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ABSTRACT
This paper presents Blackthorn, an efficient interactive mul-
timodal learning approach facilitating analysis of multime-
dia collections of 100 million items on a single high-end work-
station. This is achieved by efficient data compression and
optimizations to the interactive learning process. The com-
pressed ι-I64 data representation costs tens of bytes per item
yet preserves most of the visual and textual semantic infor-
mation. The optimized interactive learning model scores the
ι-I64-compressed data directly, greatly reducing the compu-
tational requirements. The experiments show that Black-
thorn is up to 105x faster than the conventional relevance
feedback baseline. Blackthorn is shown to vastly outperform
the baseline with respect to recall over time. Blackthorn
reaches up to 92% of the precision achieved by the baseline,
validating the efficacy of the ι-I64 representation. On the
YFCC100M dataset, Blackthorn performes one complete in-
teraction round in 0.7 seconds. Blackthorn thus opens mul-
timedia collections comprising 100 million items to learning-
based analysis in fully interactive time.
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1. INTRODUCTION
Multimedia collections are becoming the central informa-

tion resource for a growing number of domains, such as
physics, forensics, and marketing. This increases the need
for methods for fast and insightful analysis of the data. Of-
ten, the analysts need to progress from the dataset to insight
in hours or few days at most. For example, a journalist dis-
covering stories about the Brussels terrorist attack in the
ensuing flood of social media content cannot wait weeks be-
fore publishing the story; she needs at least preliminary in-
sights right away. An essential ingredient of insight gain in
multimedia analytics in any knowledge domain is interaction
[17, 28]. Currently, multimedia collections can easily reach
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millions of items, and even larger datasets are common. Be-
hemoths such as the Yahoo Flickr Creative Commons 100M
(YFCC100M) dataset [21] were not so long ago considered
inconceivable challenges, yet to truly advance large-scale
multimedia analytics, techniques for analyzing such large
datasets are needed. How can interactivity in multimedia
analytics be assured facing the rapid growth of collection
size?

Interactive learning techniques, such as relevance feedback
or active learning, are a good fit for multimedia analytics,
as they elicit training data labels from the user directly and
train the model based on them [9]. This paradigm aligns
well with insight, the goal of multimedia analytics. Insight
is iteratively built by the analyst through interaction with
all or most of the data in the collection and application of
the analyst’s domain knowledge [17, 28]. Since interactive
learning trains its model online based on the user’s inter-
actions, the analysis is timely. How to enable interactive
and multimodal learning to support large-scale multimedia
analytics using modest computational resources (standard
high-end workstation with 64 GB RAM and 16-core CPU)
is the research question addressed in this work.

In this paper we introduce Blackthorn, an efficient inter-
active multimodal learning approach for collections of 100
million multimedia items.1 The architecture of Blackthorn
is depicted in Figure 1. Blackthorn brings three main contri-
butions: a multimedia content compression method allowing
to fit billions of items into 64 GB of RAM; optimizations to
the interactive learning process; and opening up the possibil-
ity of analytics on a collection of 100M multimedia items in
interactive time (under 1 second per interaction round). To
the best of our knowledge, no work has yet addressed fully
interactive-learning-based exploration of an image dataset
with 100 million items on a single workstation.

2. RELATED WORK
In response to the rapid growth of digital collections, a

number of approaches facilitating more efficient search and
exploration have been proposed. Interactive learning (e.g.,
relevance feedback) has been proven invaluable for improv-
ing multimedia information retrieval [9], and benchmarks
such as the Video Browser Showdown were introduced [19].
However, the collections considered in these benchmarks are
much smaller than the one considered in this work. In ad-
dition, most of current approaches employ entire computa-

1As this paper focuses on efficiency of interactive learn-
ing, the name is inspired by the efficiency of the blackthorn
shrub: as fire wood, it yields much heat with little smoke.
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Figure 1: Interactive learning with Blackthorn. The
components of interactive learning innovated by
Blackthorn are marked orange.

tional clusters to facilitate analysis of the data in interactive
time [6, 12]. The algorithmic efficiency component often
boils down to reducing the number of items for which the
similarity is computed, reducing the dimensionality of data
representation, or simplifying the similarity computation.

Early work demonstrated that exact k-nn search tech-
niques suffer from the curse of dimensionality [2], paving the
way for approximate methods. Several recent works from
the multimedia and computer vision communities rely on
embedding visual features in binary space to compress the
data and reduce the distance computation time [4, 8, 11, 15,
16, 24, 29]. LSH is a well-known scalar-based indexing tech-
nique [1]. The NV-tree is a scalar-based method, which has
been shown to significantly outperform LSH while requir-
ing about 6 bytes per descriptor [14]. Product quantization
is a family of vector-based quantization schemes producing
compact code-words by indexing low-dimensional subspaces
independently [10, 13, 26].

While these approaches for scaling up image retrieval were
proven effective in k-nn search, their applicability in analytic
tasks remains limited for at least two reasons. First, binary
hashes are not suited for classification, which is an essen-
tial component of most analytic platforms. Moreover, in
many analytic tasks search and exploration are alternately
performed, which requires updating, summarizing and re-
partitioning of the collection based on user interactions [28].
Such operations require preservation of the original vectors
or a significant portion of information contained in them.
Novel approaches are needed for building such representa-
tions for efficient deployment in analytic tasks.

3. DATA REPRESENTATION
In the interactive learning setting, it is desirable that the

user understands the data representation. Hence, we focus
on representations carrying semantic meaning. However, in
case the collection comprises 100 million items, the memory
requirements of such representations are prohibitive. In-
deed, assuming 1000 visual concepts, 100 text topics, and
8 bytes (B) as the size of one floating-point number, the se-
mantic representation of a 100M collection requires roughly
880 GB of RAM. We address this issue by introducing a data
compression method that greatly reduces the representation
size with only a modest information loss.

Semantic representations such as visual concept scores
output by a convolutional neural network [20] or LDA top-
ics in the text domain [3] are sparse, allowing the design of
an efficient representation following the established sparse
representation practices [25]. Thus, in each modality, most
of the information contained in a feature vector with nf fea-

tures can be preserved by encoding only the top tf features
in compact bit fields, since tf ! nf . For the k-th feature,
1 ď k ď tf , we need to encode the feature ID (denoted
ik) and the respective score (denoted sk). The bit cost for
encoding the ID (denoted bi) is rlog2 nf s. The bit cost for
encoding the score (denoted bs) is rp ¨ log2 10s, where p de-
notes the decimal precision. Further, we encode the number
of features actually encoded for item I (denoted eI), as due
to sparsity, eI could be smaller than tf . The bit cost of this
encoding (denoted be) is rlog2 f s. Obtaining the bit field
compressing the feature IDs of item I in each modality (de-
noted I) is defined by Equation 1. Obtaining the bit field
compressing the scores, S, is defined in Equation 2. Here,
_ denotes the binary OR operation, ! the left bit shift op-
eration, and r¨s the rounding function.

I “ eI _

eI´1
ł

k“0

ik ! pk ¨ bi ` beq (1)

S “ eI _

eI´1
ł

k“0

r10p ¨ sks ! pk ¨ bs ` beq (2)

The memory bit requirements for II and SI , bI and bS ,
are then equal to eI ¨ bi ` be and eI ¨ bs ` be, respectively. I
and S can be decompressed to obtain the encoded features,
setting the features outside the top tf to 0. Let ^ denote
the bitwise AND operation and " the right arithmetic bit
shift operation. Equation 3 describes the decompression of
the number of encoded features (eI), Equation 4 describes
the decompression of the k-th feature ID, and Equation 5
describes the decompression of the respective feature score.

eI “ I ^
´

2be ´ 1
¯

(3)

δ pI, kq “ pI " pk ¨ bi ` beqq ^
´

2bi ´ 1
¯

(4)

δ pS, kq “
pS " pk ¨ bs ` beqq ^

`

2bs ´ 1
˘

10p
(5)

Since most current machines are 64-bit, it is desirable to
choose tf and p so that I and S align with the 64-bit ar-
chitecture. Given a semantic representation with less than
1024 relevant visual concepts and text topics and p “ 3, we
can encode I and S each in ι 64-bit integers, keeping the top
6ι features. This setting enables a trade-off between mini-
mizing memory and computational requirements (low ι) on
the one hand and information loss on the other (high ι).

The resulting memory-efficient ι-integer (ι-I64) repre-
sentation only requires 4ι ` 1 64-bit integers per item: 2ι
for I and S per modality, as well as an additional integer for
the item ID. With ι “ 1, the representation is 220x smaller
than the uncompressed representation and allows fitting 1.5
billion items into 60 GB of memory. This makes ι-I64 rep-
resentation suitable for large-scale interactive multimodal
learning.

4. INTERACTIVE LEARNING
Each interactive multimodal learning session consists of a

number of interaction rounds, each with 3 steps. Firstly, a
classifier is trained for each modality on the user-provided
examples. Secondly, the unlabelled items in the collection
are scored. Thirdly, the rankings per modality are aggre-
gated and the top r results are returned to the user. A user
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Figure 2: Recall over time (YFCC100M-California).

Table 1: Precision and time per interaction round
(YFCC100M-California).

Algorithm Precision Time

svm_rf 0.48 3.16 s
blackthorn (ν “ 1000, ι “ 1) 0.44 (92%) 0.07 s (45x faster)
blackthorn (ν “ 200, ι “ 1) 0.35 (73%) 0.03 s (105x faster)

typically provides at most tens of examples per interaction
round, regardless of the collection size. However, the time
cost of steps 2 and 3 increases dramatically as the collection
grows larger. We have alleviated this issue somewhat by
data compression and an efficient parallel implementation
in C, but this does not solve the issue. In this section, we
address Blackthorn’s algorithmic optimizations.

Blackthorn utilizes a linear SVM classifier. To improve
the classifier’s efficiency, we design a custom SVM scoring
function that operates directly in ι-I64-compressed space.
The SVM scoring function σ performs a vector multiplica-
tion of the model’s weight vector w with the feature vector
x, adding bias b to the result. This costs 2nf `1 mathemat-
ical operations (multiplications and additions) per item and
modality. In the ι-I64 representation, only the 6ι encoded
features carry any value. Hence, we can obtain the SVM
score by multiplying only the decompressed feature values
by the corresponding values of the model’s weight vector w:

σc pIq “
ι´1
ÿ

j“0

eI´1
ÿ

k“0

`

wδpI,6j`kq ¨ δ pS, 6j ` kq
˘

` b (6)

This computation costs 42ι ` 1 mathematical operations
per item and modality. Since ι ! nf , this amounts to a
considerable speedup: for example, in a setting with ι “
1 and nf “ 1000 (for instance, 1000 visual concepts), the
number of mathematical operations is reduced 46.5x.

Late modality fusion is another aspect requiring attention
with respect to algorithmic complexity. With a straightfor-
ward implementation, this requires OpN logNq time, which
is higher than the OpNq complexity of scoring. To reduce
fusion complexity to OpNq, we follow the protocol of top-d
rank aggregation [7] in order to obtain the top r relevant
results. For each modality, the top-scoring ν (r ď ν ! n)
results in that modality are nominated to the final rank-
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Figure 3: Recall over time (YFCC100M). The
baseline values are extrapolated from YFCC100M-
California, with λ further multiplying the extrapo-
lated performance.

ing in OpNq time. The multimodal ranking is obtained
by performing rank aggregations on the nominated items
(Opν log νq time). Because ν ! N , modality fusion is essen-
tially computed in linear time. Optimized modality fusion
in combination with efficient scoring ensures that all stages
of interactive learning complete in OpNq time.

5. EXPERIMENTAL SETUP
To gauge Blackthorn’s analytic performance and scalabil-

ity, we report three evaluation measures: recall over time,
precision, and time per interaction round. We compare
our approach (blackthorn) with the standard linear-SVM-
based relevance feedback approach (svm_rf) [9]. Both algo-
rithms use 1000 ILSVRC ImageNet concepts [18] extracted
by GoogLeNet [20] as visual features and 100 LDA topics
[3] extracted using Gensim [23] from the tags, title, and de-
scription of each image. Both blackthorn and svm_rf are
implemented in C and use the VLFeat SVM library [22].
Two datasets are used in the experiments. The first one is
the YFCC100M dataset itself, which is too big to be handled
by svm_rf. To allow for direct comparison of blackthorn

and svm_rf, we use a custom second dataset, YFCC100M-
California, which contains all items in YFCC100M tagged
with the california tag. This dataset has 1,221,608 items.

To evaluate YFCC100M in an interactive setting, we per-
form a task inspired by the MediaEval Placing task [5]. The
evaluation task is to retrieve items pertaining to a large city
based solely on visual and text content. Note that this is a
very difficult task. However, it is suitable the sake of pro-
viding a comparison between approaches. This task is per-
formed by artificial users (actors), each corresponding to one
city in the top 50 cities with the highest number of items.
The geo information is discarded for evaluation purposes.
Each actor conducts 50 sessions, initializing each with 100
uniform random samples from its city as positives and 200
uniform random samples from the collection as negatives.
In each interaction round, 25 items are suggested.

6. RESULTS ON YFCC100M-CALIFORNIA
The precision and time per interaction round are reported

in Table 1. The development of recall in the time period of
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Figure 4: Example items involved in the first interaction round performed on the YFCC100M dataset by the
actor interested in items from Prague. None of the suggestions are regarded as relevant for our evaluation
task, despite the semantically similar content.

5 minutes is depicted in Figure 2. For all three evaluation
measures, we compare svm_rf with the best-scoring ν, ι con-
figuration of blackthorn. We have tested blackthorn with
ν P t100, 200, . . . , 1000u and ι P t1, 2, 3u. Varying ν has
some impact on precision, with ν “ 100 reaching roughly
75% of the precison of ν “ 1000. Increasing ν impacts the
time per interaction round: ν “ 1000 costs roughly twice
the time of the ν “ 100. Regarding recall over time, low ν
tends to outperform the higher values due to the lower time
per interaction round. Regarding ι, we observe that increas-
ing its value brings very minimal precision and recall gain,
but has a negative impact on the time per interaction round.
We believe that the low precision and recall gain is caused
by insufficient decimal precision of the compressed values.
We aim to investigate this further. Overall, we recommend
choosing ι “ 1 in all cases, higher ν for maximum precision,
and lower ν for maximum recall over time and speed.

The experiments clearly show that computational speed
and efficiency are blackthorn’s forte. One interaction round
of blackthorn on YFCC100M-California takes 0.05 ˘ 0.01
seconds on average across all evaluated ν values, and the
fastest configuration is 105x faster than svm_rf. The infor-
mation loss incurred by the ι-I64 representation turns out to
be affordable. The highest-precision configuration of black-
thorn keeps 92% of the average precision with a speed-up of
45. The recall over time plot (Figure 2) clearly shows that
blackthorn dramatically surpasses svm_rf.

7. RESULTS ON YFCC100M
Our approach succeeded in the test of interactivity on the

large dataset: on average across all ν values, blackthorn

takes 0.69 ˘ 0.01 seconds per interaction round. Figure 3
shows the development of recall over time on YFCC100M.
Given the dataset’s prohibitive size, svm_rf is infeasible. In
order to compare the approaches, we extrapolate svm_rf’s
results on YFCC100M-California. Since svm_rf’s computa-
tional cost is OpNq, the 3.16 second performance on 1.2M
becomes roughly 4.3 minutes. Hence, only the first interac-
tion round needs to be considered. The base extrapolation is
twice the recall value of blackthorn’s recall in the first inter-
action round, following the trend observed on YFCC100M-
California. In addition, we report two λ-extrapolated svm_rf

baselines, where λ P t10, 100u further multiplies the base
extrapolation. We believe this more than compensates for
any potential unverifiable factors influencing the true recall
scalability. The results clearly show blackthorn’s efficiency
with respect to recall gain over time: it is able to surpass all
three interpolations in the first 5 minutes of the analysis.

The precision per interaction round on the YFCC100M
dataset, averaged over all ν values, is 0.003 ˘ 0.0001. Note
that the low values are influenced by two important factors.
Firstly, the size of the dataset brings an increase in noise
and lower discriminative power of feature vectors. Secondly,
the evaluation task is extremely difficult. Indeed, there are
cases where the algorithm’s suggestions are evaluated as ir-
relevant, despite their semantic similarity to the provided
positives. This is demonstrated in Figure 4. In a less strict
setting, these suggestions could be easily deemed relevant.
Despite the low values of precision, blackthorn does provide
relevant suggestions even on the large dataset.

8. CONCLUSION
In this paper, we have presented Blackthorn, an efficient

interactive multimodal learning framework which enables
full interactive-learning-based analysis of a collection with
100M multimedia items. The data compression method of
Blackthorn, ι-I64, is shown to reduce the size of multimodal
features by a factor of 220 and preserve most of the infor-
mation contained in the original features. Blackthorn yields
a massive 105x speed-up in comparison to the classic rel-
evance feedback paradigm. The experiments further show
that Blackthorn is suitable for the analysis of the entire
YFCC100M dataset. It is able to learn on the fly from the
user-provided training samples, and one interaction round
on the entire 100M collection takes less than a second. Its
high efficiency and low resource cost would also support
multi-category exploration with proactive suggestions by the
system. The analysis can be performed on a single stan-
dard high-end workstation with 64 GB RAM and 16 CPU
cores. In order to foster further research on YFCC100M,
the Blackthorn software package has been made available as
an open-source tool [27]. In conclusion, Blackthorn is a step
forward towards fully harnessing the wealth of information
contained in large-scale multimedia collections.
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