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Rank Pooling for Action Recognition
Basura Fernando, Efstratios Gavves, José Oramas M., Amir Ghodrati and Tinne Tuytelaars

Abstract—We propose a function-based temporal pooling method that captures the latent structure of the video sequence data - e.g.
how frame-level features evolve over time in a video. We show how the parameters of a function that has been fit to the video data can
serve as a robust new video representation. As a specific example, we learn a pooling function via ranking machines. By learning to
rank the frame-level features of a video in chronological order, we obtain a new representation that captures the video-wide temporal
dynamics of a video, suitable for action recognition. Other than ranking functions, we explore different parametric models that could
also explain the temporal changes in videos. The proposed functional pooling methods, and rank pooling in particular, is easy to
interpret and implement, fast to compute and effective in recognizing a wide variety of actions. We evaluate our method on various
benchmarks for generic action, fine-grained action and gesture recognition. Results show that rank pooling brings an absolute
improvement of 7-10 average pooling baseline. At the same time, rank pooling is compatible with and complementary to several
appearance and local motion based methods and features, such as improved trajectories and deep learning features.

Index Terms—action recognition, temporal encoding, temporal pooling, rank pooling, video dynamics
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1 INTRODUCTION

A recent statistical study has revealed more than 300 hours of
video content are added to YouTube every minute [1]. Moreover, a
recent survey on network cameras has indicated that a staggering
28 million network cameras will be sold in 2017 alone [58]. Given
the steep growth in video content all over the world, the capability
of modern computers to process video data and extract information
from them remains a huge challenge. As such, human action and
activity recognition in realistic videos is of great relevance.

Most of the progress in the field of action recognition over the
last decade has been associated with either of the following two
developments. The first development has been the local spatio-
temporal descriptors, including spatio-temporal [30] and densely
sampled [6], [32] interest points, dense trajectories [65], and
motion-based gradient descriptors [22]. The second development
has been the adoption of powerful encoding schemes with an
already proven track record in object recognition, such as Fisher
Vectors [66]. Despite the increased interest in action [6], [22], [26],
[30], [32], [52], [65] and event [21], [40], [47], [61] recognition,
however, relatively few works have dealt with the problem of
modeling the temporal information within a video.

Modeling the video-wide temporal evolution of appearance
in videos is a challenging task, due to the large variability and
complexity of video data. Not only actions are performed at
largely varying speeds for different videos, but often the speed
of the action also varies non-linearly even within a single video.
Hence, while methods have been proposed to model the video-
wide temporal evolution in actions (e.g. using HMM [67], [68],
CRF-based methods [56] or deep networks [62]), the impact of
these on action recognition performance so far has been somewhat
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Fig. 1: Illustration of how rank pooling works. In this video, as
Emma moved out from the house, the appearance of the frames
evolves with time. A ranking machine learns this evolution of the
appearance over time and returns a ranking function. We use the
parameters of this ranking function as a new video representation
which captures vital information about the action.

disappointing. What is more, simple but robust techniques such
as temporal pyramids that are similar to spatially dividing im-
ages [33] and objects [16] are insufficient. Nevertheless, it is clear
that many actions and activities have a characteristic temporal
ordering. See for instance the “moving out of the house” action in
Figure 1. Intuitively, one would expect that a video representation
that encodes this temporal change of appearances should help
to better distinguish between different actions. Obtaining a good
video-wide representation from a video still remains a challenge.

In this paper, we propose a new video representation that
captures this video-wide temporal evolution. We start from the
observation that, even if the execution time of actions varies
greatly, the temporal ordering is typically preserved. We propose
to capture the temporal ordering of a particular video by training
a linear ranking machine on the frames of that video. More pre-
cisely, given all the frames of the video, we learn how to arrange
them in chronological order, based on the content of the frames.
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The parameters of the linear ranking function encodes the video-
wide temporal evolution of appearance of that video in a principled
way. To learn such ranking machines, we use the supervised
learning to rank framework [36]. Ranking machines trained on
different videos of the same action can be expected to have similar
ranking functions. Therefore, we propose to use the parameters
of the ranking machine as a new video representation for action
recognition. Classifiers trained on this new representation turn out
to be remarkably good at distinguishing actions. Since the ranking
machines act on frame content, they actually capture both the
appearance and their evolution over time. We call our method
rank pooling.

The key contribution of rank pooling is to use the parameters
of the ranking functions as a new video representation that
captures the video-wide temporal evolution of the video. Our new
video representation is based on a principled learning approach,
it is efficient and easy to implement. Last but not least, with the
new representation we obtain state-of-the art results in action and
gesture recognition. The proposed use of parameters of functions
as a new representation is by no means restricted to action
recognition or ranking functions. Other than ranking functions, we
explore different parametric models, resulting in a whole family
of pooling operations.

The rest of the paper is organized as follows: in Section 2
we position our work w.r.t. existing work. Sections 3 and 4
describe our method, while Section 5 provides an insight from
its application for action classification. This is followed by the
evaluation of our method in Section 6. We conclude this paper in
Section 7.

2 RELATED WORK

2.1 Action recognition
Capturing temporal information of videos for action recognition
has been a well studied research domain. Significant improve-
ments have been witnessed in modeling local motion patterns
present in short frame sequences [30], [65], [66]. Jain et al. [23]
proposed to first localize the actions in the video and exploit them
for refining recognition.

To avoid using hand-engineered features, deep learning
methodologies [34], [62] have also been investigated. Dynamics
in deep networks can be captured either by extending the connec-
tivity of the network architecture in time [26] or by using stacked
optical flow instead of frames as input for the network [52]. The
two stream stacked convolutional independent subspace analysis
method, referred to as ConvISA [29], is a neural network architec-
ture that learns both visual appearance and motion information
in an unsupervised fashion on video volumes. A human pose
driven CNN feature extraction pipeline is presented in [5]. In [5],
authors represent body regions of humans with motion-based and
appearance-based CNN descriptors. Such descriptors are extracted
at each frame and then aggregated over time to form a video
descriptor. To capture temporal information, authors consider
temporal differences of frames and then concatenate the difference
of vectors. Two convolutional neural networks are used to cap-
ture both appearance-based and motion-based features in action
tubes [18]. In this method [18], the first spatial-CNN network takes
RGB frames as input and captures the appearance of the actor as
well as other visual cues from the scene. The second network,
referred as the motion-CNN, operates on the optical flow signal
and captures the movement of the actor. Spatio-temporal features

are extracted by combining the output from the intermediate layers
of the two networks. The benefits of having objects in the video
representation for action classification is presented in [24].

Although the aforementioned methods successfully capture the
local changes within small time windows, they are not designed to
model the higher level motion patterns and video-wide appearance
and motion evolution associated with certain actions.

2.2 Temporal and sequential modeling

State-space models such as generative Hidden Markov Models
(HMMs) or discriminative Conditional Random Fields (CRFs)
have been proposed to model dynamics of videos since the early
days [54], [71]. Generative methods such as HMMs usually learn
a joint distribution over both observations and action labels. In
these early works, most often, the observations consist of visual
appearance or local motion feature vectors obtained from videos.
This results in HMMs that learn the appearance or the motion
evolution of a specific action class. Then the challenge is to
learn all variations of a single action class. Given the complexity,
variability and the subtle differences between action classes, these
methods may require a lot of training samples to learn meaningful
joint probability distributions.

Discriminative CRF methods learn to discriminate two action
classes by modeling conditional distribution over class labels.
However, similar to HMMs, CRFs may also require a large amount
of training samples to estimate all parameters of the models.
In contrast, our proposed method does not rely on class labels
to encapsulate temporal information of a video sequence. The
proposed method captures video specific dynamic information
and relies on standard discriminative methods such as SVM to
discriminate action classes.

More recently, new machine learning approaches based on
CRF, HMM and action grammars, have been researched for action
recognition [46], [50], [56], [61], [67] by modeling higher level
motion patterns. In [67], a part-based approach is combined with
large-scale template features to obtain a discriminative model
based on max-margin hidden conditional random fields. In [56],
Song et al. rely on a series of complex heuristics and define a
feature function for the proposed CRF model. In [61] Tang et al.
propose a max-margin method for modeling the temporal structure
in a video. They use a HMM model to capture the transitions of
action appearances and duration of actions.

Temporal ordering models have also been applied in the
context of complex activity recognition [21], [45], [49], [59]. They
mainly focus on inferring composite activities from pre-defined,
semantically meaningful, basic-level action detectors. In [59],
a representation for events is presented that encodes statistical
information of the atomic action transition probabilities using a
HMM model. In [45], a set of shared spatio-temporal primitives,
subgestures, are detected using genetic algorithms. Then, the
dynamics of the actions of interest are modeled using the detected
primitives and either HMMs or Dynamic Time Warping (DTW).
Similar to the above works, we exploit the temporal structure of
videos but in contrast, we rely on ranking functions to capture
the evolution of appearance or local motion. Using the learning-
to-rank paradigm, we learn a functional representation for each
video.

Due to the large variability of motion patterns in a video,
usually latent sequential models are not efficient. To cope with
this problem, representations in the form of temporal pyramids
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[15], [32] or sequences of histograms of visual features [14]
are introduced. A method that aims at comparing two sequences
of frames in the frequency domain using fast Fourier analysis
called circulant temporal aggregation is presented in [47] for event
retrieval. Different from the above, we explicitly model video-
wide, video level dynamics using a principled learning paradigm.
Moreover, contrary to [14], our representation does not require
manually annotated atomic action units during training.

Recurrent neural networks have also been extensively studied
in the context of sequence generation and sequence classifica-
tion [20], [60]. In [57] the state of the LSTM encoder after ob-
serving the last input frame is used as a video representation [57].
A hierarchical recurrent neural network for skeleton based action
recognition is presented in [8]. An LSTM model that uses CNN
features for action recognition is presented in [73]. Typically,
recurrent neural networks are trained in a probabilistic manner
to maximize the likelihood of generating the next element of the
sequence. They are conditional loglinear models. In contrast, the
proposed rank pooling uses a support vector based approach to
model the elements in the sequence. Rank pooling uses empirical
risk minimization to model the evolution of the sequence data.
Furthermore, in comparison to RNN-LSTM-based methods, Rank
pooling is efficient both during training and testing, and effective
even for high dimensional input data.

2.3 Functional representations

Our work has some conceptual similarity to the functional repre-
sentations used in geometric modeling [41], which are used for
solid and volume modeling in computer graphics. In this case an
object is considered as a point set in a multidimensional space,
and is defined by a single continuous real-valued function of point
coordinates of the nature f(x1, x2, ..., xn) which is evaluated at
the given point by a procedure traversing a tree structure with
primitives in the leaves and operations in the nodes of the tree.
The points with f(x1, x2, ..., xn) ≥ 0 belong to the object, and
the points with f(x1, x2, ..., xn) < 0 are outside of the object.
The point set with f(x1, x2, ..., xn) = 0 is called an isosurface.
Similarly, in our approach the ranking function has to satisfy
chronological order constraints on frame feature vectors and we
use the ranking function as a representation of that video.

Since we use the parameters of a linear function as a new
representation of a particular sequence, our work also bears some
similarity to the exemplar SVM concept [37], [74]. Differently,
our objective is to learn a representation for the relative ordering
of a set of frames in a video. At the same time we do not need to
rely on negative data to learn the representation, as is the case for
exemplar SVM.

Meta-representation has the ability to represent a higher-order
representation with a lower-order representation embedding. It
is the capacity to represent a representation. Our rank pooling
representation can also be considered as a meta-representation.
The parameters of the ranking function in fact represent a lower
dimensional embedding of chronological structure of the frames.
In the learning to rank paradigm, these ranking functions are
trained to order data. Our hypothesis is that this parametric
embedding of sequence data can be used to represent their
dynamics.

This paper extends the work of [12]. Compared to the con-
ference version, this paper gives a more precise account of the

internals of rank pooling. First, we provide an extended discussion
of related work, covering better the recent literature. From a
technical point of view, we generalize the concept of rank pooling
to a framework that uses functional parameters as a new video
representation. We hypothesize that any stable and robust paramet-
ric functional mapping that maps frame data to the time variable
can be used for modeling the video dynamics. Furthermore, we
analyze the types of non-linear kernels that best capture video
evolution. We provide some empirical evidence to demonstrate
the capabilities of rank pooling. Finally, we combine rank pooling
with convolutional neural network features to further boost the
state-of-the-art action recognition performance.

Recently, Fernando et al extend rank pooling to encode higher
order dynamics of a video sequence in a hierarchical manner
in [10] and in [3] Bilen et al introduced dynamic image networks
which allows us to learn dynamic representation using CNNs and
rank pooling.

3 VIDEO REPRESENTATIONS

In this section we present our temporal pooling method, which
encodes dynamics of video sequences and, more specifically cap-
tures the video-wide temporal evolution (VTE) of the appearance
in videos. First, we present the main idea in Section 3.1 where
we propose to use parameters of suitable functions to encode
the dynamics of a sequence. Then, in Section 3.2 we present
how to formulate these specific functions using rankers. Next, in
Section 3.3 we analyse the generalization capacity of the proposed
rank pooling. Finally, in Section 3.4 we describe how to use
functional parameters of other parametric models as a temporal
representation and compare traditional temporal pooling methods
with rank pooling.

3.1 Functional parameters as temporal representations

We assume that each frame of a given video is represented by a
vector x. Then the video composed of n frames is a sequence of
vectors, X = [x1,x2, . . . ,xn] . A frame at discrete time step t
is denoted by a vector xt ∈ RD. Given this sequence of vectors,
we first smooth the sequence X to a more general form to obtain
a new sequence V = [v1,v2, . . . ,vn]. We discuss how to obtain
smoothed sequences in Section 4. For the rest of the analysis we
use smoothed sequences V , unless otherwise specified. Last, we
use the notation x1:t or v1:t to denote a sub-sequence from time
step 1 to t.

Our goal is to encode the temporal evolution of appearances,
or, in other words the dynamics D of the sequence V . At an
abstract level, dynamics D reflect the way the vector valued input
changes from time t to t+ 1 for all t. Assuming that the sequence
V is sufficiently smooth, we can encode the dynamics of V using
a linear function Ψu = Ψ(V ;u) parametrized by u, such that Ψ
approximates D, namely

arg min
u

||D −Ψu||. (1)

For a given definition of dynamics D (see below), there exists
a family of functions Ψ. Different videos from the same action
category will have different (yet similar) appearances and will be
characterized by different (yet similar) appearance dynamics. For
each video Vi(·), we learn a different dynamics function Ψi(·;ui)
parametrized by ui. Given stability and robustness guarantees of
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the family of functions Ψ, different videos from the same action
category then result in similar dynamics functions Ψi(·;ui).

As the family of functions Ψ for modeling the dynamics
is the same for all videos, what characterizes the dynamics of
each specific video is the parametrization ui. We propose to use
the parameters ui ∈ RD of Ψi as a new video representation,
capturing the specific appearance evolution of the video. Thus we
obtain a functional representation, where the functional parameters
ui serve as the representation, capturing a vital part of the video-
wide temporal information.

As a first concrete case, in the next section, we present how
we could learn such functional representations using the learning-
to-rank paradigm.

3.2 Rank pooling

One way to understand dynamics D is to consider them as the
driving force for placing frames in the correct order. Indeed, in
spite of the large variability in speed, between different videos
and even within a single video, the relative ordering is relatively
preserved. To capture such dynamics for video sequence Vi,
we consider the learning-to-rank [36] paradigm, which optimizes
ranking functions of the form Ψ(t,v1:t;u). We can either employ
a point-wise [55], a pair-wise [36] or a sequence-based ranking
machine [11]. Then, we can use the parameters of these ranking
machines as our new video representation in a process that we
coin rank pooling.

Videos are ordered sequences of frames, where the frame order
also dictates the evolution of the frame appearances. We focus on
the relative orderings of the frames. If vt+1 succeeds vt we have
an ordering denoted by vt+1 � vt. As such, we end up with
order constraints vn � . . . � vt � . . . � v1. We exploit the
transitivity property of video frames to formulate the objective as
a pairwise learning-to-rank problem i.e. (if va � vb and vb �
vc =⇒ va � vc).

To model the video dynamics with pair-wise rank-pooling, we
solve a constrained minimization pairwise-learning-to-rank [36]
formulation, such that it satisfies the frame order constraints. Pair-
wise linear ranking machines learn a linear function ψ(v;u) =
uT · v with parameters u ∈ RD . The ranking score of vt is ob-
tained by ψ(vt;u) = uT ·vt and satisfies the pairwise constraints
(vt+1 � vt) by a large margin, while avoiding over-fitting. As a
result we aim to learn a parametric vector u such that it satisfy all
constraints ∀ti, tj , vti � vtj ⇐⇒ uT · vti > uT · vtj .

Using the structural risk minimization and max-margin frame-
work, the constrained learning-to-rank objective is

arg min
u

1

2
‖u‖2 + C

∑
∀i,jvti

�vtj

εij (2)

s.t. uT · (vti − vtj) ≥ 1− εij
εij ≥ 0.

As the parameters u define the frame order of frames vt, they
represent how the frames evolve with regard to the appearance
of the video. Hence, the appearance evolution is encoded in the
parameter u. The above optimization objective is expressed on
the basis of RankSVM [25], however, any other linear learning-
to-rank method can be employed. For example, in point-wise rank
pooling we seek a direct mapping from the input time dependent

vectors vt to the time variable t based on the linear parameters u.
Namely, we have that

g(vt;u) 7→ t (3)

u∗ = arg min
u

∑
t

|t− uT · vt|.

The support vector regression (SVR) [55] formulation is a robust
extension of equation 3 and thus, one can use SVR parameters to
encode the dynamics. Support vector regression is known to be a
point-wise ranking formulation [36]. The solution of SVR would
also satisfy the order constraints g(vq;u) > g(vj;u) if vq � vj

because of the direct mapping of the form g(vt;u) 7→ t.
In summary, to represent dynamics D of a video V using rank

pooling, we use the parameter vector u as a video representation.
The vector u is a temporal encoding of the input vector sequence
vn � . . . � vt � . . . � v1. The video representation u
can be learnt either using a pair-wise ranking machine as in
equation 2 or using the direct mapping as in equation 3, i.e.
SVR [55] (our default setting). Modeling the temporal evolution
via rankers displays several advantages. First, in videos in the wild
we typically observe a large variability in speed at which actions
are performed. This is not an issue for ranker functions that are
oblivious to the pace at which the frames appear and only focus
on their accurate relative ordering. Second, a powerful advantage
of linear ranking machines is that their function parameters reside
in the same space as the input sequence data V .

3.3 Generalization capacity
As explained above, we use the parameters of learnt ranking
functions to model the temporal dynamics of the specific video.
All functions from all videos will belong to the same parametric
family of models. However, as the different videos will differ in
appearance and their dynamics, each function will be character-
ized by a different set of parameters. It remains to be answered
whether different videos that contain the same action category
will be characterized by similar parameters or not.

For action recognition we make the basic assumption that
similar actions in different videos will have similar dynamics
(D). Namely, we assume there is a theoretical probability density
function pD based on which different instances of video-wide
temporal evolutions are sampled for an action type. Naturally,
different videos of the same action will be different and generate
different ranking functions, so each linear ranker will have a
different parametric representation vector ψ. Therefore, a rightful
question is to what extent learning the ψ per video generalizes
well for different videos of the same action.

As we cannot know the theoretical probability density function
pD of dynamics in real world videos, it is not possible to derive
a strict bound on the generalization capacity of the functional pa-
rameters ui. However, the sensitivity risk minimization framework
gives us a hint of this generalization capacity of ui when the input
for the training is slightly perturbed. More specifically, Bousquet
et al. [4] showed on a wide range of learning problems, e.g. SVM,
SVR and RankSVM, that the difference of the generalization risk
R from the leave one out error Ri in the training set is bounded
by

|R−R/i| ≤ Er[|l(AS , r)− l(AS/i , r)|] ≤ β, (4)

where AS is a ranking algorithm with uniform stability β learned
from the set of samples S. The expectation of the loss over the
distribution r is denoted by Er[l] where l is a bounded loss
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Fig. 2: Various pooling operations given data plotted on a 2d
feature space (gray circles stands for data, red circles for average
pooling and yellow circles for max pooling, whereas the green
dashed lines stand for rank pooling). The green dashed hyper-
planes returned by our rank pooling not only describe nicely the
latent data structure, but also are little affected by the random
data noise. In contrast the average and max pooling represenations
are notably disturbed. In fact, max pooling even creates “ghost”
circles in areas of the feature space where no data exist.

function such that 0 ≤ l(AS , r) ≤ M ; (M is a sufficiently small
number).

Given a certain video, eq. (4) implies that a slight change
(ignoring smoothing of sequences) during training will learn a
ranking function ψ/i with an error no larger than β compared
to the ψ learned when all frames are available. Although eq. (4)
does not give a strict answer for what happens when the training
input changes significantly from video to video, it hints that since
the temporal evolution of similar actions should be similar, this
should also be the case for the learned ranking functions of rank
pooling denoted by u. This generalization capacity of rank pooling
is furthermore supported by our experimental validation.

3.4 Functional parameters as temporal pooling

In the above we described how to encode temporal information
from a video sequence using ranking machines. The parameters
u that we learn either from a pair-wise ranking machine or a
point-wise ranking machine can be viewed as a principled, data-
driven, temporal pooling method, as they summarize the data
distributions over a whole sequence. The use of ranking functional
parameters as temporal pooling contrasts with other standard
methods of pooling, such as max pooling or sum pooling, which
are typically used either in convolutional neural networks [27] or
for aggregating Fisher vectors [43].

First, as rank pooling is regularized, it is much less susceptible
to the local noise in the observations i.e. robust. See for example
the left picture in Fig. 2, where max pooling is notably affected
by stochastic perturbations in the feature space of the sequence
data. Second, given some latent structure, temporal structure in our
case, rank pooling fits the data trend by minimizing the respective
loss function. Max pooling and sum pooling, on the other hand,
are operators that do not relate to the underlying temporal data
distribution. As such, max and sum pooling might aggregate the
data by creating artificial, ghost samples, as shown in the right
picture of Fig. 2. In contrast, rank pooling transits the problem to
a dual parameter space, in which the aggregation point is the one
that optimally represents the latent data structure, as best expressed
by the respective parametric model.

Next, we extend further the idea of using functional parameters
as representations with different parameteric models. Assume a
function which learns a projection of the video frames into a
subspace. Also, assume that we have enriched the frame repre-
sentations so that they are more correlated with the time arrow,

as we will discuss in Section 4. Then, another way to capture the
video temporal evolution of appearances and the dynamics of the
video would be to fit a function that reconstructs the time-sensitive
appearance of all frames.

To reconstruct the time-sensitive appearance of all frames in a
video sequence V , we need to fit a function Ψ(t,v1:t;u), such
that

u∗ = arg min
u

‖V − uuTV ‖2, (5)

where u ∈ RD×d, where d is the new subspace dimensionality.
In equation (5) we minimize the reconstruction error after a linear
projection. One can solve the above minimization using principal
component analysis, namely by singular value decomposition

V = UΣU ′T (6)

The singular value decomposition returns two orthonormal matri-
ces U ∈ RD×D, U ′ ∈ RT×T , who contain the eigenvectors of
the covariance matrices Ĉ = E(V V T ) and Ĉ ′ = E(V TV )
respectively, where T is the number of frames in the video
sequence V ∈ RD×T .

The straightforward way of defining the subspace u is by
selecting the k first eigenvectors from U . However, more often
than not the number of frames is smaller than the dimensionality
of the frame features, T < D. Hence, the matrix Ĉ , which is the
expected value of the real but unknown covariance matrix C, is an
unreliable estimate. To obtain a more robust subspace projection,
we can instead consider

u = U ′(V T )−1 (7)

Since U ′ is obtained from the more robust estimate Ĉ ′, the
subspace projection u from eq. 7 is a more reliable representation
of the temporal evolution of the appearances in V . We can
therefore use u from eq. 7 to represent the video V . Naturally,
one can maintain only the first d principal components of U ′ to
control the final dimensionality of u.

Given that frame features should ideally be correlated with
the time variable, the first principal eigenvector contains the
highest variance of the video appearance as it evolves with time.
Therefore, one can use the first principal component of a video as a
temporal representation given that video frames are pre-processed
to indirectly correlate with time (see Section 4). We refer to
the above functional parameter pooling as subspace pooling.
Subspace pooling is robust, as also shown in [13]. Moreover, the
subspace pooling has a close relationship to dynamic texture [7]
which uses auto-regressive moving average process which esti-
mates the parameters of the model using sequence data. Subspace
pooling is also related to dynamic subspace angles [35] which
compares videos by computing subspaces and then measuring the
principal angle between them.

Support vector ranking machines and principal component
decomposition are robust models which we can use for temporal
pooling. However, other learning algorithms can also be consid-
ered to be used as functional parameter representation. As a case
study, in this paper we use two more popular choices: (a) Hidden
Markov Models (HMMs), and (b) Neural Networks (NN). For
details, we refer to the experimental results section. We explore
the different possibilities experimentally.
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Fig. 3: Using ranking machines for modeling the video temporal
evolution of appearances, or alternatively, the video dynamics. We
see in (a) the original signal of independent frame representation,
(b) the signal obtained by moving average, (c) the signal obtained
by time varying mean vector (different colors refer to different
dimensions in the signal vt). In (d), (e) and (f) we plot the
predicted ranking score of each frame obtained from signal (a), (b)
and (c) respectively after applying the ranking function (predicted
ranking value at t, st = uT · vt).

4 FRAME REPRESENTATIONS

Even in a noise-free world video data would still exhibit high
degrees of variability. To reduce the effect of noise and violent
abrupt variations, we smooth the original video signal (i.e. the
frame representation xt). In this section we discuss three methods
to obtain smoothed robust signals vt from frame data xt.

4.1 Independent Frame Representation

The most straightforward representation for capturing the evolu-
tion of the appearance of a video is to use independent frames
vt = xt

‖xt‖ . This approach has two disadvantages. First, the
original signal can vary significantly, see Figure 3(a), often leading
the ranking machines to focus on undesirable temporal patterns.
At the same time independent frames might generate ranking
functions with high ranking errors during training time. Second,
independent frame representations are characterized by a weak
connection between vt and t. Given this weak correlation between
the vt and time t, see Figure. 3 (a), the ranking function may not
learn the appearance evolution over time properly. As a result,
plotting the predicted score st = ui

T · vt for each of the frames
in the video is not as smooth as one would desire (see Figure 3
(d)).

4.2 Moving Average (MA)

Inspired by the time series analysis literature, we consider the
moving average with a window size T as video representation
at time t. In other words we consider locally smoothed signals.
For MA, we observe two facts. First, the output signal is much
smoother, see Figure 3(b). Second, vt maintains a temporally
local dependency on the surrounding frames around t, namely the
frames [t, t + T ]. Unlike the independent frames representation,
however, the moving average model forges a connection between

vt and t. Plotting these two variables for a window T=50 in Fig-
ure 3(b), we observe a smoother relation between the dimensions
of vt and the frame number which equals to the time variable. As
such, the video-wide temporal information is captured well in the
predicted score st, see Figure 3(e).

Although the moving average representation allows for captur-
ing the appearance evolution of a video better, we still witness a
general instability in the signals. Furthermore, we note that the
moving average representation introduces undesirable artifacts.
For one, window size T has to be chosen, which is not always
straightforward as actions often take place in different tempos.
Moreover, due to boundary effects, vt is undefined for the last
time stamps t of the video.

4.3 Time Varying Mean Vectors
To deal with the limitations of the independent frames representa-
tion and the moving average, we propose a third option, the time
varying mean vectors.

Let us denote the mean at time t as mt = 1
t×

∑t
τ=1 xτ . Then,

vt captures only the direction of the unit mean appearance vector
at time t, i.e. (vt = mt

||mt|| ). Thus the ranking function ψ learns the
evolution of the normalized mean appearance at time t. We plot
the relationship between vt and t in Figure 3(c) and the prediction
score st in Figure 3(f). We observe that, as desired, the output is
smooth, almost resembling a monotonically increasing function.
Different from the independent frames representation, the time
varying mean vectors introduce a better dependency between the
input vt and the target t.

By construction time varying mean vectors capture only the
temporal information from the forward flow of the video with
respect to the time. This is because the video progresses from the
past to the future frames. However, there is no reason why the
mean vectors should not be considered also in the reverse order,
starting from the future frames and traversing backwards to the
past frames of a video. To this end we generate the exact same
objective, as in eq. 2, playing the video in reverse order, however.
We shall refer to appearance evolution captured by forward flow
as forward rank pooling (FDRP), whereas reverse flow as reverse
rank pooling.

4.4 Non-linear rank pooling
In section 3.2, we considered only linear machines to obtain rank
pooling based video representations. To incorporate non-linearities
we resort to non-linear feature maps [64] applied on each vt of V ,
thus allowing for employing effective [17] linear ranking machines
in their primal form.

A popular technique to include non-linearities is to pre-process
and transform the input data by non-linear operations. Let us
denote a point-wise non-linear operator Φ(·) which operates on the
input x so that the output Φ(x) is a non-linear mapping of x. We
use such non-linear feature maps to model non-linear dynamics
of input video data. Given the time varying mean vector vt, to
obtain non-linear representation u of input videoX , we map vt to
Φ(vt) using the non-linear operation before learning the ranking
machines. Next we describe an interesting non-linear feature map
that is useful particularly for real data such as Fisher vectors. In
our experiments we also demonstrate the advantage of capturing
non-linear dynamics via non-linear feature maps which we coined
non-linear rank pooling.
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Fig. 4: Processing steps of rank pooling for action recognition. First, we extract frames x1 . . .xn from each video. Then we generate
feature vt for frame t by processing frames from x1 to xt as explained in section 4. Afterwards, using ranking machines we learn the
video representation u for each video. Finally, video specific u vectors are used as a representation for action classification.

A popular kernel in visual recognition tasks is the Hellinger
kernel

Khell(x, y) =
√
x
T√

y. (8)

The Hellinger kernel introduces non-linearities to the kernel ma-
chines, while maintaining separability, thus allowing for solving
the optimizations in their primal form. The Hellinger kernel copes
well with the frequently observed feature burstiness [2]. When
eq. (8) is applied directly, then we obtain a complex kernel, as
the negative features turn into complex numbers, namely we have
that
√
x =

√
x+ + i

√
x− = x̂+ + ix̂−, where x̂+ =

√
x+

and x̂− =
√
x− refer to the positive and negative parts of the

feature x, namely x+i = xi,∀xi > 0 and 0 otherwise, while
x−i = −xi,∀xi < 0 and 0 otherwise. Then the Hellinger kernel
equals to

Khell(x, y) = (x̂+ + ix̂−)T (ŷ+ + iŷ−) (9)

= (x̂+ŷ+ − x̂−ŷ−) + i(x̂−ŷ+ + ŷ−x̂+)

To avoid any complications with using complex numbers, we
focus on the real part of Khell. Using the real part of the Hellinger
kernel, we effectively separate the positive and negative parts of
the features, easily deriving that

KRe{hell} = [x̂+, x̂−][ŷ+, ŷ−]T

= Khell(x
∗, y∗), (10)

where x∗ = [x+, x−]T is the expanded feature, which is double
in dimensionality compared to x and is composed of only positive
elements. Comparing eq. (10) with eq. (8), we observe that we
have practically doubled the dimensionality of our feature space,
as all x, x̂+, x̂− have the same dimensionality, allowing for more
sophisticated learning. The first half of the feature space relates to
the positive values only x̂+, while the second part relates to the
negative ones x̂−. We refer to this feature map as posneg feature
map and, to the respective kernel as posneg kernel. Unless stated
otherwise, in the remainder of the text we use the posneg feature
maps.

5 OVERVIEW

Next, we will briefly describe the pipeline for applying rank
pooling for the task of action classification in videos.

Boxing Clapping Waving Walking Jogging Running

Fig. 5: Examples from the six action categories in the KTH action
recognition dataset [31]. From left to right you see the actions
boxing, clapping, waving, walking, jogging and running. From
top to bottom you see an example frame from a random video, the
forward rank pooling, the reverse rank pooling and the result after
the standard mean pooling. The rank pooling as well as the mean
representations are computed on the image pixels. We observe
that the forward and reverse rank pooling indeed capture some
of the crisp, temporal changes of the actions, whereas the mean
representations lose the details.

5.1 Action classification from A to Z

The action classification pipeline is illustrated in detail in Figure 4.
First, for each video Xi the video frames xij , j = 1, . . .M
are processed individually, so that frame feature encodings vij
are extracted and their frame location in the video is recorded.
A popular choice to date would be to first extract HOG, HOF,
MBH, TRJ features computed on improved trajectories per frame
together with the frame location, then compute the per frame
Fisher vector or the Bag-of-Words feature encodings (first two
columns in Figure 4). Next, given the smooth frame features
obtained from time varying mean vectors or any of the other frame
representations discussed in Section 4, we apply a parametric
pooling step. For each of the videosXi we fit one of the parametric
models discussed in Section 3 (third column in Figure 4). We
then use the parameters ui of the parametric model as the video
representation. Last, after having computed all ui for every video
Xi, we run a standard supervised classification method on our
dataset denoted by Dtrain = {ui, yi}, i = 1, . . . , N where N is
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the number of videos in our training set and yi is the class label
of the ith video. We use non-linear SVM classifiers such as χ2

feature maps [63] applied on feature vectors ui ∈ RD .
We summarize some of the advantages of using parameters

of a function that is trained to map or correlate input data to time
variable as a video representation. First, no supervised information
is needed as video order constraints can be obtained directly from
the sequence of video frames. Second, by minimizing eq. (1)
rank pooling captures the evolution of appearance of a video in
a principled manner, either by minimizing a ranking objective or
by minimizing the reconstruction error of video appearances over
time. Third, such a parametric representation does not require
negative data to be added explicitly during the learning of the
video representations. Fourth, since rank pooling encapsulates the
changes that occur in a video, it captures useful information for
action recognition.

5.2 Visualising dynamics of videos

In this section we demonstrate a visual inspection of what our
rank pooling method learns. For simplicity of visualization we
use sample video sequences from the KTH action recognition
dataset [31]. As features we use the raw RGB values vectorized
per frame as features. In this visualization experiment we do not
extract any trajectories or other more sophisticated features and
we use independent frame representations. We apply forward and
reverse rank pooling on the video sequences of the first row. To
obtain the visualization, given a frame image we first transform
it to a D-dimensional gray-scaled vector. Then we apply the
rank pooling method to obtain the parameters u. Afterwards, we
reshape the vector u to the original frame image size and project
back each pixel value to be in the range of 0-255 using linear
interpolation by min-max normalization.

We use example videos provided in the dataset which consists
of six action classes, namely boxing, hand clapping, hand waving,
walking, jogging and running. Samples from this dataset are
shown in the first row of Figure 5. For each of the 6 actions in
the KTH dataset we present a sample sequence in each column
of Figure 5 (from left to right we have boxing, clapping, waving,
walking, jogging and running). In the second and third row we
show the forward and reverse rank pooling video representation
respectively (namely the computed ui), illustrating the captured
temporal motion information. In the last row we show the result
of the standard average pooling. When the motion of the action is
apparent, rank pooling method seems to capture this well. What is
more interesting is that, not only rank pooling separates running
in one direction from the other direction, but also seems to capture
the periodicity of the motion to an extent, see the last column of
Figure 5 that depicts running.

6 EXPERIMENTS

Now we present a detailed experimental evaluation of rank
pooling.

Datasets. As the proposed methodology is not specific to an
action type or class of actions, we present experiments in a
broad range of datasets. We follow exactly the same experimental
settings per dataset, using the same training and test splits and the
same features as reported by the state-of-the-art methods.

Fig. 6: Some example frames from the top performing categories
of the HMDB51, Hollywood2, and ChaLearn-Gestures dataset,
respectively.

HMDB51 dataset [28]. This is a generic action classification
dataset composed of roughly 7,000 clips divided into 51 action
classes. Videos and actions of this dataset are subject to different
camera motions, viewpoints, video quality and occlusions. As
done in the literature we use a one-vs-all classification strategy
and report the mean classification accuracy over three standard
splits provided by the authors in [28]. Some example frames from
this challenging dataset are shown in Figure 6.

Hollywood2 dataset [32] This dataset has been collected from
69 different Hollywood movies that include 12 action classes.
It contains 1,707 videos in total where 823 videos are used for
training and 884 are used for testing. Training and test videos are
selected from different movies. The performance is measured by
mean average precision (mAP) over all classes, as in [32].

MPII cooking activities dataset [48]. This dataset was created
to evaluate fine-grained action classification. It is composed of
65 different actions that take place continuously within 8 hours
of recordings. As the kitchen remains the same throughout the
recordings, the classification focuses mainly on the content of
the actions and cannot benefit from potentially discriminative
background information (e.g. driving a car always takes place
inside a car). We compute per class average precision using the
same procedure as in [48] and report the final mAP.

ChaLearn Gesture Recognition dataset [9]. This dataset
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contains 23 hours of Kinect data of 27 persons performing
20 Italian gestures. The data includes RGB, depth, foreground
segmentation and Kinect skeletons. The data is split into train,
validation and test sets, with in total 955 videos each lasting 1
to 2 minutes and containing 8 to 20 non-continuous gestures. As
done in the literature, we report precision, recall and F1-score
measures on the validation set.

Rank pooling and baselines. In Sec. 6.1 and 6.3 we compare
different variants of rank pooling. As a first baseline we use
the state-of-the-art trajectory features (i.e. improved trajectories
and dense trajectories) and pipelines as in [65], [66]. As
this trajectory-based baseline mainly considers local temporal
information we refer to this baseline as local. We also compare
with temporal pyramids (TP), by first splitting the video into
two equal size sub-videos, then computing a representation for
each of them like spatial pyramids [33]. For these baselines,
at frame level we apply non-linear feature maps (i.e. power
normalization for Fisher vectors and chi-squared kernel maps for
bag-of-words-based methods). We also compare different versions
of rank pooling, we denote the forward rank pooling by FDRP,
the reverse & forward rank pooling by RFDRP, the non-linear
forward rank pooling by NL-FDRP and the non-linear reverse &
forward rank pooling by NL-RFDRP.

Implementation details. In principle there is no constraint on
the type of linear ranking machines we employ for learning rank
pooling. We have experimented with state-of-the-art ranking im-
plementation RankSVM [25] and SVR [55]. Both these methods
can be used to solve learning to rank problems formulated in
equation 2. We observe that both methods capture evolution of
the video appearances equally well. As for SVR the learning
convergence is notably faster, we will use the SVR solver of Lib-
linear in this paper (C = 1).

For HMDB51 and Hollywood2 datasets we use state-of-the art
improved trajectory features [66] with Fisher encoding [43]. As
done in the literature, we extract HOG, HOF, MBH, and trajectory
(TRJ) features from the videos. We create GMMs of size 256 after
applying PCA with a dimensionality reduction of factor 0.5 on
each descriptor. As done in [66], we also apply the square-root
trick on all descriptors except for TRJ.

In order to compute non-linear rank pooling, we apply features
maps (posneg) followed by a L2-normalization on individual
Fisher vectors extracted from each video frame. For linear rank
pooling, we just use Fisher vectors without any power normaliza-
tion.

For MPII cooking dataset we use the features provided by
the authors [48], that is bag-of-words histograms of size 4000
extracted from dense trajectory features [65] (HOG, HOF, MBH
and TRJ). As we use bag-of-words for this dataset, in order to
compute non-linear rank pooling, we apply χ2-kernel maps on
individual bag-of-words histograms after the construction of the
vector valued function as explained in section 4.

For the ChaLearn Gesture Recognition dataset we start from
the body joints [51]. For each frame we calculate the relative
location of each body joint w.r.t. the torso joint. Then, we scale
these relative locations in the range [0,1]. We use a dictionary of
100 words to quantize these skeleton features. Similar to MPII
cooking dataset, in order to compute non-linear rank pooling and
for all baselines we use chi-squared kernel maps.

We train non-linear SVM classifiers with feature kernel

maps for the final classification. Whenever we use bag-of-words
representation we compute χ2-kernel maps over the final
video representation and then L2 normalize them. We use this
strategy for both baselines and rank pooling. Similarly, when
Fisher vectors are used, we use posneg feature map and L2
normalization for the final video representation. The C parameter
of SVM is cross-validated over the training set using two-fold
cross-validation to optimize the final evaluation criteria (mAP,
classification accuracy or F-score). When features are fused
(combined) we use the average kernel strategy. We provide code
for computing rank pooling in a public website 1.

Execution time. Rank pooling takes about 0.9 ± 0.1 sec per
video on the Hollywood2 dataset excluding the Fisher vector
computation. The proposed algorithm is linear on the length of
the video.

6.1 Rank pooling: Frame representations & encodings
We first evaluate the three options presented in Section 4 for
the frame representation, i.e. independent frame, moving average
and time varying mean vector representations. We perform the
experiments with Fisher vectors on the Hollywood2 dataset and
summarize the results in Table 1. Similar trends were observed
with dense trajectory features, bag-of-words and other datasets.

From the comparisons, we make several observations that
validate our analysis. First, applying ranking functions directly on
the Fisher vectors from the frame data captures only a moderate
amount of the temporal information. Second, moving average
applied with ranking seems to capture video-wide temporal in-
formation better than applying ranking functions directly on the
frame data. However, the time varying mean vector consistently
outperforms the other two representations by a considerable mar-
gin and for all features. We believe this is due to two reasons. First,
moving average and time varying mean vector methods smooth the
original signal. This reduces the noise in the signal. Therefore, it
allows the ranking function to learn meaningful VTE. Secondly,
the appearance information of the time varying mean vectors
is more correlated with the time variable. The ranking function
exploits this correlation to learn the evolution of the appearance
over time in the video signal.

We conclude that time varying mean vectors are better for
capturing the video-wide evolution of appearance of videos when
applied with rank pooling. In the rest of the experiments we use
the time varying mean vectors.

Last, we evaluate the contribution of the time-varying mean
vectors when used along with other pooling methods such as
average pooling. We perform an experiment on Hollywood2 using
the MBH features. The average pooling on top of time-varying
mean vectors gives an improvement of 0.5% (relative to average
pooling on FV directly) only, indicating that for average pooling,
there is no advantage of time varying mean vectors.

6.2 Action classification
Next, we present a detailed analysis of the action classification
results in HMDB51, Hollywood2, MPII Cooking and ChaLearn
Gesture recognition datasets (see Table 2, 3, 4 and 5 respec-
tively).

1. The code for computing rank pooling, as well as scripts for
running experiments for the different datasets can be found in
http://bitbucket.org/bfernando/videodarwin.
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HOG HOF MBH TRJ Comb.

Independent frames 41.6 52.1 54.4 43.0 57.4
Moving average (T=20) 42.2 54.6 56.6 44.4 59.5
Moving average (T=50) 42.2 55.9 58.1 46.0 60.8
Time varying mean vectors 45.3 59.8 60.5 49.8 63.6

TABLE 1: Comparison of different video representations for rank
pooling. Results reported in mAP on the Holywood2 dataset using
FDRP with Fisher vectors. As also motivated in Sec. 4, the time
varying mean vector representation captures better the video-wide
temporal information present in a video.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

AnswerPhone

DriveCar

Eat

FightPerson

GetOutCar

HandShake

HugPerson

Kiss

Run

SitDown

SitUp

StandUp

Average

Average Precision

Combined Rank Pool. Local

Fig. 7: Per class AP in the Hollywood2 dataset. The AP is
improved significantly for all classes, with an exception of “Drive
car”, where context already provides useful information.

Rank pooling obtains better results in comparison to
local temporal methods. Accurately modeling the evolution
of appearance and motion, allows to capture more relevant
information for a particular action. These results confirm our
hypothesis that what makes an action most discriminative from
other actions is mostly the video-wide evolution of appearance and
motion information of that action. The forward and reverse rank
pooling variant reports consistent improvement over forward-only
rank pooling, further improved when non-linear rank pooling is
employed. It is interesting to see that this trend can be observed in
all four datasets too. Overall, local methods combined with rank
pooling bring a substantial absolute increase over local methods
(+6.6% for HMDB51, +7.1% for Holywood2, +8.6% for MPII
Cooking, +9.3% for ChaLearn).

Analysis of action classification results. Looking at the indi-
vidual results for the Hollywood2 dataset shown in Figure 7,
we observe that almost all actions benefit the same, about a 7%
average increase. Some notable exceptions are “answer phone”,
which improves by 14% and “handshake”, which improves by
17%. For “drive car” there is no improvement. The most probable
cause is that the car context already provides enough evidence
for the classification of the action, also reflected in the high
classification accuracy of the particular action. Our method brings
improvements for periodic actions such as “run, handshake” as
well as non-periodic actions such as “get-out-of-car”.

For the case of the ChaLearn dataset (Table 10), we see that
rank pooling is able to achieve superior results without requiring
to explicitly define task-specific steps, e.g. hand-posture or hand-
trajectory modeling [39].

To gain further insight we investigate the mean similarity
computed over classes on MPII cooking dataset with BOW-based
MBH features. We construct the dot product kernel matrix using

HOG HOF MBH TRJ Combined
Local 39.2 48.7 50.8 36.0 55.2
TP 40.7 52.2 53.5 37.0 57.2
FDRP 39.2 52.7 53.0 37.0 57.9
RFDRP 41.6 53.3 54.6 39.1 59.1
NL-FDRP 44.2 54.7 55.2 37.7 61.0
NL-RFDRP 46.6 55.7 56.7 39.5 61.6
Local + FDRP 42.4 53.7 54.3 39.7 59.3
Local + RFDRP 42.7 53.9 54.9 40.0 59.4
Local + NL-FDRP 45.6 56.2 56.2 41.0 61.3
Local + NL-RFDRP 47.0 56.6 57.1 41.3 61.8

TABLE 2: One-vs-all accuracy on HMDB51 dataset [28]

HOG HOF MBH TRJ Combined
Local 47.8 59.2 61.5 51.2 62.9
TP 52.0 61.1 63.6 52.1 64.8
FDRP 45.3 59.8 60.5 49.8 63.6
RFDRP 50.5 63.6 65.5 55.1 67.9
NL-FDRP 52.8 60.8 62.9 50.2 65.6
NL-RFDRP 56.7 64.7 66.9 54.5 69.6
Local + FDRP 50.2 62.0 64.4 53.6 66.7
Local + RFDRP 52.7 64.3 66.2 55.9 68.7
Local + NL-FDRP 54.7 62.9 64.9 54.4 67.6
Local + NL-RFDRP 57.4 65.2 67.3 56.1 70.0

TABLE 3: Results in mAP on Hollywood2 dataset [38]
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Fig. 8: Mean class similarity obtained with (left) max-pooling
and (right) rank pooling on MPII Cooking activities dataset using
BOW-based MBH features extracted on dense trajectories. Non-
linear forward rank pooling are used for our method.

all the samples and then compute the mean similarity between
classes, see Figure 8. The rank pooling kernel matrix (Figure 8
(right)) appears to be more discriminative than the one with max-
pooled features (Figure 8 (left)). The action “smell” (#41) seems
very difficult to discriminate either using max-pooling or rank
pooling method. Actions “sneeze” (#44) and “stamp” (#45) seem
to be very similar in-terms of appearances, however with rank
pooling we can discriminate them better. Actions like “take & put
in cupboard” (#47), “take & put in drawer”(#48), “take & put in
fridge” (#49) and “take & put in oven” (#50) seem to be the most
confused ones for rank pooling. These actions differ in the final
instrument, but not in the dynamics of the action.

6.3 Rank pooling analysis

Stability to dropped frames We analyze the stability of rank
pooling compared to average pooling and temporal pyramids. For
this experiment we use Hollywood2 dataset and MBH features
with Fisher vectors. We gradually remove 5%, 10%, . . . 25% of
random frames from each video from both train and test sets and
then measure the change in mean average precision.
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HOG HOF MBH TRJ Combined
Local 49.4 52.9 57.5 50.2 63.4
TP 55.2 56.5 61.6 54.6 64.8
FDRP 50.7 53.5 58.0 48.8 62.4
RFDRP 53.1 55.2 61.4 51.9 63.5
NL-FDRP 52.8 60.8 62.9 50.2 65.6
NL-RFDRP 50.6 53.8 56.5 50.0 62.7
Local + FDRP 61.4 65.6 69.0 62.7 71.5
Local + RFDRP 63.7 65.9 69.9 63.0 71.7
Local + NL-FDRP 63.5 65.0 68.6 61.0 71.8
Local + NL-RFDRP 64.6 65.7 68.9 61.2 72.0

TABLE 4: Results in mAP on MPII Cooking fine grained action
dataset [48].

Precision Recall F-score
Local 65.9 66.0 65.9
TP 67.7 67.7 67.7
FDRP 60.6 60.4 60.5
RFDRP 65.5 65.1 65.3
NL-FDRP 69.5 69.4 69.4
NL-RFDRP 74.0 73.8 73.9
Local + FDRP 71.4 71.5 71.4
Local + RFDRP 73.9 73.8 73.8
Local + NL-FDRP 71.8 71.9 71.8
Local + NL-RFDRP 75.3 75.1 75.2

TABLE 5: Detailed analysis of precision and recall on the
ChaLearn gesture recognition dataset [9]

We present in Figure 9 the relative change in mAP after
frame removal. Typically, we would expect the mAP to decrease.
Interestingly, removing up-to 20% of the frames from the
video does not significantly change the results of rank pooling;
in-fact we observe a slight relative improvement. This is a clear
indication of the stability of rank pooling and an advantage of
learning-based temporal pooling. As expected, the mAP decreases
for both average pooling method and the temporal pyramids
method as the number of frames that are removed from videos
increases. For average pooling mAP seems to drop almost in an
exponential manner. However, it should be noted that 25% of
the video frames is a significant amount of data. We believe the
results illustrate the stability of rank pooling.

Effect of video length. In this experiment we analyse how
the length of the video influences the testing performance. We
train rank pooling-based classifiers as before using the entire
training set and then partition the test set into three segments.
Then, we compare the action classification accuracies obtained
with different video lengths. Results are shown in Figure 10.
Interestingly, the longer the video, the better our method seems
to perform. This is not as surprising, since longer videos are
more likely to contain more dynamic information compared to
shorter videos. Also, for longer videos averaging will likely be
more affected by outliers. What is more noteworthy is the relative
difference in accuracy between very long and very short videos,
approximately 6%. We conclude that our method is capable of
capturing the dynamics of short videos as well as of long videos.

The impact of feature maps on Fisher Vectors. In this section
we evaluate the effect of different feature maps during ranker
function construction and final video classification. We use MBH
features as the representation and evaluate the activity recognition
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Fig. 9: Comparison of action recognition performance after re-
moving some frames from each video randomly on Hollywood2.
rank pooling appears to be stable even when up to 20% of the
frames are missing.
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Fig. 10: Hollywood2 action recognition performance with respect
to the length of the video using our rank pooling method.

performance on Hollywood2 dataset. Results are reported in
Table 6.

We observe that the combination of posneg feature maps
both for computing rank pooling, as well as computing the
final classification kernel, outperforms all other alternatives.
The closest competitor is when we use the posneg kernel for
computing the rank pooling features. In general, we observe that
for the classification kernel the different combinations perform
somewhat similarly, given a fixed rank pooling feature map. We
conclude the highest accuracies with rank pooling are obtained
when we apply the posneg feature map, irrespective to the
classification kernel.

Functional parameters as temporal pooling. In this experiment
we evaluate several parametric models in which we can use the
parameters to represent a video. More specifically, we evalu-
ate rank pooling using SVR [55] and RankSVM [25] subspace
pooling using the first principal eigenvector only as the video
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Ranking Feature Map Classifier Feature Map mAP√
|x| sgn(u)

√
|u| 50.0√

|x|
√

|u| 54.0√
x∗

√
u∗ 66.1√

x∗ sgn(u)
√

|u| 65.4√
x∗

√
|u| 63.7

TABLE 6: Comparison of different features maps for ranking
and classification. We use different symbols, x and u, to avoid
the confusion, as u refers to the feature encodings (e.g., Fisher
vectors) that we use to compute rank pooling, while u refers to
the rank pooling features. x∗ stands for the the input to the posneg
kernel, namely x∗ = [x+, x−]T .

Parameter pooling mAP
Rank Pooling with RankSVM 66.0
Rank Pooling with SVR 66.5
Subspace pooling 56.4
Robust Subspace Pooling 64.1
HMM pooling 17.8
Neural Network pooling 21.1

TABLE 7: Pooling parameters as representations from different
parametric models. R-PCA stands for the Robust PCA. Exper-
iments were conducted on the Hollywood2 dataset using MBH
features.

representation (Sec. 3.4) and robust subspace pooling using the
first eigenvector only as described in equation. 7. Additionally,
we use the parameters of two layered fully connected neural
networks as a video representation. In this case, the neural network
consists of one hidden layer (10 hidden units) and the input layer.
It is trained to map frame data to the time variable hoping to
capture dynamics similar to SVR [55]. Furthermore, we train
a Hidden Markov Model using the input video data and then
use the transition and observation probability matrix as a video
representation. We run the experiment on Hollywood2 dataset with
MBH features and show results in Table 7.

We observe that standard PCA-based subspace pooling is less
accurate than both the SVR and the RankSVM rank pooling. The
robust subspace pooling, which deals better with very low data
volume to dimensionality ratios, captures the video-wide temporal
evolution reasonably well. However, pooling from ranker SVR
machines works best. Interestingly, the neural network and HMM
performance is poor. Probably, the neural network overfits easily
compared to the SVR machines.

We conclude that for moderately long videos using the
parameters of simpler, linear machines as the representation for
the sequence data is to be preferred to avoid overfitting. However,
we expect that for very long videos or for even richer frame
representations more complex dynamics could arise. In these
cases higher capacity methods, like neural networks, would likely
capture better the underlying dynamics.

CNN features for action classification In this experiment
we evaluate our method using the convolutional neural
network (CNN)-based features. We use the activations of
the first fully connected layer of vgg-16 network [53] to represent
each frame in a video. We compare several pooling techniques
using Hollywood2 dataset in Table 8. Rank pooling by itself
does not perform that well compared to local (average pooling)
method (32.2 mAP vs. 39.0 mAP). However, the combination

Method mAP
Local(cnn) 39.0
NL-RFDRP(cnn) 32.2
Local(cnn)+NL-RFDRP(cnn) 46.4
Local(cnn)+Local(MBH) 65.6
Local(cnn)+NL-RFDRP(MBH) 70.1
Local(cnn+MBH)+NL-RFDRP(MBH) 69.7
Local(cnn+MBH)+NL-RFDRP(cnn+MBH) 69.5

TABLE 8: Results obtained on Hollywood2 dataset using CNN
(vgg-16 network [53]) features.

HMDB51 Hollywood2 Cooking
Rank pooling+CNN 65.8 75.2 –
Rank pooling 63.7 73.7 72.0
Hoai et al [19] 60.8 73.6 –
Peng et al [42] 66.8 – –
Wu et al [69] 56.4 – –
Jain et al [22] 52.1 62.5 –
Wang et al [66] 57.2 64.3 –
Wang et al [65] 46.6 58.2 –
Taylor et al [62] – 46.6 –
Zhou et al [75] – – 70.5
Rohrbach et al [48] – – 59.2

TABLE 9: Comparison of the proposed approach with the state-
of-the-art methods sorted by reverse chronological order. Results
reported in mAP for Hollywood2 and Cooking datasets. For
HMDB51 we report one-vs-all classification accuracy.

of rank pooling with the local approach improves the results to
46.4 mAP. The CNN features used in this experiment are 4096
dimensional and are not fine tuned for action classification. As the
pre-trained features are trained specifically for appearance-based
classification, we combine CNN features with MBH features.
With the local approach, the combination of CNN and MBH
results in 65.6 mAP. The best results are obtained with local
pooling of CNN and temporal pooling of MBH. We believe this
strategy exploits the advantage of both appearance information
and dynamics of videos.

6.4 State-of-the-art and discussion.

Last, we compare the nonlinear forward and reverse rank pooling
combined with the local temporal information with the latest
state-of-the-art in action recognition. We summarize the results in
Table 9 and Table 10. Note that for Hollywood2 and HMDB51, we
use data augmentation by mirroring the videos as in [19], which
brings a further 5% improvement, and combine with max-pooled
CNN features to capture static appearance information explicitly.

Precision Recall F-score
Rank pooling 75.3 75.1 75.2
Martinez-Camarena et al [39] 61.4 61.9 61.6
Pfister et al [44] 61.2 62.3 61.7
Yao et al [72] – – 56.0
Wu et al [70] 59.9 59.3 59.6

TABLE 10: Comparison of the proposed approach with the state-
of-the-art methods on ChaLearn gesture recognition dataset sorted
by reverse chronological order.

By the inspection of Tables 9 and 10, as well as from the
results in the previous experiments, we draw several conclusions.
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First, rank pooling is useful and robust for encoding video-wide,
temporal information. Second, rank pooling is complementary to
action recognition methods that compute local temporal features,
such as improved trajectory-based features [66]. In fact, fusing
rank pooling with the previous state-of-the-art in local motion and
appearance, we improve up to 10%. Third, rank pooling is com-
plimentary with static feature representations such as CNN-based
max pooled features. Forth, rank pooling is only outperformed on
HMDB51 by [42], who combine their second layer Fisher vector
features with normal Fisher vectors to arrive at 205K dimensional
vectors and a 66.8% accuracy. When using Fisher vectors like rank
pooling does, Peng et al. [42] obtain 56.2%, which is 10% lower
than what we obtain with rank pooling.

7 DISCUSSION AND CONCLUSION

We introduce rank pooling, a new pooling methodology that
models the evolution of appearance and dynamics in a video.
Rank pooling is an unsupervised, learning based temporal pooling
method, which aggregates the relevant information throughout
a video via fitting learning-to-rank models and using their pa-
rameters as the new representation of the video. We show the
regularized learning of the learning-to-rank algorithms, as well as
the minimization of the temporal ordering empirical risk, has in
fact favorable generalization properties that allow us to capture
robust temporal and video dynamics representations. Moreover,
we show that the ranking models can be replaced with different pa-
rameteric models, such as principal component analysis. However,
experiments reveal that learning-to-rank linear machines seem to
capture the temporal dynamics in videos best. We demonstrate that
a temporal smoothing and sequence pre-processing is important
for modelling the temporal evolution in sequences. Last, we show
that designing kernels that separate the positive from the negative
part of the incoming features has a substantial effect on the final
classification using rank pooling. Based on extensive experimental
evaluations on different datasets and features we conclude that, our
method is applicable to a wide variety of frame-based representa-
tions for capturing the global temporal information of a video.

In the current work we focused mainly on exploring rank
pooling within an action classification setting on moderately long
videos. However, we believe that rank pooling could easily be
exploited in other tasks too, such as video caption generation,
action detection, video retrieval, dynamic texture and video sum-
marization.

We conclude that rank pooling is a novel and accurate method
for capturing the temporal evolution of appearances and dynamics
in videos.
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[2] R. Arandjelović and A. Zisserman, “Three things everyone should know

to improve object retrieval,” in CVPR, 2012.

[3] H. Bilen, B. Fernando, E. Gavves, A. Vedaldi, and S. Gould, “Dynamic
image networks for action recognition,” in CVPR, 2016.

[4] O. Bousquet and A. Elisseeff, “Stability and generalization,” JMLR,
vol. 2, pp. 499–526, 2002.
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