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a b s t r a c t 

This work aims for image categorization by learning a representation of discriminative parts. Different 

from most existing part-based methods, we argue that parts are naturally shared between image cate- 

gories and should be modeled as such. We motivate our approach with a quantitative and qualitative 

analysis by backtracking where selected parts come from. Our analysis shows that in addition to the cat- 

egory parts defining the category, the parts coming from the background context and parts from other 

image categories improve categorization performance. Part selection should not be done separately for 

each category, but instead be shared and optimized over all categories. To incorporate part sharing be- 

tween categories, we present an algorithm based on AdaBoost to optimize part sharing and selection, 

as well as fusion with the global image representation. With a single algorithm and without the need 

for task-specific optimization, we achieve results competitive to the state-of-the-art on object, scene, 

and action categories, further improving over deep convolutional neural networks and alternative part 

representations. 

© 2016 Elsevier Inc. All rights reserved. 
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. Introduction 

In this work, we aim to categorize images into their object,

cene, and action category. Image categorization has been stud-

ed for decades and tremendous progress has been made ( Lazebnik

t al., 2006; Sánchez et al., 2013; Sivic and Zisserman, 2003;

an de Sande et al., 2010; van Gemert et al., 2010; Zhang et al.,

007 ), most recently by the introduction of very deep convolu-

ional neural networks ( Krizhevsky et al., 2012; Simonyan and

isserman, 2015; Szegedy et al., 2015; Zeiler and Fergus, 2014 ).

hese networks learn to categorize images from examples by back-

ropagating errors through stacked layers of convolutional filters

ooled over image regions. Despite their implicit local nature, deep

ets result in a global scene representation only. Thereby, ignoring

nown benefits of explicitly encoding local image blocks, i.e. dis-

riminative power ( Doersch et al., 2013; Zuo et al., 2014 ), image

nterpretation ( Doersch et al., 2012; Freytag et al., 2014 ), and com-

lementarity ( Juneja et al., 2013; Zuo et al., 2014 ). In this paper

e make a case for sharing parts for image categorization, study-

ng what parts to consider, which parts to select and how to share

hem between categories. 

The notion of sharing has been well studied in data mining

 Rematas et al., 2015; Yuan et al., 2008 ). These works repeatedly
∗ Corresponding author. 

E-mail address: P.S.M.Mettes@uva.nl (P. Mettes). 

s  

o  

ttp://dx.doi.org/10.1016/j.cviu.2016.07.008 

077-3142/© 2016 Elsevier Inc. All rights reserved. 
how that sharing boosts classification performance and provides

onnections between co-occurring elements. Motivated by these

xamples, we investigate sharing of parts when learning part-

epresentations for image categorization. 

Consider Fig. 1 , where examples of image categories sofa and

orse utilize parts from their own category as well as parts from

ther categories and the background context. When a classifier is

rained exclusively using parts from its own category, relevant in-

ormation is missed ( Azizpour et al., 2015; Parizi et al., 2015 ). As

llustrated in Fig. 1 , for object categories such as sofa , it is infor-

ative to use parts from cat and dog categories as well as parts

rom sofa itself ( Azizpour et al., 2015; Parizi et al., 2015 ). By giv-

ng the sofa classifier access to dog and cat training images, the

ecognition of sofa is improved even though these images may

ot contain a sofa at all. Even when global image categories dif-

er, their representation can share similar parts and should thus be

odeled as such ( Juneja et al., 2013; Parizi et al., 2015 ). 

To obtain insight in part sharing, we track where a part comes

rom. We define three types of part-origin. Own : parts coming

rom the defining image category; Other : parts coming from other

abeled categories; Context : parts not overlapping with labeled cat-

gories. Our analysis shows that the global image representation

aptures the scene; that Own parts benefit out-of-context and

mall images (e.g. sofa in the grass); Other parts aid for co-

ccurring categories (e.g. person on a horse ) and Context parts

http://dx.doi.org/10.1016/j.cviu.2016.07.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2016.07.008&domain=pdf
mailto:P.S.M.Mettes@uva.nl
http://dx.doi.org/10.1016/j.cviu.2016.07.008
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Image Own responses

Other responses Context responses

(a) Sofa category.

Image Own responses

Other responses Context responses

(b) Horse category.

Fig. 1. Shared part responses of our method for an example of sofa (a) and horse (b). We show that image categories do not only benefit from own category part 

responses, but also from responses of other categories (e.g. dog for sofa and person for horse ) and from context (e.g. horizontal bars for horse ). 
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2  
help to recognize supporting structures (e.g. fence for sheep or

cows ). 
Several recent works have focused on local parts as represen-

tation for image classification ( Bossard et al., 2014; Doersch et al.,

2013; 2012; Juneja et al., 2013 ) by performing part selection for

each category separately. These works follow a common four-step

pipeline. First, a set of potentially interesting parts is proposed.

Second, a selection algorithm discovers the most discriminative

parts. Third, classification is performed on the part-based repre-

sentations. And fourth, fusion with a global image representation.

These four steps have shown to yield robust and complementary

image representations ( Bossard et al., 2014; Doersch et al., 2013;

Zuo et al., 2015 ). However, by separating the part selection, cate-

gory classification, and fusion steps into disjoint steps these works

leave room for a number of improvements. Most notably, (1) the

models do not share parts and perform part selection for each

category independently, as also observed by Parizi et al. (2015) ,

(2) the models use different objective functions for the part se-

lection step and the final classification step, and (3) the models

perform part selection independently of the global representation

with which they are fused. As we will show, these drawbacks re-

sult in sub-optimal image categorization results. 

We make three contributions in this paper: (i) we establish

that three part types are relevant for image categorization, which

are all naturally shared between categories when learning a part-

representation for image categorization; (ii) we present an algo-

rithm for part selection, sharing, and image categorization based

on boosting. It embeds all three part types, without the need

for explicit part type definition; (iii) we introduce a fusion tech-

nique for combining part-based with global image representations.

We report results competitive to the state-of-the-art on object,

scene, action, and fine-grained categorization challenges, further

improving over the very deep convolutional neural networks of

Simonyan and Zisserman (2015) ; Szegedy et al. (2015) . 

The rest of the paper is outlined as follows. In Section 2 , we de-

scribe related work, while Section 3 outlines our proposed method.

This is followed by the experimental evaluation in Section 4 . We

draw conclusions in Section 5 . 

2. Related work 

The state-of-the-art in image categorization relies on deep con-

volutional neural networks (ConvNets) ( Krizhevsky et al., 2012;
imonyan and Zisserman, 2015; Szegedy et al., 2015; Zeiler and

ergus, 2014 ). These networks learn image feature representations

n the form of convolution filters. Locality is implicitly incorporated

y stacking and pooling local filter responses, resulting in increas-

ngly larger filter responses, cumulating in a single global image

epresentation. Two recent network architectures, the VGG net-

ork of Simonyan and Zisserman (2015) and the GoogleNet net-

ork of Szegedy et al. (2015) , have shown that further increas-

ng the network depth results in state-of-the-art performance on

 wide range of image categorization datasets ( Simonyan and Zis-

erman, 2015; Szegedy et al., 2015 ). A global representation from

uch networks benefits from augmenting it by aggregating lo-

al ConvNets features of densely sampled image parts in a VLAD

 Gong et al., 2014 ) or Fisher Vector ( Cimpoi et al., 2015; Yoo et al.,

015 ) representation. We follow such approaches and augment the

lobal representation by using ConvNets to represent discrimina-

ive local parts. 

An excellent source of part-based information for classifying

bject images is the response of a detector for the object at hand.

n the pioneering work of Harzallah et al. (2009) , it is shown that

n object detector improves image classification, and vice versa

 Divvala et al., 2009; Sadeghi and Farhadi, 2011 ). Others improved

pon this idea by adding context ( Song et al., 2011 ), and deep

earning ( Oquab et al., 2014 ). However, when no bounding box an-

otations are available, a supervised detector cannot be trained. In

ur method, we do not use any bounding box annotations and rely

xclusively on the global image label. 

In the absence of bounding box annotations, one may focus

n automatically discovering discriminative parts in images. The

ork of Singh et al. (2012) proposes an unsupervised method for

nding parts, by iterative sampling and clustering large collec-

ions of HOG features, SVM training on the clusters, and assign-

ng new top members to each cluster. Other part-based methods

ollow a supervised approach, e.g. using discriminative mode seek-

ng ( Doersch et al., 2013 ), random forests ( Bossard et al., 2014 ), av-

rage max precision gains ( Endres et al., 2013 ), or group sparsity

 Sun and Ponce, 2013 ) for discovering the best parts for each cate-

ory separately from image-level labels. Recent work moves away

rom HOG features in favor of local ConvNet activations for part

election ( Li et al., 2015 ), based on association rule mining per cat-

gory. In this work, we also leverage image-level labels for part se-

ection. In contrast to Bossard et al. (2014) ; Doersch et al. (2013) ;

012 ), we also perform part selection by sharing over all
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Fig. 2. Overview of our part-based image representation with fusion. First, parts and their features are extracted. Second, we perform our part optimization. Third, we 

perform bootstrap fusion between the part-based and global image representations. 
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ategories, rather than performing selection per category. Further-

ore, we optimize the part selection with the global image repre-

entation during fusion. 

The work by Juneja et al. (2013) shows that using image-level

abels leads to better categorization performance using fewer parts

han the unsupervised method of Singh et al. (2012) . Their method

elects parts that have the lowest entropy among categories. In ef-

ect, this limits the sharing over a few categories only. We strive to

hare parts as much as possible. Rather than relying on entropy for

he selection, we prefer a boosting objective that optimizes sharing

or all categories simultaneously. 

The seminal work of Torralba et al. (2007) has previously ex-

lored the idea of sharing among categories. We follow this line

f work in a part-based setting. Similar to Torralba et al. (2007) ,

e opt for a boosting approach, as we can exploit the inherent

eature selection and sampling methods in AdaBoost ( Freund and

chapire, 1995 ) for jointly finding the best parts while training the

ategory classifiers. However, where Torralba et al. (2007) learn

hich parts distinguish multiple categories simultaneously from

 common background, our objective is to learn what parts to

hare to distinguish categories from each other. We extend boost-

ng to explicitly focus on part sharing, and propose a bootstrapping

ethod for fusion with the global image representation. 

The work of Azizpour et al. (2015) generalizes latent variable

odels and shows how explicitly incorporating both Own (referred

o as foreground) and Other (referred to as background) parts ben-

fits objects in a binary setting. We find empirically that Own and

ther parts are indeed important, in addition to parts from Con-

ext. Furthermore, we extend the scope from a binary setting to

oth a multi-class and multi-label setting. And finally, we intro-

uce a method for fusion that exploits the strength of both global

nd part-based image representations. 

Recent work of Parizi et al. (2015) opts for a joint optimiza-

ion of part detection and image categorization, where the part

etectors and image classifiers are optimized alternatively. They

how that such a joint optimization over all categories simulta-

eously improves categorization performance over independently

ptimized part-based methods, be it that their approach requires

ignificant feature dimension reduction to be feasible. Similar to

zizpour et al. (2015) , Parizi et al. (2015) consider Own and Other

art types, where we establish the relevancy of three part types

Own, Other, and Context) for sharing among image categories and

e demonstrate their effectiveness. Moreover, we use state-of-the-

rt ConvNet features without the need for dimension reduction. Fi-

ally, our algorithm naturally incorporates fusion with the global

mage representation. 

In Song et al. (2013) , learn tree classifiers on image parts for

bject detection. We also rely on trees, be it that we prefer to have

any of them (order of 10 3 ), and next to objects, we also consider

cenes, actions, and fine-grained birds. 
t  
. Part sharing for image categorization 

In Fig. 2 , we provide an overview of our approach. First, we

erform part representation, where parts with their features and

earned detectors are extracted from training images. Second, we

erform our part-based optimization based on boosting to yield a

art-based classifier. Third, we perform our bootstrap fusion be-

ween the part-based classifier and a classifier trained on global

mage representations. 

.1. Part representation 

We decompose each image it into part proposals which offer a

odest set of bounding boxes with a high likelihood to contain any

art or object. More formally, let the function B ( X ) map an image X

o k part proposals, B (X ) → { p 1 , p 2 , . . . , p k } . For n training images,

 = { X 1 , X 2 , . . . , X n } , we extract and combine all parts as P train =
 X∈ T B (X ) . In our work, we opt for selective search ( Uijlings et al.,

013 ), but our method applies to any part partition ( Cheng et al.,

014; Krähenbühl and Koltun, 2014; Zitnick and Dollár, 2014 ). 

For each part p i , we learn a part detector d ( ψ( p i )), where

(p i ) ∈ R 

d denotes the feature representation of p i . For the de-

ector d (), we follow Juneja et al. (2013) and transform the part

epresentations into linear classifiers. Each linear classifier serves

s an exemplar SVM for the corresponding part representation. We

se the fast exemplar SVM approach of Hariharan et al. (2012) to

ompute the classifiers. Let μ and �1 denote the mean and covari-

nce estimated from sampled part representation, ignoring their

ategory label. Then the detector function is defined as: d(p) =
−1 (p − μ) . 

Given a detector for each part, we represent an image X by a

eature vector v X ∈ R 

| P| , where each dimension corresponds to the

esponse of a part detector on X . Each dimension j in our image

epresentation vector v 
( j) 
X 

is the best part-detector response for a

raining part p j in image X , 

 

( j) 
X 

= max 
p∈ B (x ) 

d(ψ(p j )) · ψ(p) . (1)

ur image representation has s = | P | dimensions where each di-

ension is a part from the set P ⊂ P train . Our goal is to select the

et of shared parts P to use as detectors over all categories. 

.2. Part boosting 

We unify part selection P ⊂ P train and image categorization by

xtending Adaboost ( Freund and Schapire, 1995 ). Boosting mini-

izes the training error in an iterative manner, converging asymp-

otically to the global minimum exponential loss ( Freund and

chapire, 1995 ). At each iteration t , a weak learner f t ( ·; �t ) selects

he parts �t and weights αt that maximally decrease the current
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Fig. 3. Graphical overview of maximum exploiting sampling. The method starts by exploring a number of parts from the set P train . After that, the selected parts are maximally 

exploited until their training performance saturates. This is then repeated multiple times by a new exploration step and a range of exploitation steps. In the figure, the colors 

of the training images represent different categories and the sizes represent the boosting weights w i . 
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weighted image classification error while at the same time opti-

mizing the part selection P . The classification of a test image v X is

a weighted sum of the T weak learners under the global constraint

of using at most s parts. 

h 

l (X ) = 

T ∑ 

t=1 

αt · f t (v X ;�t ) , s.t. | P | ≤ s, (2)

where P = ∪ 

T 
t=1 �t is the set of all selected parts. Here, the set �t 

denotes the parts used to construct a weak learner at iteration

t . Our formulation extends standard boosting with a global con-

straint | P | ≤ s on the number of parts. By limiting the number of

parts, we aim to arrive at a discriminative part-based representa-

tion ( Bossard et al., 2014; Doersch et al., 2013; Juneja et al., 2013 ).

The convergence is dependent on the value of s ; the higher the

value, the more training iterations are required. 

In the objective, the weak learners f t (t = 1 , .., T ) take the form

of orthogonal decision trees ( Dietterich, 20 0 0 ). The decision trees

are constructed by selecting the part with the lowest weighted

classification error at each binary split of the tree ( Freund and

Schapire, 1995 ). The weights of each weak learner αt are computed

as αt = 

1 
2 ln ((1 − εt ) /εt ) , where εt denotes the error rate of the

weak learner ( Freund and Schapire, 1995 ). 

For all L categories we have L corresponding binary classifiers of

Eq. (2) . In a multi-label setting each classifier is independent; yet

the set of parts P are shared over all categories. In a multi-class

setting we have to make a single choice per image: 

h (X ) = arg max 
l∈ L 

∑ T 
t=1 α

l 
t · f l t ( v X ;�l 

t ) ∑ T 
t=1 α

l 
t 

, s.t. | P | ≤ s, (3)

with now P = ∪ 

T 
t=1 

∪ 

L 
l=1 

�l 
t . Note that our added constraint | P | ≤ s

in Eq. (3) states that at most s unique parts over all categories are

used, enforcing the sharing of parts between categories. By limit-

ing the number of parts over all categories simultaneously, each

part selected during representation learning should be discrimina-

tive for as many categories as possible, i.e. should be shared be-

tween categories. We opt for a one-vs-rest objective instead of a

multi-class objective ( Eibl and Pfeiffer, 2005; Saberian and Vascon-

celos, 2011 ) to allow for both multi-class and multi-label image

categorization. 

Maximum exploiting sampling. We introduce a part sampling

algorithm for re-using parts and sharing parts between categories,

called maximum exploiting . The main idea of maximum exploiting

is to gradually increase the cardinality of P by balancing explo-

ration: selection of new parts from P train ; and exploitation: reusing

and sharing of previously selected parts P . 

The idea behind Maximum Exploit sampling builds upon the

work by Freund and Schapire (1995) , which states that the training

error on a strong learner reduces exponentially with the number of

non-random weak learners. Here, we use this result for joint part
election and image categorization. As long as we can train non-

andom weak learners on the same set of parts, we are guaranteed

o reduce the training error rate. We exploit this maximally in our

ampling approach. 

At train iteration t , we force the decision tree f t ( ·; �t ) to select

arts �t exclusively from P , exploiting the shared pool. When the

lassification performance saturates and P is maximally exploited,

e allow a single exploration step, selecting new parts �t from

 train �P . In Fig. 3 we illustrate our algorithm. Our sampling scheme

inimizes the cardinality of the selected parts P , forcing the deci-

ion trees to reuse the shared parts from all categories as long as

his positively affects the empirical loss over the training examples.

To determine if P is maximally exploited, we measure the sat-

ration of P by the classification error within the last range of ex-

loitation iterations. For a category l , let this range start at iteration

 and let the current iteration be v . Then the error is defined as: 

l 
x,y = 

N ∑ 

i =1 

[ 
sign 

( v ∑ 

t= u 
αl 

t · f l t (v X i ;�l 
t ) 

)
� = Y l i 

] 
, (4)

here Y l 
i 

∈ {−1 , +1 } states whether image i is of category l . The

rror of Eq. (4) states the number of miss-classifications using the

eak classifiers created in the current exploitation iterations. Let

u, v denote the average error over all categories within range [ u,

 ], i.e.: 

u, v = 

L ∑ 

l=1 

ε l 
u, v 

L 
. (5)

e keep exploiting if εu, v < εu, v −1 , otherwise, we perform a sin-

le exploration step and restart our exploitation evaluation, setting

 = v . 

.3. Bootstrap fusion 

We extend our shared part selection and sampling to a fusion

ith the global image representation. Instead of early or late fu-

ion that would combine the part-based representation indepen-

ently with the global image representation ( Doersch et al., 2013;

uneja et al., 2013; Snoek et al., 2005 ), we fuse the representa-

ions from the start. We propose bootstrap fusion , which jointly op-

imizes part-selection and image classification by selecting those

arts that gain the most from fusing with the global image repre-

entation. 

In our bootstrap fusion, we start by applying our maximum ex-

loitation on the global image representation F. Afterwards, our

dea is to bootstrap the AdaBoost weights of the training images as

nitialization for the part representations. This bootstrapping pro-

ides information about the difficulty per training image for cat-

gorization according to the global representation. By transferring

he weights to the part-based model, the part-based representation
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Fig. 4. The effect of power normalization for a synthetic set of weights from 50 

training examples. On the left we show the weights before power normalization, on 

the right after normalization. By re-balancing the weights of the training examples, 

we focus on the hard examples without disregarding the other examples. 
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m  
earning is forced to focus on the mistakes caused by the global

epresentation. This fusion procedure enhances the complementary

ature between the part and global representations. In our fusion

pproach, the dimensionality is equal to the dimensionality of the

lobal representation and the number of selected parts s in the

art representation. 

When transferring the weights, certain training examples have

eight values w i up to several orders of magnitude higher or lower

han the average weight value. The reason for this is the presence

f the exponent in the weight update in AdaBoost ( Freund and

chapire, 1995 ). Training examples that are consistently correctly

r incorrectly classified in the initial boosted classifier will yield

xtreme weight values. Although we want to focus on the hard ex-

mples, we are not interested in focusing solely on these examples.

o combat the high variance of the weights, we perform a power

ormalization step ( Sánchez et al., 2013 ), followed by an � 1 nor-

alization to make the weights a distribution again: 

 i = 

w 

α
i ∑ N 

j=1 w 

α
j 

. (6) 

hroughout our experiments, we set α = 

1 
2 . The use of power nor-

alization results in a more balanced weight distribution, which

n turn results in better fusion performance. Fig. 4 highlights the

ffect of power normalization on the weight values. 

During testing, we apply the same part and feature extraction

s during training. We apply our boosted classifier with the s se-

ected parts to the parts of the test image. Idem, the boosted global

lassifier is applied to the global image representation of the test

mage. The confidence scores of both classifiers are summed and

he category with the highest confidence is selected as the target

lass. 

. Experiments 

.1. Datasets 

In our experiments, we consider 4 datasets. 

Pascal VOC 2007 ( Everingham et al., 2010 ) consists of 9963

mages and 20 object categories, where we report on the

rovided trainval/test split using the Average Precision score

 Everingham et al., 2010 ). 

MIT 67 Indoor Scenes ( Quattoni and Torralba, 2009 ) consists of

700 images and 67 scene categories, where we use the provided

0/20 split for each scene category ( Quattoni and Torralba, 2009 ),

eporting results using multi-class classification accuracy. 

Willow Action ( Delaitre et al., 2010 ) consists of 911 images

nd 7 action categories, where we use the train/test split of

elaitre et al. (2010) , reporting with the Average Precision score. 
Calltach-UCSD Birds 200–2011 ( Wah et al., 2011 ) consists of

1,788 images and 200 fine-grained bird categories, where we use

he train/test split of Wah et al. (2011) , reporting with the multi-

lass classification accuracy. 

.2. Implementation details 

Part extraction. During both training and testing, we use se-

ective search as the function B ( X ) which splits each image into

oughly 20 0 0 parts ( Uijlings et al., 2013 ). Due to the hierarchical

ature of selective search, we observe it in fact generates parts

ith varying sizes, from superpixels to the complete image. Al-

hough selective search is intended for objects, we observe it in

act generates parts suitable for our purpose. On Pascal VOC 2007,

e derived there are over 22 parts for each labeled object for

hich the part of score from Vezhnevets and Ferrari (2015) is at

east 0.5. 

Feature extraction. As features, we employ a GoogLeNet con-

olutional neural network ( Szegedy et al., 2015 ), pre-trained on

5 k ImageNet categories ( Deng et al., 2009 ). For a given part, we

escale it to 256 × 256 pixels and feed it to the network, result-

ng in a 1,024-dimensional feature vector, which is subsequently � 2 
ormalized. 

Part detection. We use the fast exemplar SVM of

ariharan et al. (2012) to transform the part representations

nto linear classifiers. The linear classifier of a part is used

or the max-pooling operation of Eq. (1) . For fair comparison,

he max-pooling operation is only applied to the whole im-

ge. Both Juneja et al. (2013) and our approach will improve

urther when we incorporate pooling over the scene layout by

azebnik et al. (2006) . We sample roughly 400 k part features from

rain images to estimate the corresponding μ and � parameters. 

Part boosting. For the weak learners, we opt for orthogonal deci-

ion trees, as AdaBoost with decision trees have shown to yield ex-

ellent categorization performance ( Dietterich, 20 0 0 ). At each split,

e select the part that minimizes the normalized weighted miss-

lassification error of the examples in the corresponding node. As

hown by Bühlmann and Yu (2003) , AdaBoost is resistant to over-

tting when using a large number of training iterations. Therefore,

e use 20 0 0 iterations for boosting throughout our experiments

or training the image classifiers. 

.3. Experimental evaluation 

xperiment 1: All part types matter 

We first motivate our main hypothesis that part-based meth-

ds benefit from three types of category parts. We rely on the Pas-

al VOC 2007 dataset for this experiment. As a surrogate for each

ype of part, we use the object bounding boxes as part locations.

or each category, we use the features from the bounding boxes

f the same category as its own parts. Similarly, the features from

he bounding boxes of all other categories are used as other parts.

or context parts, we use the features from selective search boxes

ithout overlap to any ground truth bounding box. As a baseline,

e use the performance of the global image representation. We

dd the features of each part type to the global representation to

valuate their effect. 

esults. We show the image categorization results for the global

epresentation and its combination with each part type in Fig. 5 .

s the Figure indicates, adding each of the different part types

oosts the categorization performance. Not surprisingly, the use of

wn parts for each category yields the best improvement (89.6%

s. 85.3% mean Average Precision (mAP)). We especially note the

ncrease obtained for small objects such as bottle (from 55.1% to

6.3%) and potted plant (from 64.2% to 74.4%). 

Surprisingly effective is the addition of other parts, with an

AP of 88.6%. For multiple categories, such as sofa , it is even
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Fig. 5. Average Precision (%) on Pascal VOC 2007 for the global image representation ( Szegedy et al., 2015 ) and its combination with each type of category parts (approxi- 

mated from provided bounding boxes). We conclude that all types of category parts matter. 
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more favorable to add parts from other categories over parts from

their own category. More specifically, using parts from cats and

dogs yields a better performance than using parts from sofa it-
self. This result highlights the importance of exploiting and sharing

the co-occurrence of categories. Lastly, the overall performance of

context parts is marginally beneficial, compared to own and other

parts (86.1% mAP). For categories such as car (94.0%), motor
bike (91.7%), and tv (84.1%), the use of context parts may be good

choice. 

We note that experiment 1 serves to show that all part types

matter for image categorization. Since we rely for this experiment

on ground truth bounding boxes to approximate parts, the results

should not directly be compared to other part-based methods, who

all rely on the class labels only. A direct comparison will be dis-

cussed in experiment 2 and beyond. 

Qualitative analysis. To understand why each part type matters

for image categorization, we provide additional qualitative results.

In Fig. 6 , we show test examples that significantly improve or de-

crease in predictive performance when each of the part types is

added. 

For own parts, we observe that the improvement is most sig-

nificant for small objects, objects out of context, and occluded ob-

jects, as shown in Fig. 6 a–c for respectively bottle , sofa , and

bus . Exploiting and sharing parts from other categories is benefi-

cial when there is a high co-occurrence between categories in the

images. This pattern is shown in Fig. 6 e–g, for sofa / dog , chair
/ dining table , and horse / person . Parts from context are

similarly beneficial in case of a co-occurrence between the cat-

egories and contextual elements. Notable examples are buildings

for boat , cat basket for cat , and fence for sheep , as shown in

Fig. 6 i–k. 

Fig. 6 furthermore shows where each part type fails. For own

category parts, performance decreases e.g. when the object cannot

be located, as shown in Fig. 6 d. Other category parts fail for incon-

sistent co-occurrence, such as car and tv in Fig. 6 h. For context

parts, performance decreases when context is either not present or

consistent with other object categories, as shown in Fig. 6 l. 

Fig. 1 also shows that different part types focus on different el-

ements in the scene, taking in the complete information from the

image. Based on the quantitative and qualitative results of this ex-

periment, we conclude that all part types matter for image catego-

rization and should be exploited to improve image categorization. 

Experiment 2: Evaluating our part-based method 

We evaluate our joint part selection and image categorization

without box information in three steps: (i) evaluate whether we
apture all part types, (ii) compare to separate part optimization,

nd (iii) compare our maximum exploit sampling to baseline sam-

lers. 

o we capture all types of parts? First, we validate that our

ethod follows our hypothesis and we ask ourselves; do we cap-

ure all part types? We perform this evaluation on Pascal VOC

007, as the object annotations of this dataset enables such an

valuation. To validate that our method is capable of incorporat-

ng all part types, we analyze the importance of each selected part

s a function of the box agreement. We run our algorithm to select

 total of 500 parts across all 20 categories in Pascal VOC 2007. We

ote that this setting yields an mAP of 89.1%, significantly higher

han the global representation and on par with the representations

rom the strongly supervised bounding boxes used in the first ex-

eriment. For each selected part p , we compute its importance in

 single decision tree as the normalized miss-classification reduc-

ion; this value is summed over all the decision tree where the

art is used. For the selected part p and the best overlapping box

 , the box agreement is computed here as p∩ b 
p ( Vezhnevets and

errari, 2015 ). Intuitively, the box agreement states to what extend

 is part of b . 

The relation between part importance and box agreement is

hown in Fig. 7 . The figure shows two clear peaks. The leftmost

eak indicates that our method utilizes parts with no overlap to

round truth boxes, i.e. context parts. The other peak is at a box

greement of 1; when a part is contained in an object. The red and

lue bars indicate that each category uses parts from its own ob-

ect and from other objects. From the figure we conclude that our

ethod uses own (blue), other (red), and context (green) parts. 

We also provide part responses by our method in Fig. 8 . The

igure shows how our method deals with occluded objects ( 8 a),

mall objects ( 8 b), and atypical object views ( 8 c). The primary fo-

us is on the visible portions of the objects and co-occurring other

bjects, but contextual information is also taken into account. Ex-

mples include car jack ( car , 8 a), steam ( train , 8 d), and hori-

ontal bars ( horse , 8 g). Our method automatically discovers that

eople parts should be shared for dog ( 8 f), but dog parts should

ot be shared for bike ( 8 e). 

oint vs. separate selection and categorization. Second, we com-

are our method to the bag-of-parts of Juneja et al. (2013) , which

pplies a separate optimization of part selection and image cat-

gorization. To ensure a fair comparison, we replicate the setup

escribed in Juneja et al. (2013) . This means that we use the

ame dataset (MIT 67 Indoor Scenes), the same part propos-

ls, and the same part features. For the HOG features used in

uneja et al. (2013) , we also employ the outlined iterative part re-
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Own category parts.

(a) 4097 → 340 (b) 4446 → 2081 (c) 262 → 130 (d) 456 → 539

Other category parts.

(e) 372 → 128 (f) 1443 → 404 (g) 120 → 80 (h) 3748 → 4527

Context parts.

(i) 30 → 12 (j) 436 → 309 (k) 796 → 242 (l) 479 → 560

Fig. 6. Qualitative examples of when the different part types improve/decrease the categorization performance. Shown are improvements using own (a–d), other (e–h), and 

context (i–l) parts. The first three examples have increased performance, the last example has decreased performance. The icon denotes the category, while the numbers 

state the original and new ranking position. 

Fig. 7. Histogram showing the importance of our selected parts, as a function of 

the overlap with annotated objects. On the x -axis, we show the distribution of the 

overlap between our parts and ground truth objects. On the y -axis, we show how 

important the parts have been during training. The plot shows that our parts focus 

on parts from its own category (blue), while also taking in other categories (red) 

and context (green). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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nement. For full details, we refer to Juneja et al. (2013) . We also

rovide a comparison using the GoogLeNet features for the parts.

or the bag-of-parts, we report the results with both a linear and
2 SVM, as is proposed in Juneja et al. (2013) . We only exclude im-

ge flipping and spatial pyramids, as these elements are not spe-

ific to either method and can therefore cloud the comparison. 

In Fig. 9 a, we show the classification accuracies using respec-

ively the HOG and GoogLeNet features. The scores the Figure are

ompared for four values of constraint s to evaluate the influence

n the performance as a function of s for both our approach and
he method of Juneja et al. (2013) . We enforce four global part lim-

ts: 335, 670, 1675, and 3350 parts on MIT 67 Indoor Scenes and

0 0, 20 0, 50 0, 10 0 0 on Pascal VOC 2007. For the baseline bag-of-

arts approach, this corresponds to 5, 10, 25, and 50 parts selected

er category. 

For the HOG features, we observe that our joint part selec-

ion outperforms the separate optimization in the bag-of-parts of

uneja et al. (2013) . The difference even grows as we use stricter

art limits. At 5 parts per category, our method outperforms bag-

f-parts by 7.6% ( χ2 ) and 12.6% (linear). For the GoogLeNet fea-

ures, we first observe that all results significantly outperform the

OG features (note the different ranges on the y -axis). We again

utperform the bag-of-parts, albeit with a less pronounced differ-

nce. At five parts per category, we outperform the bag-of-parts by

.6% ( χ2 ) and 5.6% (linear). We attribute this to the strength of the

eatures, resulting in saturation. 

The run time of our approach is similar to other part-based

ethods, as they all compute part responses and apply learned

lassifiers. Naturally, the training time of our joint selection and

lassification is more involved than methods with separate se-

ection and classification ( Doersch et al., 2013; Juneja et al.,

013 ), yet fast enough to avoid dimensionality reduction, as in

arizi et al. (2015) . On a single Intel Xeon E5-2609 core, it takes

oughly 8 h to jointly optimize all 20 objects in Pascal VOC 2007.

n a test image, it takes 2 s to max-pool the selected parts and

pply the trees. 

We conclude that our joint part selection and categorization is

referred over a separate optimization. 

valuating maximum exploiting. Third, we evaluate the maxi-

um exploiting itself within the joint AdaBoost optimization. We
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(a) Car. (b) Bird. (c) Boat.

(d) Train. (e) Bike. (f) Dog.

(g) Horse. (h) Tv. (i) Aeroplane.

Fig. 8. Examples of the parts in the image where our method fires for nine object categories. Our parts focus on parts from the object itself, as well as other category parts 

and context. Note that our method automatically discovers when to share and not to share; dog parts are not useful for bike (e), but human parts are useful for dog (f). 

(a) Our method vs. the separate optimization of Juneja et al. [23]. (b) Max. exploit vs. basic samplers.

Fig. 9. Classification results on MIT 67 Indoor Scenes. In Fig. 9 a, we compare our method to the separate optimization of Juneja et al. (2013) . In Fig. 9 b, we compare the 

maximum exploit to baseline AdaBoost samplings. In both experiments, our approach is preferred over the baselines. 
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reuse the HOG settings of Juneja et al. (2013) and draw a compar-

ison to three baseline sampling strategies. The first baseline, Tieu-

iola , follows ( Tieu and Viola, 2004 ). At each boosting iteration, a

single new part for each category is selected until the specified

part limit is reached. The second baseline, uniform , is a variant

of LazyBoost ( Escudero et al., 20 0 0 ), where we randomly sample

parts from the set of all parts (ignoring whether parts have been

selected or not), until the limit is reached, after which we keep

retraining on the selected parts. The third baseline follows the ε-

greedy strategy, where we have a static probability ε of exploring

new parts and a static probability 1 − ε of exploiting the current

set of selected parts. 

The comparison of maximum exploit sampling versus the base-

line boosting sampling methods is shown in Fig. 9 b. The maximum

exploiting joint optimization is preferable across the whole range

of part limits. These results indicate that a higher focus on ex-

ploitation is an important aspect in the joint optimization, since

the baselines have a higher focus on exploration. It is also inter-

esting to note that, with the exception of the Tieu-Viola baseline,

all variants improve over Juneja et al. (2013) , indicating the effec-

tiveness of a joint optimization. 

Experiment 3: Evaluating bootstrap fusion. 

We evaluate our bootstrap fusion for combining our category

parts with the global representation. We perform this evaluation
n both Pascal VOC 2007 and MIT 67 Indoor Scenes and provide

 comparison to two baseline fusions ( Snoek et al., 2005 ). For the

ootstrap procedure, we train a model on the global representa-

ions and then train our joint part selection and image categoriza-

ion on the updated weights. The combination is then formed by

oncatenating the decision trees from both models. The first base-

ine, early fusion, combines the global representations and the rep-

esentations from the parts selected by Juneja et al. (2013) , after

hich a χ2 SVM is trained on the concatenated representations.

he second baseline, late fusion, is similar to the bootstrap proce-

ure, but without updating the weights. In the remaining experi-

ents we always use an average of 50 parts per category for our

pproach. 

esults. In Fig. 10 we show the performance of our bootstrap fu-

ion against the two baselines. Across all settings and part limits,

ur fusion (blue bars) outperforms the baselines. For Pascal VOC

007 our method outperforms the other combiners between 2–4%

cross all part limits, with an mAP up to 90.7% at 50 category parts

er object. For MIT 67 Indoor Scenes, the difference in performance

aries for both the GoogLeNet and HOG features. For the HOG fea-

ures with the Fisher Vector as the global representation, the im-

rovement is most significant, similar to the results of Fig. 9 a. For

he GoogLeNet features the improvement is less significant, but

ur bootstrap is still better than the baselines. We conclude that
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(a) Pascal VOC 2007. (b) Indoor Scenes (GoogLeNet). (c) Indoor Scenes (HOG+IFV).

Fig. 10. Combination results on Pascal VOC 2007 and MIT 67 Indoor Scenes. Ours (blue) is always favored over early (red) and late (gray) feature fusion for combining 

part-based and global image representations. 

(a) Horse riding. (b) Playing instrument.

Fig. 11. Selected parts from the action categories horse riding and playing music in the Willow image actions dataset. Note the presence of Own, Other and Context parts. 

Fig. 12. Three examples of selected parts (blue, left) and their top responses in three test images (green, right) on MIT Indoor Scenes. Part responses focus on similar parts 

of the scene (e.g. broad for bakery and shop for mall) and even on larger combinations of scene parts (e.g. desk and chair for office). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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ur bootstrap procedure is preferred when combining the part and

lobal representations. 

omparison to the state-of-the-art. We also compare our results

or the fusion to related work. The comparison of our results to

he state-of-the-art on Pascal VOC 2007 is provided in Table 1 . Our

esults provide an improvement over the references. Our final re-

ult compares favorably to the convolutional neural network ap-

lied to the whole image (90.7% vs. 85.3%), a notable improvement

n mAP. We note that recent concurrent work on (very deep) con-

olutional networks similar in spirit to Szegedy et al. (2015) has

ielded an mAP of 89.3% ( Simonyan and Zisserman, 2015 ), which
s a 4% improvement over the network that we employ. Both our

art-based and combined results still outperform Simonyan and

isserman (2015) and we expect a further improvement when em-

loying their network to represent the parts. In Fig. 12 , we high-

ight 3 selected parts during training on MIT 67 Indoor Scenes,

long with top responses in three test images. 

The comparison for MIT 67 Indoor Scenes and Willow Actions

s also provided in Table 2 . For scenes, we see that our results im-

rove upon existing combinations of global and part-based repre-

entations ( Doersch et al., 2013; Juneja et al., 2013 ). Similar to Pas-

al VOC 2007, we note that the recently introduced scene-specific
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Table 1 

Average Precision (%) scores on Pascal VOC 2007, comparing our results to related work. Our part-based results improve upon existing global representations (from 

85.3% for Szegedy et al. (2015) to 89.7%), while the combination with Szegedy et al. (2015) yields the best results. 

Pascal VOC 2007 

Method mAP 

Oquab et al. (2014) 88 .5 81 .5 87 .9 82 .0 47 .5 75 .5 90 .1 87 .2 61 .6 75 .7 67 .3 85 .5 83 .5 80 .0 95 .6 60 .8 76 .8 58 .0 90 .4 77 .9 77 .7 

Chatfield et al. (2014) 95 .3 90 .4 92 .5 89 .6 54 .4 81 .9 91 .5 91 .9 64 .1 76 .3 74 .9 89 .7 92 .2 86 .9 95 .2 60 .7 82 .9 68 .0 95 .5 74 .4 82 .4 

Wei et al. (2014) 96 .0 92 .1 93 .7 93 .4 58 .7 84 .0 93 .4 92 .0 62 .8 89 .1 76 .3 91 .4 95 .0 87 .8 93 .1 69 .9 90 .3 68 .0 96 .8 80 .6 85 .2 

Cimpoi et al. (2015) 91 .4 90 .9 91 .2 88 .9 66 .7 85 .8 91 .1 90 .7 71 .7 80 .1 82 .4 90 .4 91 .0 89 .3 94 .4 68 .7 84 .2 79 .0 93 .8 82 .2 85 .2 

Szegedy et al. (2015) 97 .7 93 .1 94 .4 93 .8 55 .1 87 .8 91 .6 95 .3 66 .1 78 .7 79 .6 93 .2 94 .4 90 .0 95 .4 64 .2 83 .6 74 .4 96 .4 80 .9 85 .3 

Simonyan and Zisserman (2015) 89 .3 

Ours 98 .0 96 .8 97 .9 94 .7 76 .9 89 .6 96 .4 96 .8 74 .9 82 .9 79 .7 94 .4 94 .6 93 .6 98 .3 74 .9 91 .5 75 .4 96 .7 90 .2 89 .7 

Ours + ( Szegedy et al., 2015 ) 98 .7 97 .0 97 .9 94 .8 78 .3 91 .4 96 .4 97 .3 75 .0 85 .0 82 .4 95 .4 96 .1 94 .7 98 .5 75 .9 90 .9 82 .1 97 .3 89 .7 90 .7 

Table 2 

Comparison with state-of-the-art on MIT 67 Indoor Scenes, Willow Actions, and Calltach-UCSD Birds 200–2011. Here, ft denotes fine- 

tuning. Using a single feature only ( Szegedy et al., 2015 ), our approach is competitive on all datasets and best for Pascal Objects and 

Willow Actions and Fine-grained Birds without fine-tuning. 

MIT 67 Indoor Scenes Willow Actions Calltech-UCSD Birds 200–2011 

Method Acc. Method mAP Method Accuracy 

w/o fine-tuning fine-tuning 

Juneja et al. (2013) 63 .1% Pintea et al. (2014) 51 .0% Zhang et al. (2014) 66 .0% 73 .9% 

Doersch et al. (2013) 66 .9% Sicre et al. (2014) 61 .4% Simon and Rodner (2015) - 81 .0% 

Szegedy et al. (2015) 69 .3% Delaitre et al. (2010) 62 .9% Wang et al. (2015) - 81 .7% 

Zhou et al. (2014) 70 .8% Sharma et al. (2012) 65 .9% Krause et al. (2015) 78 .8% 82 .0% 

Zuo et al. (2014) 76 .2% Sharma et al. (2013) 67 .6% Lin et al. (2015) 80 .1% 84 .1% 

Parizi et al. (2015) 77 .1% Khan et al. (2013) 70 .1% Jaderberg et al. (2015) - 84 .1% 

Cimpoi et al. (2015) 81 .0% Szegedy et al. (2015) 74 .4% 

Ours 77 .4% Ours 81 .7% Ours 82 .8% - 
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convolutional network of Zhou et al. (2014) has shown to be effec-

tive for global scene classification, with an accuracy of 70.8%. Sub-

sequent analysis on this network has indicated that convolutional

layers contain object detectors ( Zhou et al., 2015 ). This analysis not

only speaks in favor of the network for global classification, but

also in our part-based setting, as this will positively influence the

part representations. 

Compared to Cimpoi et al. (2015) , we note that their results are

better on MIT 67 Indoor Scenes, while we perform better on Pascal

VOC 2007. This result is not surprising, as Pascal VOC 2007 is a

multi-label dataset and Indoor Scenes is a multi-class dataset. As

a result, the objects in Pascal VOC 2007 have a higher level of co-

occurrence, which is exploited by our method. 

We perform an evaluation on Willow Actions, where we see

that our final result of 81.7% outperforms current methods on the

same dataset. In Fig. 11 we show selected part for two action cat-

egories. The Figure paints a similar picture as the previous exper-

iments. For both action categories, our method selects parts from

the dominant objects in the scene (horses and instruments), but

also from contextual information. For horse riding , parts such

as sand and policemen are deemed discriminative, while parts

from playing music include lumberjack prints from clothing. 

Finally, we also provide results for the fine-grained Caltech-

UCSD Birds 200–2011 dataset in Table 2 . In this experiment, we

exclude the use of bounding box information and only rely on the

image class labels. For the results in Table 2 , we use 10,0 0 0 parts

(50 parts on average per category). The results show that our ap-

proach is competitive to the current state-of-the-art without the

need for bounding box supervision and without any fine-grained

optimizations. For example, Krause et al. (2015) ; Lin et al. (2015) ;

Zhang et al. (2014) fine-tune their deep networks to the fine-

grained images during training, which delivers a 4–5% improve-

ment. We yield the highest scores when no fine-tuning is applied

and expect a similar gain as Krause et al. (2015) ; Lin et al. (2015) ;

Zhang et al. (2014) when fine-tuning is applied. 
From this evaluation, we conclude that our method improves

pon global ConvNet image representations and yields competitive

esults compared to the current state-of-the-art. 

. Conclusions 

We have investigated image categorization using a representa-

ion of parts. We start from the intuition that parts are naturally

hared between categories. We analyze the type of region where a

art comes from, namely: parts from its own category, parts from

ther categories, and context parts. Experimental validation con-

rms that all the types of parts contain valuable and complemen-

ary information. To share parts between categories we extend Ad-

boost, profiting from joint part selection and image classification.

xperimental evaluation on object, scene, action, and fine-grained

ategories shows that our method is capable of incorporating all

hree types of parts. Furthermore, our method provides a further

oost in performance over a convolutional representation of the

hole image for categorization. The strong performance of our and

ther state-of-the-art methods on Pascal VOC 2007, MIT 67 Indoor

cenes, and Calltech-UCSD Birds 200–2011 indicates the saturation

n these datasets and the need for the community to explore big-

er datasets for part-based image categorization in the near fu-

ure. Our method opens up new possibilities for part-based meth-

ds, such as image captioning by sharing parts over similar words

ithin the captions. 
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