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ABSTRACT
This paper strives for video event detection using a repre-
sentation learned from deep convolutional neural networks.
Different from the leading approaches, who all learn from
the 1,000 classes defined in the ImageNet Large Scale Vi-
sual Recognition Challenge, we investigate how to leverage
the complete ImageNet hierarchy for pre-training deep net-
works. To deal with the problems of over-specific classes
and classes with few images, we introduce a bottom-up and
top-down approach for reorganization of the ImageNet hi-
erarchy based on all its 21,814 classes and more than 14
million images. Experiments on the TRECVID Multimedia
Event Detection 2013 and 2015 datasets show that video
representations derived from the layers of a deep neural net-
work pre-trained with our reorganized hierarchy i) improves
over standard pre-training, ii) is complementary among dif-
ferent reorganizations, iii) maintains the benefits of fusion
with other modalities, and iv) leads to state-of-the-art event
detection results. The reorganized hierarchies and their de-
rived Caffe models are publicly available at http://tinyurl.
com/imagenetshuffle.
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1. INTRODUCTION
The goal of this work is to detect events such as Renovat-

ing a home, Birthday party, and Attempting a bike trick in
web videos. The leading approaches [8, 13, 16, 26] attack
this challenging problem by learning video representations
through a deep convolutional neural network [10, 23]. The
deep network is pre-trained on a collection of 1,000 ImageNet
classes [2, 19], used to extract features for video frames, and
then followed by a pooling operation over the frames to ar-
rive at a video representation. We also learn representa-
tions for event detection with a deep convolutional neural
network, but rather than relying on the default 1,000 class
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(a) Distribution of the number of images for the 21,814 ImageNet
classes. Note the class imbalance.

(b) An image of Siderocyte (left) and Gametophyte (right), two
classes which seem over-specific for event detection.

Figure 1: Two problems when using the full ImageNet hi-
erarchy for network pre-training: (a) image imbalance and
(b) over-specific classes. In this work, we aim to reorganize
the hierarchy into a balanced set of classes for more effective
pre-training of video representations for event detection.

subset, we investigate how to leverage the complete Ima-
geNet hierarchy for pre-training the representation.

The complete ImageNet dataset consists of over 14 million
images and 21,814 classes which are connected in a hierarchy
as a subset of WordNet [14]. State-of-the-art event detectors
are pre-trained on a 1,000 class (1.2 million images) subset
of ImageNet, as prescribed by the Large Scale Visual Recog-
nition Challenge [19]. Hence, more than 90% of the images
in the hierarchy remain untouched during pre-training. We
present an empirical investigation of the effect of using the
full ImageNet dataset for event detection in web videos.

We identify two problems when trying to pre-train a deep
network on the complete ImageNet hierarchy. First, there is
an imbalance in the number of examples for each class, as is
shown in Figure 1a. For example, the class Yorkshire Terrier



contains 3,072 images, whereas 296 other classes contain just
a single image. Second, some classes seem over-specific for
event detection in web videos. Consider for example the Im-
ageNet categories Siderocyte and Gametophyte in Figure 1b.
As a result, it seems suboptimal to directly pre-train a deep
network on all 21,814 classes.

In this work, we introduce pre-training protocols that re-
organize the full ImageNet hierarchy for more effective pre-
training. The reorganization tackles the image imbalance
and over-specific class problems. We propose two contrast-
ing approaches that utilize the graph structure of ImageNet
to combine and merge classes into balanced and reorga-
nized hierarchies. We empirically evaluate our event de-
tection using reorganized pre-training on the 2013 and 2015
NIST TRECVID Multimedia Event Detection datasets, for
both datasets leading to state-of-the-art results. The Caffe
models and detailed video feature extraction instructions are
available at http://tinyurl.com/imagenetshuffle.

2. RELATED WORK

2.1 Event detection with pre-trained networks
The state-of-the-art for event detection in videos focuses

on representations learned with the aid of deep convolutional
neural networks [3, 8, 13, 16, 26]. The pipeline of these ap-
proaches consists roughly of three components. (1) A deep
network is pre-trained on a large-scale image collection. Dif-
ferent deep networks have been employed for event detec-
tion, such as AlexNet [10] in [8, 13, 16] and VGGnet [21]
in [26]. (2) Sampled video frames are fed to the network and
features at fully-connected and/or soft-max layers are used
as frame representations. (3) The frame representations are
pooled into a fixed-sized video representation. A simple and
effective pooling method is average pooling, where the frame
representations are averaged over the video [9, 13]. Recently,
several works have shown that clustering deep frame repre-
sentations into a codebook, followed by a VLAD [6] in [26]
or Fisher Vector encoding [20] in [16], leads to strong video
representations. In this work, we aim for a similar pipeline of
pre-training, frame representation, and video pooling. How-
ever, rather than relying on the standard pre-training proto-
col using 1,000 ImageNet classes, we leverage the complete
ImageNet hierarchy for more effective pre-training.

Web videos provide a wide range of information about
events, such as visual, motion, audio, and optical charac-
ter information [18]. Naturally, multiple works have investi-
gated the fusion of information from different modalities [11,
15, 17]. In this work, we also investigate the effect of fusing
our deep representations with Motion Boundary Histogram
(motion) features [25] and MFCC (audio) features [15], both
of which are encoded into a video representation using Fisher
Vectors [20]. This fusion allows us to compare the effective-
ness of our deep representations to heterogeneous represen-
tations and to investigate how well our deep representations
fare when combined with other sources of information.

2.2 (Re)organizing hierarchies for events
Various works have investigated the use of semantic hier-

archies and ontologies for event detection. The work of Ye
et al. [27] focuses on hierarchical relations between events,
to find a large collection of videos and event-specific con-
cept classes. Their proposed EventNet has shown to yield
an effective event detection [27]. In our work, we focus
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Figure 2: Overview of where in the hierarchy the four oper-
ations are applied in the bottom-up approach. Roll: Roll
up classes with a single chld-parent connection. Bind: Bind
sub-trees for which the individual classes do not have enough
images. Promote: Promote individual classes to their par-
ent class if they do not have enough images. Subsample:
Randomly subsample images from classes with too many
images.

on different hierarchical relations, namely between concept
classes instead of events, to discover a general set of concepts
for deep network pre-training. Other recent work on event
detection has investigated relations among concept classes
to rerank concept scores in the video representation [8].
We similarly focus on hierarchical relations among concept
classes, but for the purpose of merging classes into a re-
organized hierarchy for pre-training. For the hierarchy of
ImageNet specifically, the work of Vreeswijk et al. [24] has
shown that images from different layers of the hierarchy are
visually different and that general concepts benefit from in-
cluding linked concepts deeper in the hierarchy. We build
upon these observations in our operations to reorganize the
ImageNet hierarchy.

An alternative approach is to adjust concept hierarchies
after feature extraction. For example, the selection of event-
specific concepts based on the similarity to a textual event
description has shown to yield effective event detection re-
sults without positive examples [8]. Mazloom et al. [12]
show that concept selection is also beneficial for few-example
event detection. Habibian et al. [4] in turn, jointly learn
a classifier for event detection and combine correlated con-
cepts. Rather than changing the representations a posteriori
using text or video examples, we focus in this paper on reor-
ganizing the hierarchical structure of visual ontologies before
event training,

3. REORGANIZED PRE-TRAINING
The classes in the ImageNet dataset are a subset of the

WordNet collection [14] and the classes are therefore con-
nected in a hierarchy. The connectivity between classes
provides information about their semantic relationship. We
utilize the hierarchical relationship of WordNet for combin-
ing classes to generate reorganized ImageNet hierarchies for
pre-training. We focus on two opposing approaches for re-
organization, namely a bottom-up and top-down approach.

3.1 Bottom-up reorganization
For the bottom-up reorganization, we start from the orig-

inal ImageNet hierarchy and introduce four reorganization
operations. An overview of where in the hierarchy the four
operations are performed is shown in Figure 2 and visual
examples for each operation are shown in Figure 3. We out-
line each operation separately.
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Figure 3: Visual examples for each of the four operations for the bottom-up reorganization.

Roll. The roll operation is performed on single-link sub-
trees of classes. In other words, the roll operation merges
classes with a single child-parent connection, as shown in
Figure 2 on the left. The motivation behind this operation is
two-fold: i) there is little semantic difference between a child
and a parent if the parent has no other children. Treating
the child and parent as separate classes during pre-training
will dominate the backpropagation gradients to keep these
classes separated. ii) A single child of a parent is more likely
to be over-specific for event detection. Single child-parent
connections typically occur deep in the hierarchy, where de-
tails between classes become more fine-grained. In our eval-
uation, we indeed observe that the single child-parent con-
nections occur predominantly in the deeper layers of the Im-
ageNet hierarchy. Three chains of single child-parent con-
nections are shown in Figure 3a. For example, the class
Mamba is a type of snake and has a single child, namely
Black mamba. In turn, the Black mamba has a single child:
Green mamba (the green phase of the black mamba). In this
example, we move all the images from the Black mamba and
Green mamba classes to the Mamba class.

Bind. The bind operation is performed on sub-trees where
the individual classes are sparse in the number of images.
Let S denote a sub-tree and let ci denote the number of im-
ages in class c. Then the bind operation is performed on sub-
tree S if

∑
c∈S c

i < tb, where tb denotes the threshold on the
number of images. The notion behind the bind operation is
to deal with small and semantically coherent classes consist-
ing of a parent and multiple children. The children individu-
ally do not contain enough images to treat them as separate
classes. However, the combined set of parent and children
forms a semantically consistent set with a desirable number
of images. Three merged sub-trees that are combined with
the bind operation are shown in Figure 3b. For example, the
Hammerhead shark has three children with a small number
of images, namely Smooth hammerhead, Smalleye hammer-
head, and Shovelhead. Therefore, we opt to combine all these
shark images into a single class.

Promote. The promote operation is a unary operation.
It is performed after the roll and bind have been performed.
The promote operation simply promotes a class to its parent



if its number of images is below a threshold tp. This opera-
tion directly targets the imbalance problem, by adding im-
ages of classes with few examples to parent classes with more
images. Figure 3c shows three cases of the promote opera-
tion. For example, the class Triclinium (a dining table with
couches at three sides) only contains 5 images. Therefore,
the images are added to the Dining table class, such that
the Triclinium images are still being used for pre-training
without creating an imbalance in the hierarchy.

Subsample. The subsample operation is also a unary oper-
ation and deals with the reverse problem of the other three
operations. The subsample operation subsamples images
from classes for which the number of images is above a
threshold ts. The operation selects a subset of images from
classes with a lot of examples. The reason for this opera-
tion is again for balancing purposes. If all images of over-
populated classes are used in the optimization of the deep
network, the network will overfit to these classes, resulting in
suboptimal frame representations for event detection. Four
examples of the subsample operation are shown in Figure 3d,
such as Keyboard, Coffee mug, and Herb.

We employ the defined operations in the described order.
First, all single child-parent connections are rolled up. Sec-
ond, all sub-trees in the hierarchy are binded based on thresh-
old tb for their combined number of images. Third, all re-
maining classes with less than tp images are promoted to
their parent. Fourth, during network pre-training, examples
for all classes with more than ts images are randomly sub-
sampled before the stochastic gradient descent optimization.

3.2 Top-down reorganization
An alternative complementary reorganization strategy is

not to start from the deepest classes in the hierarchy, but
from the head node. Here, we investigate a breath-first
search approach. Let tt denotes the threshold stating the
minimum amount of images required for class in order to be
used in the top-down reorganization. Then, starting from
layer 0 in the hierarchy, i.e. the head node, we iteratively
move down in the hierarchy and keep adding classes with at
least tt images until we reach a desired amount of classes.

The breath-first search approach is outlined as follows.
Let l denote the previous layer of the hierarchy. We list all
ImageNet classes in layer l + 1 based on connections from
classes in layer l and order the classes in l+1 by their number
of images. The sorting ensures that we select the classes
with the highest number of images first, in case we reach the
desired amount of classes before the end of the list. Then,
we move through the ordered list and select all classes with
at least tt images as long as the desired amount of selected
classes is not reached. Afterwards, we move to the next layer
and repeat the ordering and selection procedure.

By using a top-down approach, we ensure that only the
most general classes are maintained for pre-training, while
simultaneously keeping a balance in the image distribution
through the threshold tt.

4. EXPERIMENTAL SETUP

4.1 Dataset
TRECVID Multimedia Event Detection 2013. The
TRECVID Multimedia Event Detection 2013 dataset con-

sists of roughly 27,000 test videos [18]. The dataset con-
tains annotations for 20 everyday events, including Birth-
day Party, Making a sandwich, Attempting a bike trick, and
Dog show. The dataset has two different tasks, one where
10 positive videos are given for each event (10 Ex.), and one
where 100 positive videos are given for each event (100 Ex.).
For an event, a classifier is trained on the 10 or 100 posi-
tive videos and a background set of roughly 5,000 negative
videos. The classifier is in turn used to rank the 27,000 test
videos and its performance is evaluated using the (mean)
Average Precision score on the ranked test videos.

4.2 Implementation details
Deep convolutional networks. We focus our evalua-

tion on the recent GoogLeNet of Szegedy et al. [23]. The
GoogLeNet is a deep convolutional neural network consist-
ing of 22 layers. We also compare against the AlexNet of
Krizhevsky et al. [10]. The AlexNet consists of 5 convolu-
tional layers and 3 fully-connected layers. To pre-train the
deep networks, we utilize the open-source Caffe library [7]
and the provided layer definitions and hyper-parameters for
both networks.

Feature extraction. After pre-training, we extract fea-
tures both at the fully connected layer and the soft-max
layer. In AlexNet, we use the features from the second
fully-connected layer, with a 4,096-dimensional frame rep-
resentation. In GoogLeNet, we use the features at the pool5
layer, with a 1,024-dimensional frame representation. The
dimensionality at the soft-max layer, which provides a prob-
ability score of each concept, for both networks is equal to
the number of classes in the corresponding hierarchy.

Pooling and Event Classification. For event detec-
tion, we average the representations of the frames over each
video unless stated otherwise, followed by `1-normalization.
We train an SVM classifier for each event separately with a
χ2 kernel. We set the C parameter to 100 in all our experi-
ments.

5. EXPERIMENTS
We consider four experiments. First, we evaluate the ef-

fect of different settings of the operations in our bottom-
up reorganized pre-training. Second, we compare standard
pre-training versus both the bottom-up and top-down re-
organized pre-training. Third, we perform various fusions
between deep representations and representation from other
modalities. Fourth, we compare our results to the state-of-
the-art on multimedia event detection.

5.1 Bottom-up operation parameters
Experiment 1. For the first experiment, we investigate

the parameters for the bind and promote operations in our
bottom-up reorganization, which have a significant influence
on the amount of remaining classes. In total, we have trained
three separate GoogLeNets [23] based on different parame-
ters for the bind and promote operations:

• Bottom-up [4k]: Deep network pre-trained on 4,437
classes with tb = 7, 000 and tp = 1, 250.

• Bottom-up [8k]: Deep network pre-trained on 8,201
classes with tb = 7, 000 and tp = 500.

• Bottom-up [13k]: Deep network pre-trained on 12,988
classes with tb = 3, 000 and tp = 200.
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Figure 4: Mean Average Precision scores for the three bottom-up variants on TRECVID Multimedia Event Detection 2013.
We observe that the more classes are maintained in the bottom-up reorganization, the better the performance using the
soft-max (i.e. semantic) layer. The reserve happens for the fully-connected layer.

For all the variants, we set the subsample threshold to ts =
2, 000. An overview of mean Average Precision scores us-
ing the fully-connected and soft-max layers on TRECVID
Multimedia Event Detection 2013 is shown in Figure 4. We
report the mean Average Precision scores both for the task
with 10 positive videos and with 100 positive videos per
event.

Results. From Figure 4, we observe that the best scores
using the fully-connected layer are achieved with the bottom-
up [4k] variant. This result shows that the fully-connected
layer translates best to events when merging more classes
into a generic hierarchy. Interestingly, we observe the re-
verse pattern for the soft-max layer; the more classes are
maintained the better the event detection performance. This
result follows the work of Habibian et al. [5], which states
that using more semantic classifiers is preferred over using
better semantic classifiers. Here, we show that this observa-
tion translates to deep networks for event detection.

From this experiment, we conclude that the choice of
the bottom-up reorganized variant depends on the desired
deep network representation. The highest overall results
are achieved by the features from the non-semantic fully-
connected layer of the variant from 4,437 classes (0.446 mean
Average Precision using 100 positives per event, 0.296 using
10 positives). However, the variant from 12,988 classes per-
forms best using the semantic features from the soft-max
layer (0.441 using 100 positives, 0.286 using 10 positives).

5.2 Standard versus reorganized pre-training
Experiment 2. For the second experiment, we com-

pare our bottom-up and top-down reorganized pre-training
against the conventional pre-training setup using the Ima-
geNet 1,000 class subset [19]. For all networks, we report
the Average Precision scores using both the fully-connected
layer and the soft-max layer. For the bottom-up approach,
we use the deep network pre-trained on 4,437 classes. For
the top-down approach, we select the top 4,000 classes, with
tt = 1, 200 for the threshold on the number of images re-
quired for each class. We compare our two approaches to
two standard pre-trained deep networks:

• AlexNet [std]: AlexNet pre-trained on 1,000 Ima-
geNet classes [10].

• GoogLeNet [std]: GoogLeNet pre-trained on 1,000
ImageNet classes [23].

Results. An overview of the comparison between stan-
dard and reorganized pre-training is shown in Figure 5. We
observe that the top-down and bottom-up reorganization ap-
proaches achieve comparable performance. While bottom-
up performs slightly better using the fully-connected layer,
top-down performs slightly better using the soft-max layer.
We also note our reorganized pre-training approaches on
GoogLeNet significantly outperform the standard pre-trained
GoogLeNet. This holds especially for the soft-max layer,
where the difference between standard pre-training and our
top-down pre-training is 8.6% and 9.2% in absolute mean
Average Precision for respectively the 100 and 10 positive
video tasks. Lastly, we note that the difference in perfor-
mance to the pre-trained AlexNet is even bigger. This result
shows that GoogLeNet provides overall better visual repre-
sentations, leading to improved event detection.

From this experiment, we conclude that our two approaches
to reorganized ImageNet pre-training yield strong event de-
tection results and significantly improve over standard pre-
trained deep networks.

5.3 Fusing representations and modalities
Experiment 3. For the third experiment, we investigate

the effect of feature fusion. Here, fusion is performed in a
late fashion, by averaging the classifier scores of different
classifiers. We investigate feature fusion in two aspects: i)
we investigate the effect of fusing different layers and video
encodings from different pre-trained deep networks for event
detection, ii) we investigate the effect of fusing our deep
visual representations with two other representations:

• Audio modality: MFCC features with first and sec-
ond order derivatives, 30 dimensions for each of the
three features, aggregated into a 46,080-dimensional
video representation using Fisher Vectors with 256 clus-
ters.
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Figure 5: Mean Average Precision scores for our bottom-up and top-down reorganized pre-training (blue), compared to
standard pre-training (green) on TRECVID MED 2013. Our approaches both clearly outperform standard pre-training, while
being competitive and potentially complementary to each other.

• Motion modality: MBHx, MBHy, and HOG fea-
tures computed along dense trajectories [25], reduced
to 128 dimensions using PCA, aggregated into a 65,536-
dimensional video representation using Fisher Vectors
with 256 clusters.

Results for Fusing Networks. In Table 1, we show an
overview of fusion results using deep networks. Comparing
index (1) to (3) and comparing index (2) to (4), we see that
for both the bottom-up and top-down approach, it is benefi-
cial to fuse the scores from the fully-connected and soft-max
layers. This result is surprising, given that the layers come
from the same network and it indicates that the layers con-
tain different information useful for event detection. This
result is furthermore interesting from a computational per-
spective, as the features from both layers can be extracted
from a single pass through the same network. Hence, the
improvement is obtained for free.

The fusion of (3) and (4), i.e. the fusion of the bottom-
up and top-down reorganizations, also yields complemen-
tary results, with a mean Average Precision of 0.475 and
0.324 for respectively the 100 and 10 positive video tasks of
the TRECVID Multimedia Event Detection 2013 dataset.
This result clearly shows that pre-training deep networks on
different hierarchies results in different and complementary
representations. Figure 6 shows that, although the mean
Average Precision of the individual approaches is similar, the
scores per event vary notably (on average 2.7% per event),
resulting in improved performance upon fusion.

Multiple recent works have investigated complex and high-
dimensional video representations from deep frame repre-
sentations beyond frame averaging [16, 26]. Here, we sim-
ilarly investigate such representations using the frame fea-
tures with reorganized pre-training. We have employed both
VLAD and Fisher Vector encoding and report the results for
VLAD in Table 1, as that yielded the highest scores. For
the VLAD encoding, we create a codebook from 10 clusters
per event, resulting in a 10,240-dimensional feature vector
using the fully-connected layer and a 44,370-dimensional fea-
ture vector using the soft-max layer. The results using the
bottom-up reorganization show that a VLAD encoding im-

TRECVID MED 2013
Method 100 Ex. 10 Ex.

Averaging
(1) Bottom-up (fc) 0.446 0.296
(2) Top-down (fc) 0.438 0.300
(3) Bottom-up (fc + soft-max) 0.452 0.305
(4) Top-down (fc + soft-max) 0.454 0.317
(3) + (4) 0.475 0.324

VLAD
Bottom-up (fc + soft-max) 0.465 0.339

Table 1: Mean Average Precision scores for fusions of differ-
ent layers, networks, and encodings within deep representa-
tions, which all yield complementary results.

proves over averaging, especially for the 10 positive videos
per event task (0.339 mAP versus 0.305 for averaging).

We conclude from this fusion experiment that combining
information from different pre-trained deep networks and
even different layers from the same deep network improves
the Average Precision scores. Furthermore, performing a
VLAD encoding instead of averaging frames results in a
boost for individual networks, especially for the 10 positive
videos task.

Results for Fusing Modalities. In Table 2, we show
the results of the deep networks with the audio and motion
modalities. The Table clearly states that individually, the
event detection scores using our deep networks improve over
the motion and audio scores. Upon combining the modali-
ties, we observe a jump in performance. This result shows
the complementary natures of the different modalities: in-
dividually the motion and audio features are clearly out-
performed, but they contain information not captured in
deep networks which result in improved fusion results. This
is naturally due to the nature of deep convolutional neural
networks, which focus on spatially visual information and
exclude temporal and audio information.
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TRECVID MED 2013
Method 100 Ex. 10 Ex.

Individual
(1) Audio (MFCC) 0.114 0.053
(2) Motion (MBH) 0.341 0.192
(3) Visual (ours, avg) 0.475 0.324

Fusion
(2) + (3) 0.504 0.345
(1) + (2) + (3) 0.526 0.348

Table 2: Mean Average Precision scores for fusing our deep
representations with other modalities. We outperform mo-
tion and audio features, while the fusion leads to further
improvement.

We have furthermore attempted to fuse the VLAD encod-
ing of Table 1 with the motion and audio features, but this
did not result in improved performance. Since the VLAD en-
coding requires more computational effort and has a higher
storage requirement, we have opted to focus on averaging.

5.4 Comparison to the state-of-the-art
Experiment 4. For the fourth experiment, we com-

pare our results to the current state-of-the-art on multime-
dia event detection. We perform a comparison on both the
TRECVID MED 2013 test set and the TRECVID MED
2015 benchmark.

Results on the TRECVID MED 2013 Test set. The
comparison to the state-of-the-art on the TRECVID Multi-
media Event Detection 2013 dataset is shown in Table 3. As
the Table shows, we outperform the current state-of-the-art
on both the 100 and 10 positive videos per event task using
deep networks only. Upon a fusion with motion and audio
features, we improve further over related work.

Results on the TRECVID MED 2015 Benchmark.
We furthermore compare our results achieved on the latest
TRECVID 2015 benchmark for Multimedia Event Detec-

TRECVID MED 2013
Method 100 Ex 10 Ex

Habibian et al. [4] - 0.196
Sun et al. (visual) [22] 0.350 -
Nagel et al. [16] 0.386 0.218
Sun et al. (fusion) [22] 0.425 -
Xu et al. [26] 0.446 0.298
Chang et al. [1] - 0.310

Ours, deep network 0.475 0.324
Ours, multimodal fusion 0.526 0.348

Table 3: Comparison to other works on TRECVID MED
2013 test set for both our best deep network results and our
fusion results. We yield better results for both the 100 and
10 positive videos per event task.

tion. This benchmark is similar in nature to the 2013 dataset
in training and evaluation. However, the 2015 dataset con-
tains 20 new events. Furthermore, the benchmark compar-
ison is performed in a large-scale setup, with a test set of
about 200,000 videos. In Figure 7, we show the inferred
mean Average Precision scores for our entries and the en-
tries of the other participants. We report results both for
the pre-specified (where the events and video labels are given
well before the benchmark deadline) and ad-hoc (where the
events and video labels are given shortly before the bench-
mark deadline) tasks. The Figure paints a similar picture to
the results on the 2013 dataset; we outperform the current
state-of-the-art by fusing deep representations with motion
and audio modalities, while our deep representations only
are already among the top contenders.

6. CONCLUSIONS
In this work, we leverage the complete ImageNet dataset

for pre-training deep convolutional neural networks for video
event detection, rather than the prescribed 1,000 ImageNet
subset. We propose two contrasting and complementary ap-
proaches to reorganize the ImageNet hierarchy. The bottom-
up approach aims to merge classes from the deepest parts
of hierarchy upwards, while the top-down approach aims to
select rich generic classes starting from the top of the hi-
erarchy. The new hierarchies are in turn used as input to
pre-train deep networks and are employed for frame rep-
resentation in video event detection. Experimental evalu-
ation performed on the challenging TRECVID MED 2013
dataset shows that deep networks trained on our hierarchies
i) outperform standard pre-trained networks, ii) are com-
plementary, iii) maintain the benefits of fusion with other
modalities, and iv) reach state-of-the-art result. The pre-
trained models are available online at http://tinyurl.com/
imagenetshuffle and can be used directly to extract state-of-
the-art video representations using the Caffe library.
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