
Have a Chat with Clustine,
Conversational Engine to Query Large Tables

Thibault Sellam
CWI, the Netherlands

thibault.sellam@cwi.nl

Martin Kersten
CWI, the Netherlands

martin.kersten@cwi.nl

ABSTRACT
Thanks the recent advances of AI and the stellar popularity
of messaging apps (e.g., WhatsApp), chatbots are no longer
bound to customer support services and computer museums.
Indeed, they provide a mighty, lightweight and accessible
way to provide services over the Internet. In this paper,
we introduce Clustine, a chatbot to help users query large
tables through short messages. The main idea is to com-
bine cluster analysis and text generation to compress query
results, describe them with natural language and make re-
commendations. We present the architecture of our system,
demonstrate it with two use cases, and present early vali-
dation experiments with 12 real datasets to show that its
promises are reachable.

1. INTRODUCTION
According to the Economist, over 2.5 billion people have

access to a messaging app such as Facebook Messenger or
WhatsApp. This number could reach 3.6 billion within cou-
ple of years - half of humanity [1]. As a result, many Internet
firms have sought to expand their services to this medium.
In most cases, they have done so with chatbots, also called
conversational engines. Recent examples include Facebook’s
M and Microsoft’s Tay. Dozens of smaller businesses have
also developed task-specific alternatives, for instance to ac-
cess bank services, book flights or schedule meetings. In fact,
the so-called bot economy has grown so quickly that well-
established firms such as Facebook and Russia’s Telegram
are now dedicating entire marketplaces places to it.

And indeed, chatbots have a number of advantages com-
pared to traditional applications. They rely on natural lan-
guage, which implies a short - ideally nonexistent - learning
phase. Since they live in the user’s messaging app, they
are lightweight. They require no client installation and no
maintenance. Finally, we can easily translate their output to
audio thanks with to Text-to-Speech software, an important
option for visually impaired users.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HILDA’16, June 26 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4207-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2939502.2939504

In this paper, we discuss how to engineer a chatbot to
help users query large tables. More specifically, we focus on
the interface between users and the system. How should
the users write their queries? And how should the sys-
tem answer? Our aim is to develop accessible and efficient
techniques to interrogate databases through messaging apps.
The challenges we face are twofold. First, our medium im-
poses draconian restrictions on the quantity of information
that we can convey. Users expect short messages, and the
support for visuals is close to null - we can send a few pic-
tures at most. Furthermore, we target a casual population,
that is, users with a weak knowledge of the database and no
programming skills. Typically, we envision distracted man-
agers or hobbyists playing with their mobile phones. In this
scenario, SQL is not an option.

Researchers have proposed natural language interfaces to
query databases for at least two decades [4, 11]. But those
solutions only solve half of the problem. They help users
write queries, but they do not help them understand their
results. They return tables of data, as traditional database
front-ends do. But tables are neither user-friendly nor space
efficient. They can quickly saturate screens and overwhelm
users - especially on smartphones.

Another shortcoming of natural language interfaces is that
they assume that users know what they want, and they know
where to find it. But in many cases, the users’ requirements
are too subjective or fuzzy to be easily cast as a query. For
instance, how could we identify the “young customers” in
a marketing database or the “happy countries” is a world
survey? Ideally, the system should provide guidance. A few
interfaces already offer this feature [11], but they focus on
the database schema (e.g., which columns and tables to use),
not on the parameters of the query.

This paper introduces Clustine, our prototype conversa-
tional agent. Clustine offers bi-directional support for nat-
ural language: it collects queries, but also summarizes their
results in plain English - a research direction which has so
far received little attention in the literature. Clustine is also
proactive. Instead of collecting queries passively, it makes
suggestions, collects feedback and reacts accordingly.

We summarize our contributions as follows:

• We introduce Clustine, a prototype chatbot based on
cluster analysis and interactive query refinement.

• We present an algorithm to describe query results in a
compact and informative fashion.

• We showcase Clustine with two scenarios, and validate
its suggestions with 12 real-life datasets.

I identified three clusters in your dataset (6812 rows):
- 1: high Personal_earnings, low Average_hours_worked
- 2: high Personal_earnings, high Average_hours_worked
- 3: low Personal_earnings, low Average_hours_worked
Do you want a zoom (Z/1-3), another view (O), a visualization (V), or to exit (X)?

I want to zoom

Which cluster are you interested in?
Cluster 1

I identified three clusters (3325 rows):
- 1: high Total_tax_revenue, low Rooms_per_person
- 2: very high Rooms_per_person, low Total_tax_revenue
- 3: high Rooms_per_person, very low Total_tax_revenue

Give me another view

Ok, here is an alternative set of descriptions (3325 rows):
- 1: high Time_devoted_to_leisure, low Self_reported_health
- 2: high Self_reported_health, low Time_devoted_to_leisure
- 3: high Self_reported_health, high Time_devoted_to_leisure

I want to exit

Done! Final tuples: high Personal_earnings, low Average_hours_worked

Luzern Switzerland …

Bern Switzerland …

… …. …

Figure 1: Demonstration of Clustine.

This paper is an early stage report: we present the main
ideas behind Clustine and preliminary experiments to show
that they are feasible. We will however leave a few questions
open for future research.

2. OVERVIEW
Let us define our use case. Our users have access to a

large table, containing several dozen columns and 10,000s of
tuples. They are interested in a small portion of this table.
Our aim is to develop a chat-based service to help them find
and consult this interesting portion.

Our solution is based on iterative query refinement. Clus-
tine inspects the dataset, partitions it into a few groups,
and asks the user whether they are interested in one of the
partitions. If the answer is positive, then Clustine “drills
down” into the selection. It splits it into even smaller groups
and asks for more feedback. If the answer is negative, then
Clustine generates an alternative set of suggestions, and it
repeats the cycle. To partition the database, Clustine relies
on cluster analysis. It forms groups such that similar items
are gathered and different items are separated. Thanks to
this method, it can provide coherent options: each partition
effectively covers one “family” of tuples [13].

Let us illustrate this process with an example. We have
access to a database of socio-economic indicators, describing
a few thousand regions of the world. Our aim is to find the
countries with the “best conditions of life”, a purposely ill-
defined task. Figure 1 illustrates how to build the query
with Clustine. It shows our system’s main operations:

• Zoom into one or several partition to refine the selec-
tion of tuples.

• Request an alternative description of the partitions, to
get another view of the data.

• Request a visualization of the partitions, to be sent as
an image (we demonstrate this feature in Section 5).

• Exit: Clustine closes the conversation and returns a
sample of the selected tuples.

Cluster
Detection

Cluster
Description

User Input
Understanding

Dataset

ExitZoom

Redescription

Plotting
Plotting
Library

Results

User (Client)

Figure 2: Overview of Clustine’s Architecture.

Observe how our method differs from the usual query-result
paradigm. Classic database front-ends rely on open ques-
tions. The users face a “blank page”, and they must build
their query from scratch. With Clustine, the system gener-
ates a sequence of closed, multiple choice questions. These
statements have two roles. First, they summarize the cur-
rent selection tuples, as they identify and describe its main
components. Thus, they offer a text-based alternative to
tables and graphics. Second, they provide options for query
refinements. They let the users compose complex queries
without a writing a single line of SQL.

3. ARCHITECTURE
Figure 2 presents Clustine’s architecture. Our system re-

lies on three components. The first component takes a sam-
ple of tuples from the database and detects clusters. The
second one generates textual synopses of these clusters. The
last component collects the users’ input and infers what ac-
tion to carry out next. We implemented the first and last
stages with well-known techniques, which we briefly discuss
in this section. Designing the second module, which gener-
ates text from clusters, was more challenging. We tackled it
with an original framework, described in Section 4.

Cluster Detection. In principle, we could implement
clustering with any method from the literature. In practice,
we opted for the EM algorithm, a generalized variant of k-
means [5]. This algorithm can deal with mixed data types
and missing values. Furthermore, it returns the mean vector
and covariance matrix associated with each cluster. We will
exploit this information extensively in the description phase.
To determine the number of partitions, we use Bayesian In-
formation Criterion [5], a well established method from the
literature. To ensure that the descriptions are compact, we
set a low cap on this value (e.g., 3 or 4). This approach
causes no loss of generality: the smaller clusters do not dis-
appear, they simply appear later in the exploration.

Input Understanding. We implemented this module
with a Naive Bayes classifier [5], trained on a manually gen-
erated corpus to recognize which action the user is asking
for. We encode the data with bags of words, after lower
casing and stemming. When the users request zooms, we
extract the cluster numbers with regular expressions.

Hours_Worked

Income

Tax Revenue

De
ns

ity
 (%

)
De

ns
ity

 (%
)

De
ns

ity
 (%

)
Ranked Higher

Ranked Lower

Selected
Cluster

Selected
Cluster

Selected Cluster

Other
Clusters

Other Clusters

Other
Clusters

x̄C x̄C

Figure 3: Clustine seeks variables on which the cluster are
well separated.

4. DESCRIBING CLUSTERS
We now turn to an important challenge in our study: how

to describe a set of partitions with natural language? The
EM algorithm defines each cluster by its center (i.e., vector
of means) and its covariance matrix. But this information is
difficult to interpret. For a start, it involves all the columns
in the database. When the data contains dozens or hun-
dreds of variables, mentioning them all clutters the screen
and overwhelms the users. Furthermore, novice users may
not be comfortable with raw data. They may prefer high
level magnitude judgments (e.g., “Your data has high values
for Income”) rather than literal numbers (e.g., “The aver-
age value for Income is 42.5 and the variance of 0.4”). This
section discusses Clustine’s editorial choices, that is, which
columns it uses to describe the clusters, and how it conveys
the values of the subsequent tuples.

Ranking Variables. To describe the clusters, Clustine
uses few columns only. More specifically, it identifies “high
contrast” variables, that is, variables on which the tuples in
the cluster are different from those in the rest of the data.
We illustrate this idea with Figure 3.

To quantify the contrast associated with each variable,
our system uses Cohen’s d, from the classic statistics litera-
ture [6]. Consider a cluster C. Let x̄C (resp. x̄C) describe
the mean of the variable x for the tuples inside (resp. out-
side) the cluster. The variable s is the pooled standard de-
viation of the two sets. We define Cohen’s d as the scaled
difference between the means. Formally:

d =
x̄C − x̄C

s

Admittedly, Cohen’d is not the most versatile measure of
statistical dissimilarity. More sensitive alternatives exist,
such as the Kullback-Leibler divergence [5]. But this indica-
tor is practical. It is based on means and variances, which we
obtain “for free” from the EM algorithm. Also, its sign and
magnitude are directly interpretable. A positive value im-
plies that the tuples in the cluster have a higher value than
those in the rest of the database, while a negative value indi-
cates that the tuples have a low value on the chosen variable.
A high magnitude indicates a large deviation, while a low
magnitude describes small variations. Thus, we can exploit
Cohen’s d directly to generate textual descriptions.

Cluster description pipeline. Figure 4 presents Clus-
tine’s description pipeline. During the first step, our sys-
tem computes the contrast associated with each variable.

Description

Variable Selection

Contrast
Calculation Top K

Text
Generation

Conflict
Resolution Deduplication

Testing

Figure 4: Workflow of Clustine’s cluster description module.

It ranks them and selects the top K, for some arbitrary
K. Then it checks if the results are statistically significant,
that is, how likely it is that they were caused by chance.
By default, it uses t-tests, the counterpart of Cohen’s d in
the hypothesis testing literature [6]. It discards the vari-
ables associated with a low confidence. Once this process is
completed, Clustine produces the textual explanations. It
first deduplicates the variables, as explained in the following
paragraph. It then generates text, using handcrafted rules
and regular expressions. Finally, it resolves conflicts. The
aim of this phase is to detect and hierarchize the clusters
that have with the same description. For instance, if two
partitions have the label “High income”, Clustine detects
which one covers the highest values and renames it to “Very
high income”.

Deduplication. Our variable ranking scheme can lead to
redundancy. For instance, this problem can occur when sev-
eral columns contain the same data under different names
or encodings (e.g., “Income”, “IncomeCode” and “Income-
Category”). To solve it, Clustine deduplicates the columns.
It does so in three steps. First, it obtains the correlation
between every pair of variables from the output of the EM
algorithm. Second, it detects clusters of correlated columns,
using a distance-based clustering algorithm, such as hierar-
chical clustering or PAM [5]. Finally, it selects one repre-
sentative column for each cluster.

The deduplication step enforces that the results are di-
verse, but it can yield losses of accuracy, described in Sec-
tion 6. We leave it as an option, to be chosen by the user.

Redescription. If the users are not satisfied with the
description of the clusters, they can request an alternative
one. Then, Clustine inserts the current selection of variables
in an exclusion list and reruns the whole pipeline described
in Figure 4. To save time, it reuses intermediate results from
the previous iterations, such as the contrast scores.

5. USE CASES
Let us demonstrate Clustine with two real-life scenarios.

We start with the full version of our running example. The
database comes from the OECD, an international economic
organization1. It describes economic, social and well-being
indicators for 2,180 regions in 31 countries, across three
years. In total it contains 6,823 rows and 519 columns. Our
aim is the find the countries with the“best living conditions”,
a purposely vague and subjective task.

Figure 5 shows our interaction with Clustine. We ex-
ploited three of its five suggestions. First, we selected the
regions with the highest salaries and the lowest number of
hours worked. We then refined our selection with attributes
related to leisure time, health, then unemployment. Observe

1http://stats.oecd.org/

I identified three clusters in your dataset (6812 rows):
- 1: high Personal_earnings, low Average_hours_worked
- 2: high Personal_earnings, high Average_hours_worked
- 3: low Personal_earnings, low Average_hours_worked
Do you want a zoom (Z/1-3), another view (O), a visualization (V), or to exit (X)?

I want to zoom

Which cluster are you interested in?
1

I identified three clusters (3325 rows):
- 1: high Total_tax_revenue, low Rooms_per_person
- 2: very high Rooms_per_person, low Total_tax_revenue
- 3: high Rooms_per_person, very low Total_tax_revenue

Give me another view

Ok, here is an alternative set of descriptions (3325 rows):
- 1: high Time_devoted_to_leisure, low Self_reported_health
- 2: high Self_reported_health, low Time_devoted_to_leisure
- 3: high Self_reported_health, high Time_devoted_to_leisure

Zoom in 3

I identified two clusters (1133 rows):
- 1: high Time_devoted_to_leisure, high Self_reported_health
- 2: low Self_reported_health, low Time_devoted_to_leisure

Zoom in 1

I identified three clusters (661 rows):
- 1: low Self_reported_health, high Long_term_unemployment
- 2: low Long_term_unemployment, low Self_reported_health
- 3: high Self_reported_health, low Long_term_unemployment

I want to exit now

Done! Final tuples: high Personal_earnings, low Average_hours_worked, very
high Self_reported_health, very high Time_devoted_to_leisure

Luzern Switzerland …

Bern Switzerland …

Canberra Australia …

Perth Australia …

Darwin Australia

Peace River Canada …

Fort Smith Canada

Hauts-de-Seine France

… …. …

Figure 5: Demonstration 1: the OECD dataset.

that Clustine’s second suggestion was irrelevant to us. We
simply discarded it by requesting a new view.

Our second scenario is based on the Crime and Commu-
nities dataset, from the UCI repository2. The data contains
128 crime and socio-economic indicators for 1,994 US cities.
Our aim is to find the richest communities. Figure 6 rep-
resents the system’s output and our answers. We narrowed
our selection down to 77 rows using columns related to hous-
ing, incomes and family structure. A few of the variables
were obvious to us, such as medIncome. But we discovered
a few others through Clustine’s suggestions. Examples of
those are PctOccupManu, which describes the proportion of
people employed in manufacturing, or PctPersDenseHous-

ing, which reports the number of houses with more than 1
person per room.

After each suggestion, Clustine gives the option to visu-
alize how it partitions the data. The aim is to let users
perform “sanity checks” and obtain more details. Figure 7
presents two of those visualization. In both cases, we ob-
serve that the labels of the clusters match their position in
the attribute space, as expected.

2http://archive.ics.uci.edu/ml/

I identified three clusters in your dataset (1994 rows):
- 1: high PctPersDenseHous, low medFamInc
- 2: low medFamInc, low PctPersDenseHous
- 3: low PctPersDenseHous, high medFamInc
Do you want a zoom (Z/1-3), another view (O), a visualization (V), or to exit (X)?

I want a zoom in 3
I identified three clusters (836 rows):
- 1: high PctForeignBorn, high PersPerOwnOccHous
- 2: low PctForeignBorn, low PersPerOwnOccHous
- 3: high PctForeignBorn, low PersPerOwnOccHous

Another view

Ok, here is an alternative set of descriptions (836 rows):
- 1: high PctFam2Par, high PctRecImmig10
- 2: low PctRecImmig10, low PctFam2Par
- 3: high PctRecImmig10, low PctFam2Par

Other

I identified three clusters (836 rows):
- 1: high medIncome, low PctOccupManu, low NumUnderPov
- 2: low medIncome, high PctOccupManu, low NumUnderPov
- 3: low medIncome, high NumUnderPov, low PctOccupManu

Zoom in 1

I identified three clusters (201 rows):
- 1: low medFamInc, low PersPerFam, high NumUnderPov
- 2: high NumUnderPov, high medFamInc, low PersPerFam
- 3: high medFamInc, low NumUnderPov, high PersPerFam

Z3

I identified three clusters (77 rows):
- 1: high medIncome, low PctPersDenseHous
- 2: high PctPersDenseHous, low medIncome
- 3: low medIncome, low PctPersDenseHous

Exit

Done! Final tuples: low PctPersDenseHous, very high medFamInc, high
medIncome, low PctOccupManu, very low NumUnderPov, high PersPerFam

New Berlin WI …

Sunrise City FL …

East Provid. RI …

Newark City NJ …

Jackson Town NJ …

… …. …

Figure 6: Demonstration 2: cities, crime and wealth in the
US.

●
●●●●●
●●●●●●●●●●●
●●
●
●●●●●●●

●
●●●●
●
●●●●
●
●●●●
●
●
●●●
●
●●●●●

●
●●●●

●
●
●
●●●
●
●●●●
●
●
●●●●

●
●●●●●

●
●
●
●
●●●●
●●●

●●
●●
●
●●●
●

●
●●●●
●●●

●
●●●●

●
●●●●

●
●●●
●●
●
●
●
●●●
●
●●●●
●
●●
●●
●●●
●
●●●●

●
●
●
●●●●

●
●●●●

●
●
●
●
●●●●
●●
●●

●
●●●●●●
●
●
●

●
●●
●●●
●●
●
●
●
●●●●
●●●●●
●
●●●●

●
●●●
●
●●●
●
●●
●
●●●●●●●●
●
●●●●

●●
●●●●
●●●●

●●
●●●●
●●●●●●

●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●

●●

●●
●●

●●
●●
●●●●

●●
●●●●
●●●●

●●
●●●●
●●

●●
●●●●
●●●●

●●
●●●●
●●●●

●●

●●

●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●
●●

●●
●●
●●●●●●

●●
●●●●
●●●●
●●
●●

●●

●●●●

●●

●●

●●
●●●●●●
●●●●●●
●●
●●

●●

●●
●●●●
●●
●●
●●●●
●●●●

●●
●●●●
●●●●
●●
●●
●●●●
●●●●●●
●●
●●

●●
●●●●
●●
●●●●
●●
●●
●●●●

●●

●●

●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●
●
●●●
●●
●●●
●●
●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●

1400

1600

1800

2000

2200

20000 30000 40000 50000
Personal_earnings

Av
er

ag
e_

ho
ur

s_
ac

tu
al

ly
_w

or
ke

d

high Personal_earnings,
high Average_hours_actually_worked

high Personal_earnings,
low Average_hours_actually_worked

low Personal_earnings,
low Average_hours_actually_worked

●
●●●●●
●●●●●●●●●●●
●●
●
●●●●●●●

●
●●●●
●
●●●●
●
●●●●
●
●
●●●
●
●●●●●

●
●●●●

●
●
●
●●●
●
●●●●
●
●
●●●●

●
●●●●●

●
●
●
●
●●●●
●●●

●●
●●
●
●●●
●

●
●●●●
●●●

●
●●●●

●
●●●●

●
●●●
●●
●
●
●
●●●
●
●●●●
●
●●
●●
●●●
●
●●●●

●
●
●
●●●●

●
●●●●

●
●
●
●
●●●●
●●
●●

●
●●●●●●
●
●
●

●
●●
●●●
●●
●
●
●
●●●●
●●●●●
●
●●●●

●
●●●
●
●●●
●
●●
●
●●●●●●●●
●
●●●●

●●
●●●●
●●●●

●●
●●●●
●●●●●●

●●
●●
●●
●●
●●
●●●●
●●●●
●●●●
●●

●●

●●
●●

●●
●●
●●●●

●●
●●●●
●●●●

●●
●●●●
●●

●●
●●●●
●●●●

●●
●●●●
●●●●

●●

●●

●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●
●●

●●
●●
●●●●●●

●●
●●●●
●●●●
●●
●●

●●

●●●●

●●

●●

●●
●●●●●●
●●●●●●
●●
●●

●●

●●
●●●●
●●
●●
●●●●
●●●●

●●
●●●●
●●●●
●●
●●
●●●●
●●●●●●
●●
●●

●●
●●●●
●●
●●●●
●●
●●
●●●●

●●

●●

●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●
●
●●●
●●
●●●
●●
●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●

1400

1600

1800

2000

2200

20000 30000 40000 50000
Personal_earnings

Av
er

ag
e_

ho
ur

s_
ac

tu
al

ly
_w

or
ke

d

high Personal_earnings,
high Average_hours_actually_worked

high Personal_earnings,
low Average_hours_actually_worked

low Personal_earnings,
low Average_hours_actually_worked

(a) OECD dataset, first view.

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
PctPersDenseHous

m
ed

Fa
m

In
c

high PctPersDenseHous,
low medFamInc

low medFamInc,
low PctPersDenseHous

low PctPersDenseHous,
high medFamInc

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
PctPersDenseHous

m
ed

Fa
m

In
c

high PctPersDenseHous,
low medFamInc

low medFamInc,
low PctPersDenseHous

low PctPersDenseHous,
high medFamInc

(b) Crime dataset, first view.

Figure 7: Two-dimension views of Clustine’s suggestions.

0.00

0.25

0.50

0.75

1.00

ShapeRecog
BreastCancer

PenDigits

MagicTelescope
AdultCensus

LetterRecog Crime

BankMarleting
Insurance

InternetUsage

MuskMolecules
Diabetic Data

Dataset

P
re

di
ct

. S
co

re
 (

F
1)

Algorithm
Clustine

Clustine Dedup.

MutualInfo

Wrap kNN

Full Space

Random

Figure 8: Accuracy of the variable selection algorithms. Higher is better.

X X X X X X X X X X

0.00

0.25

0.50

0.75

1.00

ShapeRecog
BreastCancer

PenDigits

MagicTelescope
AdultCensus

LetterRecog Crime

BankMarleting
Insurance

InternetUsage

MuskMolecules
Diabetic Data

Dataset

E
xe

c.
 T

im
e

(s
) Algorithm

Clustine

Clustine Embedded

MutualInfo

Wrap kNN

Figure 9: Execution time of the variable selection algorithms. Lower is better.

Dataset Columns Rows
ShapeRecog 16 180

BreastCancer 34 234
PenDigits 17 7,496

MAGICTelescope 11 19,022
AdultCensus 14 32,578
LetterRecog 16 20,000

Crime 128 1,996
BankMarketing 17 45,213

Insurance 86 5,900
InternetUsage 70 7,463

MuskMolecules 167 6,600
Diabetic Data 11 101,818

Table 1: Characteristics of the datasets.

6. VALIDATION OF THE DESCRIPTIONS
To be efficient, Clustine must detect meaningful clusters,

describe them accurately and do so with a low latency. Achie-
ving the first objective depends entirely on the clustering
algorithm. Because we used EM, a well-known method [5],
we will not discuss this aspect further in this paper. We will
however evaluate how Clustine describes the clusters. More
specifically, we will focus its column selection strategy. We
will check if the columns used to describe the clusters are
indeed “informative”, and we will measure how fast Clus-
tine can detect them. All our experiments are based on 12
datasets from the UCI repository, described in Table 1.

Our system is a MacBook Pro with an 2.6 GHz Intel Core
i5 processor and 8 GB main memory. We wrote our code
in R, exploiting its native C primitives for common opera-
tions (e.g., computing covariance matrices) and our own C
library for information theoretic operations (used in one of
the baselines).

Accuracy of the Column Selection. To evaluate the
quality of Clustine’s column selection algorithm, we exploit
statistical classifiers. We first cluster the whole database
with the EM algorithm - as our system does. We obtain one
cluster label for each tuple. We then reduce the dataset,
by selecting only the columns mentioned by Clustine. We
train a classifier to infer the cluster labels from this reduced

dataset. If this operation succeeds, then we conclude that
the columns are instructive: the projection contains the
information necessary to reconstitute the structure of the
whole data. Oppositely, if the classifier fails, then the cho-
sen columns probably give a poor view of the data’s overall
distribution. Technically, we used 5-Nearest Neighbors clas-
sifiers. We chose those for their simplicity and efficiency. We
measure the prediction accuracy with the F1 score on 5-fold
cross validation. Higher is better.

We benchmark two variants of Clustine’s column selection
algorithm: with and without deduplication, respectively de-
noted Clustine and Clustine Dedup. Since we built our
system for real-time interaction we target speed. Our objec-
tive is to be as fast as possible while maintaining a competi-
tive accuracy. We compare our algorithms to four baselines.
The first baseline, Full Space, returns all the columns in
the data set. The aim is to measure how much informa-
tion Clustine loses during the column selection process. Our
hope is that this loss is as small as possible. The second and
third baselines come from the classic feature selection lit-
erature [8]. MutualInfo computes the Mutual Information
(i.e., statistical dependency) between each column and the
vector of cluster labels, and it retains the top K variables.
We chose this algorithm because it is fast and reasonably
accurate. Wrap kNN choses columns greedily, picking at each
step those that yield the best classification score with a 5-NN
classifier. This method is very accurate, but also very slow.
Finally, we implemented a random baseline to ensure that
the results are worth the effort. By default, we set K = 3.
We run each experiment five times and average the results.

Figure 8 presents the accuracy of each method. We ob-
serve that Full Space dominates all the other algorithms.
Indeed, selecting columns induces a loss of information, this
is the downside of compressing the results. Nevertheless, the
loss is neglectable on half of the datasets, and it is less than
5% away from the best competitor in the other cases. In
our scenario, this penalty is acceptable. The method Wrap

kNN comes close second, which shows that detecting small
and informative sets of variables is possible. However, this

high accuracy comes with a considerable runtime penalty,
as we will show in the next section. The methods Clustine

and MutualInfo respectively come third and fourth, with a
weak advantage for the former (Clustine’s score is equiva-
lent or better in 10 cases out of 12). The algorithm Clustine

Dedup. comes next, and Random comes last. We conclude
that Clustine is not the most accurate framework, but it
is competitive: it is at least good as MutualInfo, a well
established feature selection algorithm. However, the dedu-
plication incurs a loss accuracy, because it drops potentially
predictive variables.

Runtime of the Column Selection. We present the
results of our runtime experiments in Figure 9. In all cases,
Clustine is very fast, as it is comparable to or much faster
than MutualInfo, an already fast algorithm. Since both al-
gorithms scale linearly with the number of rows and columns,
the difference comes from the constant factors. Computing
and comparing means and variances is faster than estimat-
ing mutual informations (both operations were implemented
in C).

To measure Clustine’s runtime, we accounted for the time
necessary to compute the mean and variance of each col-
umn. But this measurement is very pessimistic. In practice,
we obtain this information directly from the EM algorithm,
and therefore we can perform the column selection without
even reading the data. The bars associated with Clustine

Embedded in Figure 9 show the runtime of the computations
that actually occur (that is, everything except the calcula-
tion of the means and variances, including the deduplica-
tion). We observe that they are almost negligible. There-
fore, the cost of describing the partitions is almost entirely
shared with the clustering step.

7. RELATED WORK
Data exploration. During the last decade, several pa-

pers have described systems and interfaces to support users
with no precise requirements, or no preliminary knowledge
of the data. The effort is inter-disciplinary: it involves
database researchers [9] as well as the visualization com-
munity [14]. Among others, existing solutions exploit sam-
pling [2], visualizations [14], interactive query refinement [7],
relevance feedback [3] or modern interface devices such as
touch screens [10]. But to the best of our knowledge, no one
has ever attempted to develop a chatbot to support explo-
ration. Our work was inspired by Blaeu [13], which also uses
cluster analysis to help users build queries. But Blaeu relies
on visualizations, and it provides no mechanism to summa-
rize its findings. Clustine is also close to SeeDB [15], which
recommends database views. But SeeDB helps users visual-
ize the result of their queries, it does not help writing them.
Furthermore, it relies almost exclusively on visuals.
Natural language datbase interfaces. Authors have

introduced database interface based on natural language for
at least two decades [4]. Li and Jagadish’s system is proba-
bly one of the most successful example of this effort [11]. But
these interfaces rely on the classic query-result paradigm.
Typically, those system helps users compose SQL statements,
using schema information. In contrast, we help them under-
stand their results, using machine learning. Those two ap-
proaches are orthogonal. Our work also resembles ABCD [12],
a natural language-based machine learning engine. But this
system focuses exclusively on regression models, while target
database queries and cluster analysis.

8. CONCLUSION
In this paper, we presented Clustine, our prototype chat-

bot to help users interrogate large tables. Compared to
existing natural language interfaces, our system is based
on inverted querying: instead of asking the users to write
queries from scratch, the software comes up with its own
suggestions. Thanks to this paradigm, our users can com-
pose complex queries with only a shallow knowledge of the
data, a minimal amount of characters and an end-to-end
support for natural language.

Our main priority for the future is to run extensive user
studies, in order to further evaluate and improve our system.
More generally, little to no work has addressed the problem
of describing data with natural language. We are convinced
that this research direction has a bright future ahead.

9. ACKNOWLEDGMENTS
This work was supported by the Dutch national program

COMMIT

10. REFERENCES
[1] Bots, the next frontier. The Economist, Apr. 9th, 2016.

[2] S. Agarwal, A. P. Iyer, A. Panda, S. Madden, B. Mozafari,
and I. Stoica. Blink and it’s done: interactive queries on
very large data. PVLDB, pages 1902–1905, 2012.

[3] J. Akbarnejad, G. Chatzopoulou, M. Eirinaki, S. Koshy,
S. Mittal, D. On, N. Polyzotis, and J. S. V. Varman. Sql
querie recommendations. Proc. VLDB, pages 1597–1600,
2010.

[4] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch.
Natural language interfaces to databases–an introduction.
Natural language engineering, pages 29–81, 1995.

[5] C. Bishop. Bishop Pattern Recognition and Machine
Learning. Springer, New York, 2001.

[6] J. Cohen. Statistical power analysis for the behavioral
sciences. Lawrence Erlbaum Associates, 1977.

[7] K. Dimitriadou, O. Papaemmanouil, and Y. Diao.
Explore-by-example: An automatic query steering
framework for interactive data exploration. In Proc.
SIGMOD, pages 517–528, 2014.

[8] I. Guyon and A. Elisseeff. An introduction to variable and
feature selection. The Journal of Machine Learning
Research, pages 1157–1182, 2003.

[9] S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview
of data exploration techniques. In Proc. SIGMOD, pages
277–281, 2015.

[10] L. Jiang and A. Nandi. Snaptoquery: providing interactive
feedback during exploratory query specification. Proc.
VLDB, pages 1250–1261, 2015.

[11] F. Li and H. Jagadish. Constructing an interactive natural
language interface for relational databases. In Proc. VLDB,
pages 73–84, 2014.

[12] J. R. Lloyd, D. Duvenaud, R. Grosse, J. B. Tenenbaum,
and Z. Ghahramani. Automatic construction and
Natural-Language description of nonparametric regression
models. In AAAI, 2014.

[13] T. Sellam and M. Kersten. Cluster-driven navigation of the
query space. IEEE TKDE, 28(5):1118–1131, 2016.

[14] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a system for
query, analysis, and visualization of multidimensional
relational databases. TVCG, 2002.

[15] M. Vartak, S. Rahman, S. Madden, A. Parameswaran, and
N. Polyzotis. Seedb: Efficient data-driven visualization
recommendations to support visual analytics. Proc. VLDB,
pages 2182–2193, 2015.

