
Fast, Explainable View Detection
to Characterize Exploration Queries

Thibault Sellam
CWI

Amsterdam, the Netherlands
thibault.sellam@cwi.nl

Martin Kersten
CWI

Amsterdam, the Netherlands
martin.kersten@cwi.nl

ABSTRACT

The aim of data exploration is to get acquainted with an
unfamiliar database. Typically, explorers operate by trial
and error: they submit a query, study the result, and refine
their query subsequently. In this paper, we investigate how
to help them understand their query results. In particu-
lar, we focus on medium to high dimension spaces: if the
database contains dozens or hundreds of columns, which
variables should they inspect? We propose to detect sub-
spaces in which the users’ selection is different from the rest
of the database. From this idea, we built Ziggy, a tuple
description engine. Ziggy can detect informative subspaces,
and it can explain why it recommends them, with visualiza-
tions and natural language. It can cope with mixed data,
missing values, and it penalizes redundancy. Our experi-
ments reveal that it is up to an order of magnitude faster
than state-of-the-art feature selection algorithms, at mini-
mal accuracy costs.

CCS Concepts

•Information systems → Data mining; Data analyt-

ics; •Human-centered computing → Visual analytics;

•Computing methodologies → Feature selection;

Keywords

Data exploration, subspace search, data description

1. INTRODUCTION
Data exploration has gained lots of attention over the last

few years. The main challenge is to support users with lit-
tle prior knowledge, and no clear objective. Some explo-
rers need a preliminary impression of the data before en-
gaging into more structured tasks. Others are browsing in
the hope to discover new insights. Several authors have pro-
posed tools to help data exploration [1, 5, 11, 17]. These
systems offer some textual or graphical interface, through
which users can create, visualize and modify selections of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SSDBM ’16, July 18 - 20, 2016, Budapest, Hungary

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4215-5/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2949689.2949692

tuples quickly. Thus, explorers are engaged in a tight trial-
and-error loop, through which they discover their datasets.

Data exploration systems rely on a crucial assumption:
they suppose that if users see an interesting set of tuples
(e.g., through tables or visualizations), they will recognize
it immediately, and think “aha, this is interesting”. This
assumption may hold with small datasets, but it collapses
in higher dimensions. If the dataset contains dozens, or
hundreds of columns, then which variable should the users
inspect? Harder still, which combination of variables should
they inspect? We cannot assume that our data explorers
know where to look. Yet, studying each possibility in turn
can turn out to be a slow, tedious process. This beats the
purpose of a data exploration system. How can we effi-

ciently choose columns to characterize our explorers’

tuples?

One way to solve this problem is subspace search [2, 14],
which detects sets of columns on which the data has an
“interesting” distribution (e.g., exploiting correlations, clus-
ters and outliers). Also, we could use dimensionality re-

duction techniques such as PCA. However, these algorithms
are unsupervised: they completely ignore the user’s input,
hence they may fail to capture its characteristics. Another
approach is to map our problem to a feature selection set-
ting [8]: we materialize the user’s selection into a vector of
binary variables to be predicted, and we detect which combi-
nation of variables from the database has the best predictive
power. But feature selection algorithms focus on accuracy,
not on exploration. They often neglect speed, and they are
totally oblivious to interpretation and variety.

In this paper we introduce our approach, multi-view subset

characterization. The main idea is to show how the selected
tuples differ from the rest of the database. To do so, we
identify several sets of columns for which the statistical dis-
tribution of the tuples is “unusual”. We implement this idea
in Ziggy, our subset characterization engine. Experiments
with classifiers show that Ziggy generates informative views.
But it is also very fast: thanks to aggressive optimizations,
it can process 10,000s tuples on dozens of variables within a
second - an order of magnitude faster than state-of-the-art
algorithms, at minimal accuracy costs. More importantly,
Ziggy is a white box: every choice it makes is fully explain-

able. As a proof of concept, we will present a method to
convert its findings to natural language, i.e., plain English.
Few data mining algorithms provide this functionality, and
none of those that do tackle view search.

We summarize our contributions as follows:

Description Exceptional? Weak?
zµ ≥ 0 ∧ d̄t ≥ 0: “increase”

zdµ in
top 5%

|zdµ| < 0.2
or
pdµ < 0.01

zµ ≥ 0 ∧ d̄t < 0: “decrease”
zµ < 0 ∧ d̄t ≥ 0: “decrease”
zµ < 0 ∧ d̄t < 0: “increase”

Table 3: Example of handwritten rules for the difference
of means zµ. The variable pµ describes the confidence (p-
value), as described in Section 6.

[zig-component] [label]. If several components are in-
volved, as in Figure 6, the Ziggy enumerates all the pairs
[zig-component] [label], separated by and. At this point,
the text produced is understandable, but it is also highly re-
dundant and possibly grammatically incorrect. During the
last phase, Ziggy rewrites it a set of handwritten rules. Such
rules include inserting connectors (e.g., “Additionally”, “Fi-
nally”), using random synonyms (e.g., “the tuples”, “the se-
lection”, “your data”) or replacing wider chunks (e.g., “has a
lower variance” by “spreads more widely”).

By default, Ziggy only produces visualizations for the vari-
ables associated with exceptional components. It plots the
remainder on demand. To determine which type of visual-
ization to use, it checks the type of the columns, and ap-
plies usual techniques: it uses density plots and histograms
for one dimension data, and scatterplots and heat maps for
two-dimension data.

8. SETTING PARAMETERS
Ziggy’s model relies on three parameters: the total num-

ber of views K to generate, the width of the views D, and
the dependency threshold L.

Number of Views K. When should we stop producing
views? We propose to generate as many views as possible,
and delegate the final decision to the users - after all, we
have little idea about what they are seeking. In practice, we
do so lazily: we start with a small selection of views (e.g.,
as many as the display can contain), and we generate the
remainder on demand, for instance with a “show me more”
button. In our experience, the number of views stays man-
ageable because the algorithm is blocked by the redundancy
constraint: after a certain number of views, Ziggy finds no
more columns to exploit.

Size of the Views D. In our implementation, we set this
parameter in an adaptive fashion, using a method presented
by Zhu and Ghodsi [25]. We summarize it as following.
When building a view, we keep track of the gains ∆Dd in-
duced by each column d. We then detect change points in
the sequence (e.g., “jumps” or “elbows”). If we observe such
a behavior, we truncate the current view and start a new
one. The advantage of this method is that D can adapt to
each subspace. However, it is only a heuristic. Fortunately,
inaccuracies have little consequence in practice: if the de-
pendency constraint is weak, then the excluded columns are
simply pushed to the next view.

Dependency threshold L. Admittedly, there is no op-
timal way to set this parameter: it depends entirely on the
user and the exploration context. By default, we use Shard,
and we limit to L = 0.99. This setting enforces that the
views are non-overlapping, but it adds no other constraint -
we see this as a safe option.

Zig-Components. Previously, we proposed several Zig-

Columns
Except. Weak

DZigComp. Comp.
(%) (%)

Patent applications p inhabitant
83.3 0 25.4PCT patent applications

Personal earnings
Dwellings no basic facilities

64.2 7.1 18.9
Educational attainment
Emp. work very long hours
Life expectancy
Average hours worked

50 42.2 12.4
Population growth rates
Working age population
Pop under the age of 15
Assault rate, Homicide rate

77.7 11.1 12.1
Current account balance
Export Pharmaceutical

57.1 57.1 11.4
Incidence part time emp
Long term unemp
Production crude oil
Air pollution, Job security

77.7 11.1 10.1
Student skills
Employment rate

66.6 33.3 7.1Total primary energy supply
Trade Balance. Pharmaceutical
Triadic patent year

28.5 75.5 6.2
Time devoted to leisure
Renewable energy supply

33.3 55.5 5.5Voter turnout
Total tax revenue
Consultation on rule making

7.1 78.5 5.3Implicit GDP Price Indices
Years in education
Quality of support network

33.3 55.5 4.5
Taxes on income and profits
Value Added of Industry

0 100 2.9Exchange Rates
Gross Domestic Product

Table 4: Detail of Ziggy’s views, by decreasing order of dis-
similarity. The two middle columns indicate the proportion
of Zig-Components marked as Exceptional and Weak.

Components, in order to capture a wide range of effects. We
do not have to use them all. For instance, a user interested
in quick and concise results may prefer to ignore bivariate
components.

9. USE CASE
We now apply Ziggy on the data which inspired our run-

ning example. Our aim is to understand which factors lead
to innovation, and more specifically patents. To answer this
question, we aggregated several databases from the OECD,
an international economic organization. All the data we
used may be found online1. Our core dataset is the Patents
per Region database, which contains 15 years of patent
statistics for 2,180 regions in 31 countries. We augmented
this set with several other region-level databases (Demogra-
phics per Region and Labour per Region) and country-
level indicators (Better Life, Well Being and Innovation

Indicators). We obtain a table with about 6,823 rows and
519 columns, including mixed types and missing values. We
filtered out the categorical columns with more than 20 dis-
tinct values (e.g., primary keys, countries and region names).

Our selection of tuples contains the top 10% regions for

1http://stats.oecd.org/

10. EXPERIMENTS
Metrics. We now present our experimental results. We

evaluate three aspects of our system: the quality of the
views, their diversity, and Ziggy’s runtime. To evaluate the
quality of the views, we simulate users with statistical clas-
sifiers. We assume that if a classifier can learn from a view,
then so can a real user. Technically, we materialize the user’s
selection into a vector t = (t1, . . . , tn)

⊤: ti = 1 if the tuple
is chosen, 0 otherwise. We then train a classifier, using the
view V as feature set and the user’s selection t as target. To
obtain our quality score, we check if the classifier can accu-
rately model the user’s selection t with the variables in V.
If so, we deduce that the selection has a “peculiar” structure
in the subspace, and therefore the view contains exploitable
information. Oppositely, if the classifier cannot reconstruct
the user’s selection, then either the classifier is poor, or the
view contains no information about the selection. We use a
5-Nearest Neighbor (5-NN) classifier, and we report the F1
measure with 5 cross-validation (higher is better). We chose
the 5-NN algorithm for convenience: it is fast, and it gave
us good predictive performance.

To measure diversity, we report the number of distinct
columns used by the views in the result set (higher is better).
We measure runtime with the total wall clock time, including
preprocessing in Ziggy’s case (lower is better).

Baselines. We compare Ziggy to four state-of-the-art
subspace detection methods from the data mining literature.
Our first three methods are supervised: their aim is to detect
informative columns for a classification or regression task.
We adapt these methods to our problem by setting t as the
target column. Here again, our rationale is the following: if
a set of column is a good predictor for the user’s selection,
then it contains useful information.

Our first baseline is Claude [18], a recently published fea-
ture search algorithm. We chose this method because it uses
a multi-view approach, and therefore its results are directly
comparable to ours: like Ziggy, it returns a fixed number
of subspaces, with a user-specified number of dimensions.
Technically, Claude differs on two points. First, it uses a dif-
ferent notion of interestingness: it seeks groups of columns
which are strongly dependent to the target, dependency be-
ing measured with the mutual information. Second, Claude
builds subspaces with a level-wise, beam search algorithm.
We used the authors’ implementation. We expect this ap-
proach to be both fast and accurate.

Our second baseline is Clique, inspired by the pattern
mining literature [23]. The algorithm builds a graph inside
which the weight of each edge (i, j) represents the statistical
dependency between the pair of columns i, j and the tar-
get variable (again, we measure dependency with the mu-
tual information). To obtain K subspaces with at most
N variables, we remove all the edges except the K′ > K

strongest, and detect cliques of at most N nodes in the re-
maining graph. By default, we set K′ = 2 · K. To detect
cliques, we used the igraph software package. We expect
this algorithm to be fast but rather approximative.

Our third baseline, Wrap-5NN is a “wrapper” from the fea-
ture selection literature [8]. This algorithm trains 5-NN clas-
sifiers with increasingly large sets of variables. First, it tests
each variable, and it keeps the top K. Then, it tests com-
binations of two columns. The process is repeated until the
views reach D dimensions. We chose 5-NN because it is the
same algorithm we use to evaluate the views. Therefore, we

Parameter Value
Selection (tuples) 3,000
Tuples from Gauss. mixture 15,000
Tuples from Unif. distrib. 15,000
Sep. / Non-sep. variables 20 / 4
Num. dimensions subspaces 4
Num. components Gaussians 5
Mean / Variance Gaussians Unif. in [-10,10] / [1, 20]
Uniform noise Unif. in [-45,45]

Table 5: Default parameters for our data generator.

optimize exactly what we measure. We expect this approach
to be accurate, but also very slow. Thus, we only use it as
a “gold standard” for our experiments with real data.

The last baseline, 4S, detects subspaces in an unsuper-
vised manner: it seeks subspaces which contain clusters and
outliers, independently of the user’s selection. To do so,
it detects groups of variables which are strongly mutually
dependent, using an multivariate correlation measure. We
used the author’s implementation written in Java. We ex-
pect 4S to be fast, but also less accurate than its competitors
because of it unsupervised nature.

Setup. We implemented Ziggy in R, exploiting its native
primitives for critical operations (namely computing means,
covariance matrices and cross-tabulation). We interrupted
all the experiments which lasted more than 1 hour. Our test
system is based on a 3.40 GHz Intel(R) Core(TM) i7-2600
processor. It is equipped with 16 GB RAM, but the Java
heap space is limited to 8 GB. All the algorithms we present
are single-threaded. The operating system is Fedora 16.

10.1 Synthetic Data
In this set of experiments, we benchmark our algorithms in

a synthetic environment. Since we know the structure of the
data, we can tune the competitors optimally. For instance,
if we generate a dataset with 3 subspaces of 5 columns, then
we set K = 3 and D = 5. We must however report that 4S
tunes itself: it computes how many subspaces to generate,
and how large these should be. We use two versions of Ziggy:
for Ziggy-Soft we use the dependency measure Ssoft and
we limit it to 0.1. For Ziggy-Hard, we use Shard and we
limit it to 0.9.

Our generator produces columns by groups. It yields two
types of subspace: non-separated subspaces, and separated

subspaces. In the non-separated case, the selection and the
rest of the data are sampled from the same distribution,
namely a mixture of multivariate Gaussians with random
parameters. In the separated case, the selection is sampled
from a separate Gaussian distribution, with its own random
parameters. Additionally, our generator produces uniform
noise on all the columns. Table 5 presents our parameters.
For each experiment, we generate 4 random data sets and
report the average F1 of all the views.

Quality of the Views. The first chart in Figure 8
presents the robustness of the algorithms with regards to
the size of the selection. For all our baselines, raising this
parameter ameliorates the views, but the quality converges
fast (at around 15% of the database size). The algorithm
Claude comes first, but it is very closely followed by the two
instances of Ziggy and 4S. The ranking is almost identical
in the second chart, which displays the accuracy of the algo-
rithms varying the dimensionality of the subspaces. All algo-
rithms involved seem robust, but Ziggy-Soft, Ziggy-Hard

●
● ● ●

0.0

0.5

1.0

0 10 20 30 40 50

#Tuples in selection (% total)

A
c
c
u

ra
c
y
 −

 F
1

●
● ● ●

0.0

0.5

1.0

4 8 12 16

#Col. per Subspace

A
c
c
u

ra
c
y
 −

 F
1

● ● ● ●

0.0

0.5

1.0

40 60 80 100

#Non−Separated Col.

A
c
c
u

ra
c
y
 −

 F
1

● Ziggy−Soft

Ziggy−Hard

Claude

4S

Clique

Figure 8: Average quality of the views varying the data generator parameters.

● ● ● ●
0

5

10

15

20

25 50 75 100 125

#Tuples (x1,000)

T
im

e
 (

s
)

● Ziggy−Soft

Ziggy−Hard

Claude

●

●

●
●

0.0

2.5

5.0

7.5

40 60 80

#Columns

T
im

e
 (

s
)

(a) Runtime for the three fastest algorithms, varying data parame-
ters. The points for Ziggy-Hard and Ziggy-Soft overlap.

0.0

0.5

1.0

1.5

2.0

2.5

20 40 60 80

#Columns

T
im

e
 (

s
)

Offline Zig−Comp.

Online Zig−Comp.

View Seach

(b) Breakdown of the total runtime for Ziggy-Soft, varying
the number of columns.

Figure 9: Runtime experiments with synthetic data.

and Claude are above, followed closely by 4S, then Clique.
The last graph illustrates the robustness of the views with
regards to the number of non-separated columns. All our
baselines achieve good scores, except 4S. We interpret this
effect by the fact that 4S is unsupervised, it has therefore no
way to detect which subspaces are interesting and which are
not. In conclusion, despite its simple assumptions, Ziggy
delivers high quality, robust views, largely comparable to
state-of-the-art feature selection algorithms.

Runtime. Figure 9a illustrates the total runtime with
regards to the number of rows and columns in the database.
We ignored the algorithms 4S and Clique, which were slower
than the other candidates. We observe that Ziggy’s perfor-
mance is spectacular: it is an order of magnitude faster than
Claude, which is itself faster than the other competitors.
And yet, all the algorithms involved in our benchmark have
the same O(ND2) complexity. We explain the difference
with Ziggy’s simpler computations. Ziggy relies on means
and correlations, which are much lighter than Claude’s in-
formation theoretic estimators. Besides, when evaluating
its views, Ziggy considers at most two dimensions at a time,
while its competitors test higher level dependencies.

Figure 9b shows where Ziggy-Soft spends its time. By
far, the most expensive operations are the offline computa-
tions. This validates our staging strategy. Table 5 reports
that the database contains 1 selected tuple for every 10 non
selected tuple. Therefore we expected the online phase to be
about 10 times faster, ignoring overhead costs. The figure
confirms this estimation.

Diversity. Figure 10 presents the number of distinct co-
lumns mentioned in the views. In the leftmost chart, we
compare four competitors, varying the width of the sub-
spaces. We notice two distinct groups of algorithms. The
approaches Ziggy-Hard and 4S offer a very high diversity,
because they enforce that no column is shared among sub-
spaces. The approaches Claude and Ziggy-Soft offer much
less variety. The rightmost figure illustrates the effect of the

● ● ●
●

0

25

50

75

100

4 8 12 16

#Dimensions per Subspace

#
D

is
ti
n
c
t
C

o
lu

m
n
s

● Ziggy−Soft

Ziggy−Hard

Claude

4S
● ● ● ●

● ●

● ●

0

5

10

15

20

0.2 0.3 0.4 0.5

Dependency Threshold

#
D

is
ti
n
c
t
C

o
lu

m
n
s

●

●

Hard threshold

Soft thresold

Figure 10: Variety of the views.

dependency threshold. In the Hard case, it has no appa-
rent effect because the views are completely disjoint anyway
(the threshold does decorrelate the views, but this does not
influence our metric). In the Soft case, we see that our dedu-
plication strategy works: a lower threshold forces Ziggy to
introduce variety.

10.2 Real Data
We now presents our experiments on real data from the

UCI Repository. We use the algorithm Wrap-5NN as “gold
standard”, since it optimizes precisely the metric we report.
To set the number and width of the subspaces, we rely on 4S.
Table 6 describes the datasets and our settings. Because all
the competitors have the same parameters, the comparison
is fair.

Accuracy. Figure 11 illustrates the quality of the views
for each algorithm. We observe that Wrap 5-NN always comes
first. It is closely followed by Ziggy-Soft, Claude and Ziggy-

Hard, in different orders (although Crime is a striking counter-
example). The unsupervised 4S follows in most cases, tailed
by Clique. Here again, we conclude that Ziggy’s perfor-
mance is largely comparable to good feature selection al-
gorithms. However, we observe that Ziggy-Hard is often
below Ziggy-Soft, the most extreme case being the Let-

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●●
●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●

●

0.00

0.25

0.50

0.75

1.00

USCensus
Crime

MuskMolecules

MAGICTelescope
PenDigits

BankMarketing

BreastCancer

LetterRecog

Dataset

A
c
c
u

ra
c
y
 −

 F
1 ●

●

●

●

●

●

Ziggy−Soft

Ziggy−Hard

Claude

4S

Clique

Wrap 5−NN

Figure 11: Quality of the views. The points represent median scores, the bars represent the lowest and greatest scores.

X X X X

0

10

20

30

40

50

USCensus
Crime

MuskMolecules

MAGICTelescope
PenDigits

BankMarketing

BreastCancer

LetterRecog

Dataset

#
D

is
ti
n

c
t

C
o

lu
m

n
s

Ziggy−Soft

Ziggy−Hard

Claude

4S

Clique

Wrap 5−NN

Figure 12: Diversity of the views. The X mark indicates that we truncated the column.

XX XX XX XX XX XX XX XX XX XX XX

0

10

20

30

USCensus
Crime

MuskMolecules

MAGICTelescope
PenDigits

BankMarketing

BreastCancer

LetterRecog

Dataset

E
xe

c
u

ti
o

n
 T

im
e

 (
s
)

Ziggy−Soft

Ziggy−Hard

Claude

4S

Clique

Wrap 5−NN

Figure 13: Runtime. The X mark indicates that we truncated the column.

terRecog set. This is a consequence of Ziggy-Hard’s di-
versity. In the synthetic case, it had several equally good
subspaces to chose from. In the last three datasets, it seems
that some subspaces are better than others, and therefore
non-redundancy induces an accuracy loss (observe that 4S

suffers from the same problem).
Diversity. Figure 12 presents the diversity results. As

with synthetic data, we observe that 4S and Ziggy-Hard

dominate the other algorithms, particularly with wide tables
such as Crime and MuskMolecules. The algorithms Ziggy-
Soft and Clique follow, then Claude and Wrap-5NN comes
last - which we expected since they mostly target accuracy.
This chart, in conjunction with Figure 11, shows that the
algorithms which generate the best F1 rarely generate the
best diversity, and reciprocally. This motivates our choice
to offer both Shard and Ssoft.

Runtime We present the runtime of our algorithms in
Figure 13. The results are consistent with our previous con-
clusions: Ziggy outperforms all of its competitors, and the
speedup gets more dramatic as the size of the datasets in-
crease.

11. RELATED WORK
Outlier Description. Outlier description consists in

finding subspaces inside which a particular tuple is an out-
lier [3, 6, 9, 24]. This task inspired our work, but its objec-
tives are different. Outlier description describes single ob-
jects, while we describe sets of tuples. It focuses on distance-
based outliers, while we focus on probability distributions,

Dataset Columns Rows #Views Dim Views
MuskMolecules 167 6,600 22 18

Crime 128 1,996 20 17
BreastCancer 34 234 10 13

PenDigits 17 7,496 9 10
BankMarketing 17 45,213 11 8

LetterRecog 16 20,000 10 12
USCensus 14 32,578 10 7

MAGICTelescope 11 19,022 1 10

Table 6: Characteristics of the datasets.

regardless of how central or isolated the user’s selection is.
Authors focus on specific data types (either numerical or
categorical, but not both), and little of them mention redun-
dancy (an exception is [6], which seeks closed sets). None of
these works discuss how to report results.

Contrast Mining. Contrast mining is a similar task,
but in a pattern mining context: the aim is to differentiate
two or more populations by identifying patterns which are
present (e.g., have a high support) in one population but
not in the other [20, 22]. This line of work is related but
orthogonal, because we deal with neither itemsets nor pat-
terns. Notably, Loekito and Bailey introduced a method to
identify discriminative variables [13]. Yet, their work focus
on “contrast of contrasts” for categorical data, a close but
different task

Feature Selection. As noted in Section 10, our work
is intimately related to feature selection. Feature selection

seeks predictive variables for a classification or regression
task [8]. We can map this task to our problem by trea-
ting the user’s selection as a column to be predicted. The
main difference is that feature selection targets statistical
accuracy, while we target interpretation. Thus, most fea-
ture selection algorithms seek one optimal set of variables,
while we seek several small sets of variables. Also, feature
selection tends to optimize class separability, while we are
interested in any difference in distribution. Nevertheless,
we acknowledge the similarity between our work and some
algorithms, and compare them directly in Section 10.

Data Exploration Recent works in data exploration have
tackled different but related problems. Similarly to our
work, SeeDB [19] recommends visualizations by seeking co-
lumns on which a set of tuples have an unusual behavior.
However, it focuses on GROUP BY aggregates in data ware-
houses, while we focus on describing the general distribution
of the selection, independently of any sub-grouping. Li and
Jagadish [10] tackle the counterpart of our problem: they
describe how to issue queries in natural language. Lloyd et
al.’s automated statistician [12] describes regression models
in natural language. These approaches are somewhat com-
plementary to ours, and there would be much to gain by
combining them.

12. CONCLUSION
We exposed the tuple characterization problem, and pre-

sented our solution, Ziggy. Our experiments show that Ziggy
can produce informative, non-redundant results within a
fraction of the time taken by state-of-the-art machine learn-
ing algorithms. In fact, we could apply our solution to a
wide range of problems beyond the strict realm of data ex-
ploration, including supervised and unsupervised learning.

We are genuinely excited by the perspectives offered by
our results. In the future, we will focus on human aspects:
we will investigate how real users interact with Ziggy, and
which graphical tools can enhance their experience. We will
also enrich Ziggy with other measures of difference, possibly
with Bayesian modeling. Finally, the problem of how to
describe tuples with natural language is immense, but it has,
to the best of our knowledge, only received little attention.
We are convinced that this field is full of promises, for data
explorers and data researchers alike.

13. REFERENCES
[1] A. Abouzied, J. Hellerstein, and A. Silberschatz.

Dataplay: interactive tweaking and example-driven
correction of graphical database queries. In USIT,
pages 207–218. ACM, 2012.

[2] R. Agrawal, J. Gehrke, D. Gunopulos, and
P. Raghavan. Automatic subspace clustering of high
dimensional data for data mining applications. In
Proc. SIGMOD, pages 94–105, 1998.

[3] F. Angiulli, F. Fassetti, and L. Palopoli. Detecting
outlying properties of exceptional objects. ACM
TODS, 2009.

[4] J. Cohen. Statistical power analysis for the behavioral

sciences. Lawrence Erlbaum Associates, 1977.

[5] K. Dimitriadou, O. Papaemmanouil, and Y. Diao.
Explore-by-example: An automatic query steering
framework for interactive data exploration. In Proc.

SIGMOD, pages 517–528, 2014.

[6] L. Duan, G. Tang, J. Pei, J. Bailey, A. Campbell, and
C. Tang. Mining outlying aspects on numeric data.
Data Mining and Knowl. Discovery, pages 1–36, 2014.

[7] R. A. Fisher. Frequency distribution of the values of
the correlation coefficient in samples from an
indefinitely large population. Biometrika, 1915.

[8] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. The Journal of Machine

Learning Research, pages 1157–1182, 2003.

[9] E. M. Knorr and R. T. Ng. Finding intensional
knowledge of distance-based outliers. In Proc. VLDB,
pages 211–222, 1999.

[10] F. Li and H. Jagadish. Constructing an interactive
natural language interface for relational databases. In
Proc. VLDB, pages 73–84, 2014.

[11] E. Liarou and S. Idreos. dbtouch in action database
kernels for touch-based data exploration. In Proc.

ICDE, pages 1262–1265, 2014.

[12] J. R. Lloyd, D. Duvenaud, R. Grosse, J. B.
Tenenbaum, and Z. Ghahramani. Automatic
construction and Natural-Language description of
nonparametric regression models. In AAAI, 2014.

[13] E. Loekito and J. Bailey. Mining influential attributes
that capture class and group contrast behaviour. In
Proc. CIKM, pages 971–980, 2008.

[14] H. V. Nguyen, E. Muller, and K. Bohm. 4s: Scalable
subspace search scheme overcoming traditional apriori
processing. In IEEE Big Data, pages 359–367, 2013.

[15] J. K. Patel and C. B. Read. Handbook of the normal

distribution, pages 204–205. CRC Press, 1996.

[16] P. Pébay. Formulas for robust, one-pass parallel
computation of covariances and arbitrary-order
statistical moments. Tech. report, Sandia National

Laboratories, 2008.

[17] T. Sellam and M. L. Kersten. Meet charles, big data
query advisor. In CIDR, 2013.

[18] T. Sellam, E. Müller, and M. Kersten.
Semi-automated exploration of data warehouses. In
proc. CIKM, pages 1321–1330, 2015.

[19] M. Vartak, S. Rahman, S. Madden, A. Parameswaran,
and N. Polyzotis. Seedb: Efficient data-driven
visualization recommendations to support visual
analytics. Proc. VLDB, pages 2182–2193, 2015.

[20] J. Vreeken, M. Van Leeuwen, and A. Siebes.
Characterising the difference. In Proc. SIGKDD, pages
765–774, 2007.

[21] L. Wasserman. All of statistics: a concise course in

statistical inference. Springer, 2013.

[22] G. I. Webb, S. Butler, and D. Newlands. On detecting
differences between groups. In Proc. SIGKDD, pages
256–265, 2003.

[23] Y. Xie and P. S. Yu. Max-clique: a top-down
graph-based approach to frequent pattern mining. In
ICDM, pages 1139–1144, 2010.

[24] J. Zhang and H. Wang. Detecting outlying subspaces
for high-dimensional data: the new task, algorithms,
and performance. Knowledge and information systems,
pages 333–355, 2006.

[25] M. Zhu and A. Ghodsi. Automatic dimensionality
selection from the scree plot via the use of profile
likelihood. Computational Statistics & Data Analysis,
pages 918–930, 2006.

