∈ RN , fj(xj) = f(x).

The function f(x) can be characterized by its groups of
symmetries. A group of symmetries of f is a group of
operators g which transforms any x into x′ = g.x which
belong to the same class: f(x) = f(g.x). The discrimi-
native property (1) implies that if Φj(x) = Φj(g.x) then
f(x) = f(g.x). The discrimination property (1) is thus
equivalent to impose that groups of symmetries of Φj are
groups of symmetries of f . Learning appropriate change of
variables can thus be interpreted as learning progressively
more symmetries of f (Mallat, 2016). The network must
be sufficiently flexible to compute change of variables Φj
whose symmetries approximate the symmetries of f .

Deep convolutional networks are cascading convolutions
along the spatial variable u so that Φj is covariant to spa-
tial translations. If x is translated along u then xj = Φjx
is also translated along u. This covariance implies that for
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Figure 1. An illustration of the difference between the input to a vanilla CNN (left) and an HCNN layer (right). A CNN computes
convolution along u and mixes feature maps via a linear combination along the channel index v. An HCNN performs joint convolution
along space and channels (u, vj). This gives rise to an ordering of the feature maps along the attribute index vj , as opposed to arbitrary
ordering in a vanilla CNN layer. Note, that we only illustrate the 3-dimensional case here whereas HCNN layers are up to 5-dimensional.

all v,
∑
u xj(u, v) is invariant to translations of x. Next

section explains how to extend this property to higher di-
mensional attributes with multidimensional convolutions.

3. Multiscale Hierarchical CNNs
Multiscale Hierarchical networks are highly structured
convolutional networks defined in (Mallat, 2016). The one-
dimensional index v is replaced by a multidimensional vec-
tor of attributes v = (v1, ..., vj) and all linear operators Wj

are convolutions over (u, v). We explain their construction
and a specific architecture adapted to an efficient learning
procedure.

Each layer xj(u, v) is indexed by a vector of multidimen-
sional parameters v = (v1, ..., vj) of dimension j. Each
vk is an “attribute” of x which is learned to discriminate
classes y = f(x). The operators Wj are defined as con-
volutions along a group which is a parallel transport in the
index space (u, v). With no loss of generality, in this im-
plementation, the transport is a multidimensional transla-
tion along (u, v). The operators Wj are therefore multi-
dimensional convolutions, which are covariant to transla-
tions along (u, v). As previously explained, this covariance
to translations implies that the sum

∑
vk
xj(u, v0, ..., vj) is

invariant to translations of previous layers along vk. A con-
volution of z(u, v) by a filterw(u, v) of support S is written

z ? w(u, v) =
∑

(u′,v′)∈S

z(u− u′, v − v′)w(u′, v′) . (2)

Since z(u, v) is defined in a finite domain of (u, v), bound-
ary issues can be solved by extending z with zeros or as
a periodic signal. We use zero-padding extensions for the
next sections, except for the last section, where we use pe-
riodic convolutions. Both cases give similar accuracy.

The network takes as input a color image x(u, v0), or any
type of multichannel signal indexed by v0. The first layer
computes a sum of convolutions of x(u, v0) along u, with

filters w1,v0,v1(u)

x1(u, v1) = ρ
(∑

v0

x(·, v0) ? w1,v0,v1(u)
)
. (3)

For any j ≥ 2, Wj computes convolutions of xj−1(u, v)
for v = (v1, ..., vj−1) with a family of filters {wvj}vj in-
dexed by the new attribute vj :

xj(u, v, vj) = ρ
(
xj−1 ? wvj (u, v)

)
. (4)

As explained in (Mallat, 2016), Wj has two roles. First,
these convolutions indexed by vj prepares the discrim-
inability (1) of the next layer xj+1, despite local or global
summations along (u, v1, ..., vj−1) implemented at this
next layer. It thus propagates discriminative variations of
xj−1 from (u, v1, ..., vj−1) into vj . Second, each convolu-
tion with wvj computes local or global invariants by sum-
mations along (u, v1, ..., vj−2), in order to reduce dimen-
sionality. This dimensionality reduction is implemented by
a subsampling of (u, v) at the output (4), which we omitted
here for simplicity. Since vk is the index of multidimen-
sional filters, a translation along vk is a shift along an or-
dered set of multidimensional filters. For any k < j − 1,∑
vk
xj−1(u, v1, ..., vk, ..., vj−1) is invariant to any such

shift.

The final operator WJ computes invariants over u and all
attributes vk but the last one:

xJ(vJ−1) =
∑

u,v1,...,vJ−1

xJ−1(u, v1, ..., vJ−1) . (5)

The last attribute vJ−1 corresponds to the class index, and
its size is the number of classes. The class y = f(x) is
estimated by applying a soft-max operator on xJ(vJ−1).

Proposition 3.1 The last layer xJ is invariant to transla-
tions of xj(u, v1, ..., vj) along (u, v1, ..., vj), for any j <
J − 1.
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Figure 2. Implementation of a Multiscale Hierarchical CNN as a cascade of 5D convolutions Wj . The figure gives the size of the
intermediate layers stored in 5D arrays. Dash dots lines indicate the parametrization of a layer xj and its dimension. We only represent
dimensions when the output has a different size from the input.

Proof: Observe that xJ = WJ ρWJ−1 ...ρWj xj .
Each Wk for j < k < J is a convolution along
(u, v0, ..., vj , ..., vk) and hence covariant to translations of
(u, v0, ..., vj). Since ρ is a pointwise operator, it is also co-
variant to translations. Translating xj along (u, v1, ..., vj)
thus translates xJ−1. Since (7) computes a sum over these
indices, it is invariant to these translations. �

This proposition proves that the soft-max of xJ approx-
imates the classification function fj(xj) = f(x) by an
operator which is invariant to translations along the high-
dimensional index (u, v) = (u, v1, ..., vj). The change of
variable xj thus aims at mapping the symmetry group of
f into a high-dimensional translation group, which is a flat
symmetry group with no curvature. It means that classes
of xj where fj(xj) is constant define surfaces which are
progressively more flat as j increases. However, this re-
quires an important word of caution. A translation of
xj(u, v1, ..., vj) along u corresponds to a translation of
x(u, v0) along u. On the contrary, a translation along the
attributes (v1, ..., vj) usually does not correspond to trans-
formations on x. Translations of xj along (v1, ..., vj) is a
group of symmetries of fj but do not define transformations
of x and hence do not correspond to a symmetry group of f .
Next sections analyze the properties of translations along
attributes computed numerically.

Let us give examples over images or audio signals x(u)
having a single channel. The first layer (3) computes con-
volutions along u: x1(u, v1) = ρ(x ? wv1(u)). For au-
dio signals, u is time. This first layer usually computes a
wavelet spectrogram, with wavelet filters wv1 indexed by a
log-frequency index v1. A frequency transposition corre-
sponds to a log-frequency translation x1(u, v1 − τ) along
v1. If x is a sinusoidal wave then this translation corre-
sponds to a shift of its frequency and hence to a transforma-
tion of x. However, for more general signals x, there exists
no x′ such that ρ(x′ ?wv1(u)) = x1(u, v1−τ). It is indeed
well known that a frequency transposition does not define
an exact signal transformation. Other audio attributes such
as timber are not either well defined transformations on x
although important attributes to classify sounds.

For images, u = (u1, u2) is a spatial index. If wv1 =

w(r−1v1 u) is a rotation of a filter w(u) by an angle v1 then

x1(u, v1−τ) = ρ(xτ ?wv1(rτu)) with xτ (u) = x(r−1τ u).

However, there exists no x′ such that ρ(x ? wv1(u)) =
x1(u, v1 − τ) because of the missing spatial rotation rτu.
These examples show that translation xj(u, v1, .., vj) along
the attributes (v1, ..., vj) usually do not correspond to a
transformation of x.

4. Hierarchical Attribute CNNs
4.1. Progressive Dimensionality Reduction

Multiscale hierarchical network layers are indexed by two-
dimensional spatial indices u = (u1, u2) and progressively
higher dimensional attributes v = (v1, ..., vj). To avoid
computing high-dimensional vectors and convolutions, we
introduce an image classification architecture which elimi-
nates the dependency relatively to all attributes but the last
three (vj−2, vj−1, vj), for j > 2. Since u = (u1, u2), all
layers are stored in five dimensional arrays.

The network takes as an input a color image x(u, v0), with
three color channels 1 ≤ v0 ≤ 3 and u = (u1, u2).
Applying (3) and (4) up to j = 3 computes a five-
dimensional layer x3(u, v1, v2, v3). For j > 3, xj is com-
puted as a linear combination of marginal sums of xj−1
along vj−3. Thus, it does not depend anymore on vj−3
and can be stored in a five-dimensional array indexed by
(u, vj−2, vj−1, vj). This is done by convolving xj−1 with
a a filter wvj which does not depend upon vj−3:

wvj (u, vj−3, vj−2, vj−1) = wvj (u, vj−2, vj−1) . (6)

We indeed verify that this convolution is a linear com-
bination of sums over vj−3, so xj depends only upon
(u, vj−2, vj−1, vj). The convolution is subsampled by 2sj

with sj ∈ {0, 1} along u, and a factor 2 along vj−1 and vj

xj(u, vj−2, vj−1, vj) = xj−1 ? wvj (2sju, 2vj−2, 2vj−1) ,

At depth j, the array of attributes v = (vj−2, vj−1, vj) is of
size K/4×K/2×K. The parameters K and spatial sub-
smapling factors sj are adjusted with a trade-off between
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computations, memory and classification accuracy. The fi-
nal layer is computed with a sum (7) over all parameters
but the last one, which corresponds to the class index:

xJ(vJ−1) =
∑

u,vJ−3,vJ−2

xJ−1(u, vJ−3, vJ−2, vJ−1) .

(7)
This architecture is illustrated in Figure 2.

4.2. Filter Factorization for Training

Our newly introduced Hierarchical Attribute CNNs
(HCNN) have been tested on CIFAR10 and CIFAR100 im-
age databases. CIFAR10 has 10 classes, while CIFAR100
has 100 classes, which makes it more challenging. The
train and test sets have 50k and 10k colored images of
32 × 32 pixels. Images are preprocessed via a standard-
ization along the RGB channels. No whitening is applied
as we did not observe any improvement.

Our HCNN is trained in the same way as a classical CNN.
We train it by minimizing a neg-log entropy loss, via SGD
with momentum 0.9 for 240 epochs. An initial learning
rate of 0.25 is chosen while being reduced by a factor 10
every 40 epochs. Each minibatch is of size 50. The learn-
ing is regularized by a weight decay of 2 10−4 (Krizhevsky
et al., 2012). We incorporate a data augmentation with ran-
dom translations of 6 pixels and flips (Krizhevsky & Hin-
ton, 2010).

Just as in any other CNNs, the gradient descent is badly
conditioned because of the large number of parameters
(Goodfellow et al., 2014). We precondition and regularize
the 4 dimensional filters wvj , by normalizing a factoriza-
tion of these filters. We factorize wvj (u, vj−3, vj−2, vj−1)
into a sum of Q separable filters:

wvj (u, vj−3, vj−2, vj−1) =

Q∑
q=1

hj,q(u) gvj ,q(vj−2, vj−1) ,

(8)
and introduce an intermediate normalization before the
sum. Let us write hj,q(u, v) = δ(u)hj,q(u) and
gvj ,q(u, v) = δ(u) gvj ,q(v). The batch normalization is ap-
plied to xj−1 ? hj,q and substracts a mean array mj,q while
normalizing the standard deviations of all coefficients σj,q:

x̃j,q(u, v) =
xj−1 ? hj,q −mj,q

σj,q
.

This normalized output is retransformed according to (8)
by a sum over q and a subsampling:

xj(u, v) = ρ
( Q∑
q=1

x̃j,q ? gvj ,q(2
sju, 2v)

)
.

The convolution operator Wj is thus subdivided into a first
operator Wh

j which computes standardized convolutions

along u cascaded with W g
j which sums Q convolutions

along v. Since the tensor rank of Wj cannot be larger than
9, using Q ≥ 9 does not restrict the rank of the operators
Wj . However, as reported in (Jacobsen et al., 2016), in-
creasing the value of Q introduces an overparametrization
which regularizes the optimization. Increasing Q from 9 to
16 and then from 16 to 32 brings a relative increase of the
classification accuracy of 4.2% and then of 1.1%.

We also report a modification of our network (denoted by
(+) ) which incorporates an intermediate non-linearity:

xj(u, v) = ρ(W g
j ρ(Wh

j xj−1)) .

Observe that in this case, xj is still covariant with the ac-
tions of the translations along (u, v), yet the factorization
of wvj into (hj,q, gvj ,q) does not hold anymore.

For classification of CIFAR images, the total depth is J =
12 and a downsampling by 2 along u is applied at depth
j = 5, 9. Figure 2 describes our model architecture as a
cascade of Wj and ρ, and gives the size of each layer. Each
attribute can take at most K = 16 values.

The number of free parameters of the original architecture
is the number of parameters of the convolution kernels wvj
for 1 ≤ vj ≤ K and 2 < j < J , although they are fac-
torized into separable filters hj,q(u) and gvj ,q(vj−2, vj−1)
which involve more parameters. The filters wvj have less
parameters for j = 2, 3 because they are lower-dimensional
convolution kernels. In CIFAR-10, for 3 < j < J , each
wvj has a spatial support of size 32 and a support of 7× 11
along (vj−2, vj−1). If we add the 10 filters which output
the last layer, the resulting total number of network param-
eters is approximately 0.098M . In CIFAR-100, the filters
rather have a support of 11× 11 along (vj−2, vj−1) but the
last layer has a size 100 which considerable increases the
number of parameters which is approximatively 0.25M .

The second implementation (+) introduces a non-linearity
ρ between each separable filter, so the overall computa-
tions can not be reduced to equivalent filters wvj . There
are Q = 32 spatial filters hj,q(u) of support 3 × 3 and
QK filters gvj ,q(vj−2, vj−1) of support 7 × 11. The total
number of coefficients required to parametrize hj,q, gvj ,q
is approximatively 0.34M . In CIFAR-100, the number of
parameters becomes 0.89M . The total number of param-
eters of the implementation (+) is thus much bigger than
the original implementation which does not add intermedi-
ate non-linearities. Next section compares these number of
parameters with architectures that have similar numerical
performances.

5. An explicit structuration
This section shows that Hierarchical Attribute CNNs have
comparable classification accuracies on the CIFAR image
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dataset than state-of-the-art architectures, with much fewer
parameters. We also investigate the properties of transla-
tions along the attributes vj learned on CIFAR.

5.1. Classification Performance

We evaluate our Hierarchical CNN on CIFAR-10 (table 1)
and CIFAR-100 (table 2) in the setting explained above.
Our network achieves an error of 8.6% on CIFAR-10,
which is comparable to recent state-of-the-art architectures.
On CIFAR-100 we achieve an error rate of 38%, which is
about 4% worse than the closely related all-convolutional
network baseline, but our architecture has an order of mag-
nitude fewer parameters.

Classification algorithms using a priori defined representa-
tions or representations computed with unsupervised algo-
rithms have an accuracy which barely goes above 80% on
CIFAR-10 (Oyallon & Mallat, 2015). On the contrary, su-
pervised CNN have an accuracy above 90% as shown by
Table 1. This is also the case for our structured hierarchi-
cal network which has an accuracy above 91%. Improv-
ing these results may be done with larger K and Q which
could be done with faster GPU implementation of multi-
dimensional convolutions, although it is a technical chal-
lenge (Budden et al., 2016). Our proposed architecture is
based on “plain vanilla” CNN architectures to which we
compare our results in Table 1. Applying residual connec-
tions (He et al., 2016), densely connected layers (Huang
et al., 2016), or similar improvements, might overcome the
4% accuracy gap with the best existing architectures. In
the following, we study the properties resulting from the
hierarchical structuration of our network, compared with
classical CNN.

5.2. Reducing the number of parameters

The structuration of a Deep neural network aims at reduc-
ing the number of parameters and making them easier to
interpret in relation to signal models. Reducing the num-
ber of parameters means characterizing better the structures
which govern the classification.

This section compares Hierarchical Attribute CNNs to
other structured architectures and algorithms which reduce
the number of parameters of a CNN during, and after train-
ing. We show that Hierarchical Attribute CNNs involve
less parameters during and after training than other archi-
tectures in the literature.

We review various strategies to reduce the number of pa-
rameters of a CNN and compare them with our Hierarchi-
cal Attribute CNN. Several studies show that one can fac-
torize CNN filters (Denton et al., 2014; Jaderberg et al.,
2014) a posteriori. A reduction of parameters is obtained
by computing low-rank factorized approximations of the

Table 1. Classification accuracy on CIFAR10 dataset.

MODEL # PARAMETERS % ACCURACY

HIEARCHICAL CNN 0.098M 91.23
HIEARCHICAL CNN (+) 0.34M 92.30

ALL-CNN 1.3M 92.75
RESNET 20 0.27M 91.25
NETWORK IN NETWORK 0.98M 91.20
WRN-STUDENT 0.17M 91.23
FITNET 2.5M 91.61

Table 2. Classification accuracy on CIFAR100 dataset.

MODEL # PARAMETERS % ACCURACY

HIEARCHICAL CNN 0.25M 62.01
HIEARCHICAL CNN (+) 0.89M 63.19

ALL-CNN 1.3M 66.29
NETWORK IN NETWORK 0.98M 64.32
FITNET 2.5M 64.96

filters calculated by a trained CNN. It leads to more effi-
cient computations with operators defined by fewer param-
eters. Another strategy to reduce the number of network
weights is to use teacher and student networks (Zagoruyko
& Komodakis, 2016; Romero et al., 2014), which optimize
a CNN defined by fewer parameters. The student network
adapts a reduced number of parameters for data classifica-
tion via the teacher network.

A parameter redundancy has also been observed in the fi-
nal fully connected layers used by number of neural net-
work architectures, which contain most of the CNN param-
eters (Cheng et al., 2015; Lu et al., 2016). This last layer
is replaced by a circulant matrix during the CNN training,
with no loss in accuracy, which indicates that last layer can
indeed be structured. Other approaches (Jacobsen et al.,
2016) represent the filters with few parameters in differ-
ent bases, instead of imposing tha they have a small spatial
support. These filters are represented as linear combina-
tions of a given family of filters, for example, computed
with derivatives Gaussians. This approach is structuring
jointly the channel and spatial dimensions. Finally, Hyper-
Networks (Ha et al., 2016) permits to drastically reducing
the number of parameters used during the training step, to
0.097M and obtaining 91.98% accuracy. However, we do
not report them as 0.97M corresponds to a non-linear num-
ber of parameters for the network.

Table 1 and 2 give the performance of different CNN archi-
tectures with their number of parameters, for the CIFAR10
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Bird 2

Bird 1

Figure 3. The first images of the first and third rows are the two in-
put image x. Their invariant attribute array x̄j(vj−1, vj) is shown
below for j = J − 1, with high amplitude coefficients appear-
ing as white points. Vertical and horizontal axes correspond re-
spectively to vj−1 and vj , so translations of vj−1 by τ are ver-
tical translations. An image xτ in a column τ + 1 has an in-
variant attribute x̄τj which is shown below. It is the closest to
x̄j(vj−1 − τ, vj) in the databasis.

and CIFAR100 datasets. For Hierarchical Attribute CNNs,
the convolution filters are invariant to translations along u
and v which reduces the number of parameters by an im-
portant factor compared to other architectures. All-CNN
(Springenberg et al., 2014) is an architecture based only
on sums of spatial convolutions and ReLU non-linearities,
which has a total of 1.3M parameters, and a similar ac-
curacy to ours. Its architecture is similar to our hierar-
chical architecture, but it has much more parameters be-
cause filters are not translation invariant along v. Inter-
estingly, a ResNet (He et al., 2016) has more parameters
and performs similarly whereas it is a more complex ar-
chitecture, due to the shortcut connexions. WRN-student
is a student resnet (Zagoruyko & Komodakis, 2016) with
0.2M parameters trained via a teacher using 0.6M param-
eters and which gets an accuracy of 93.42% on CIFAR10.
FitNet networks (Romero et al., 2014) also use compres-
sion methods but need at least 2.5M parameters, which is
much larger than our network. Our architecture brings an
important parameter reduction on CIFAR10 for accuracies
around 90% There is also a drastic reduction of parameters
on CIFAR100.

5.3. Interpreting the translation

The structure of Hierarchical Attribute CNNs opens up the
possibility of interpreting inner network coefficients, which
is usually not possible for CNNs. A major mathematical
challenge is to understand the type of invariants computed
by deeper layers of a CNN. Hierarchical networks compute
invariants to translations relatively to learned attributes vj ,

which are indices of the filters wvj . One can try to relate
these attributes translations to modifications of image prop-
erties. As explained in Section 3, a translation of xj along
vj usually does not correspond to a well-defined transfor-
mation of the input signal x but it produces a translation
of the next layers. Translating xj along vj by τ translates
xj+1(u, vj−1, vj , vj+1) along vj by τ .

To analyze the effect of this translation, we eliminate vari-
ability along vj−2 and define an invariant attribute array by
choosing the central spatial position u0:

x̄j(vj−1, vj) =
∑
vj−2

xj(u0, vj−2, vj−1, vj). (9)

We relate this translation to an image in the training dataset
by finding the image xτ in the dataset which minimizes
‖x̄j(vj−1 − τ, vj) − x̄τj (vj−1, vj)‖2, if this minimum Eu-
clidean distance is sufficiently small. To compute accu-
rately a translation by τ we eliminate the high frequency
variations of xj and xτj along vj−1 with a filter which aver-
ages consecutive samples, before computing their transla-
tion. The network used in this experiment is implemented
with circular convolutions to avoid border effects, which
have nearly the same classification performance.

Figure 3 shows the sequence of xτ obtained with a transla-
tion by τ of x̄j at depth j = J − 1, for two images x in the
“bird” class. Since we are close to the ouptut, we expect
that translated images belong to the same class. This is not
the case for the second image of the first ”Bird 1”. It is
a ”car” instead of a ”bird”. This corresponds to a classifi-
cation error but observe that x̄τJ−1 is quite different from
x̄J−1 translated. We otherwise observe that in these fi-
nal layers, translations of x̄J−1 defines images in the same
class.

Figure 4 gives sequences of translated attribute images xτ ,
computed by translating x̄j by τ at different depth j and
for different input x. As expected, at small depth j, trans-
lating an attribute vj−1 does not define images in the same
class. These attribute rather correspond to low-level image
properties which depend upon fine scale image properties.
However, these low-level properties can not be identified
just by looking at these images. Indeed, the closer images
xτ identified in the databasis are obtained with a distance
over coefficients which are invariant relatively to all other
attributes. These images are thus very different and involve
variabilities relatively to all other attributes. To identify the
nature of an attribute vj , a possible approach is to correlate
the images xτ over a large set of images, while modifying
known properties of x.

At deep layers j, translations of x̄j define images xr which
have a progressively higher probability to belong to the
same class as x. These attribute transformations corre-
spond to large scale image pattern related to modifications
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x11

x10

x9

x8

x7

x6

x5

x4

x3

Figure 4. The first columns give the input image x, from which we compute the invariant array x̄j at a depth 3 ≤ j ≤ 11 which increases
with the row. The next images in the same row are the images xτ whose invariant arrays x̄τj are the closest to x̄j translated by 1 ≤ τ ≤ 7,
among all other images in the databasis. The value of τ is the column index minus 1.

of the filters wvj−1
. In this case, the attribute indices could

be interpreted as addresses in organized arrays. The trans-
lation group would then correspond to translations of ad-
dresses. Understanding better the properties of attributes
at different depth is an issue that will be explored in the
future.

6. Conclusion
Hierarchical Attribute CNNs give a mathematical and ex-
perimental framework to study invariants computed by
deep neural networks. Layers are parameterized in progres-
sively higher dimensional spaces of hierarchical attributes,
which are learned from training data. All network operators
are multidimensional convolutions along attribute indices,
so that invariants can be computed by summations along
these attributes.

This paper introduces a computationally tractable imple-
mentation of such networks, progressively reducing dimen-
sionality by calculating invariants in intermediate layers.
This permits to reduce dimensionality and parameters of in-
termediate layers, making it possible to train so far theoret-
ical Multiscale Hierarchical CNNs. We achieve good clas-

sification accuracies, while obtaining a CNN with generi-
cally organized channel dimensions and reduced number of
parameters compared to common SOTA models.

Translations along attributes at shallow depth correspond to
low-level image properties at fine scales like color, whereas
attributes at deep layers correspond to modifications of
large scale pattern structures like faces and eventually to
classes in the last layer. Understanding better the multi-
scale properties of these attributes and their relations to the
symmetry group of f is an important issue, which can lead
to a better mathematical understanding of CNN learning
algorithms.
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