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ABSTRACT
LIDAR is a popular remote sensing method used to examine
the surface of the Earth. LIDAR instruments use light in the
form of a pulsed laser to measure ranges (variable distances)
and generate vast amounts of precise three dimensional point
data describing the shape of the Earth. Processing large
collections of point cloud data and combining them with
auxiliary GIS data remain an open research problem.

Past research in the area of geographic information sys-
tems focused on handling large collections of complex geo-
metric objects stored on disk and most algorithms have been
designed and studied in a single-thread setting even though
multi-core systems are well established. In this paper, we
describe parallel alternatives of known algorithms for eval-
uating spatial selections over point clouds and spatial joins
between point clouds and rectangle collections.

1. INTRODUCTION
Light Detection and Ranging (LIDAR) data provide a

wealth of information for various application domains like
urban planning, smart cities and natural resource manage-
ment. The production of large collections of point cloud data
has increased over the past years due to its easy collection
via airborne laser scanning. Airborne laser scanning is a re-
mote sensing technology that enables users to collect rapidly
large amounts of point data at global scale. Many datasets
with national coverage have been released during the last
few years as open data. For example, the AHN dataset
[1] is the Dutch elevation map that is freely distributed as
open data. The fist version of AHN contained one point per
16-25m2, while the second version contained 6-10 points/m2

resulting in approximately 640 billion points for the whole
country. The dataset is distributed as a collection of 60,000
files encoded according to the Laser (LAS) file format [2].

File based solutions were initially developed for point clouds
and recently multiple DBMS were extended with support for
LIDAR data. PostgreSQL and Oracle physically reorganize
point cloud data into blocks that contain multiple points fol-
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lowing a condensed representation. Afterwards, indices are
built using the spatial extent of each block. In this paper,
we follow a different direction and opt for a purely columnar
storage scheme like the one used by MonetDB. In addition,
our algorithms are inspired by the processing model followed
by MonetDB.

In this paper, we focus on implementation details of known
algorithms for spatial selections and joins for exploiting the
characteristics of modern hardware. Given the recent in-
crease of main memory capacities, we focus on main mem-
ory databases. In these systems the bottleneck is no longer
the I/O bandwidth but the memory bandwidth. Column
store databases use memory bandwidth more efficiently by
maximizing the amount of useful data that is transferred.
Compression is used to limit further the utilization of mem-
ory bandwidth increasing at the same time the data elements
that fit in cache. Although compression requires extra CPU
time, there are many compression schemes that allow some
operations to be performed directly on compressed data.

Indices have been heavily used in databases to minimize
the amount of data that needs to be accessed. The shift from
disk-based to memory-based databases lead to the need of
adapting the index structures and the algorithms used to
access them. Traditionally, indices were focusing on mini-
mizing I/O but used in a main memory setting caused a lot
of random memory accesses compared to e.g. simple scan-
ning approaches. Indices are still used to limit the mount of
accessed data, however nowadays spatial locality of the data
accesses plays an important role.

Multi-core systems pose one more challenge to index de-
signers, that of efficiently utilizing the available parallel re-
sources. With increasing number of threads the main mem-
ory bandwidth problem becomes more prominent. Having
multiple threads processing independent chunks of the index
may result in memory bandwidth contention.

The rest of the paper is organized as follows: In Section 2,
we discuss related work and in Section 3, we present how
to index a point cloud using a data-driven data structure
and known algorithms for evaluating spatial selections and
spatial joins using a grid index. In Section 4, we present
how we implemented the aforementioned algorithms and in
Section 5, we evaluate the algorithms experimentally in two
server-class machines. In Section 6, we conclude the paper.

2. RELATED WORK
Traditional GIS indexing structures are divided in two

broad categories: space driven indices and data driven in-
dices. Space driven indices partition the space into rectan-



gular cells regardless of the spatial distribution of the geo-
metric objects. Afterwards, geometric objects are assigned
to one or more overlapping cells. On the contrary, data-
driven indices partition the geometric objects by taking into
account their spatial distribution in the enclosing space.

The fixed grid index [17] is a space driven index that tes-
sellates the space into equi-area rectangular cells. Each cell
is assigned a disk page and each geometry is assigned to all
overlapping cells. The grid file [15] is an improvement of
the fixed grid where data are not assumed to follow a uni-
form distribution. When the points assigned to a cell do not
fit in a single disk page, the cell is split into two cells and
the points are reassigned to the new cells accordingly. This
leads to the creation of a non-regular grid that adapts to
the spatial distribution of the indexed points. A well-known
grid-based spatial index is the quadtree [14]. A quadtree
is created by diving the space in four cells. In each level,
each cell is further subdivided to four cells resulting in a
tree where each parent has exactly four children nodes. A
different approach is followed by data structures based on
space-filling curves. A space-filling curve [13] is a function
that defines a total order on the cells of a regular grid. As a
result, cells that are close in space are probably close in the
total order. Space filling curves is a method of dimension re-
duction, allowing a DBMS to index multi dimensional data
using a B+tree index.

On the other hand, data driven data structures partition
the geometric objects by taking into account their spatial
distribution. The most notable index in this category is
the R-tree [11]. An R-tree groups together neighbouring
objects. A rectangle that encloses all geometries in a group is
used for representing the geometries in the higher level. One
main advantage of a data-driven data structure like the R-
tree is that complex geometric objects (e.g., lines, polygons)
appear only once in the index. On the contrary, when a
space-driven structure is used, the object identifier may be
inserted multiple times in several leaves. As a result when
indexing objects that overlap multiple cells, the duplication
rate increases significantly. However, this drawback does
not apply when indexing point geometries since a point will
overlap exactly one cell.

LAStools [3] is a file based solution for handling point
cloud data distributed as LAS files. LAStools provide two
closed source tools for indexing LAS files: lassort and lasin-
dex. The former tool sorts the points of a LAS file using a
space filling curve while lasindex creates a square quadtree
for a sorted LAS file. PostGIS [9] is an extension of Post-
greSQL for handling geospatial information. PostGIS pro-
vides an implementation of an R-tree but its performance
was not satisfactory when indexing large point clouds. As a
result, PostgreSQL was recently extended with a new mod-
ule for handling point cloud data [8]. Points are organized
in patches that consist of 5,000 points and an R-tree index
is created over the rectangles that enclose all points of each
patch. Oracle Spatial and Graph was recently extended with
support for point cloud data [7]. Oracle follows a similar
approach with PostgreSQL and groups points in patches of
5,000 points. Each patch is compressed using various com-
pression methods and a Hilbert R-Tree is constructed over
the rectangles that enclose all points of each patch. Mon-
etDB [4] was recently extended with a data vault for LAS
files. The Data Vaults [12] is a mechanism that provides
a true symbiosis between a DBMS and existing file-based
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Figure 1: Fixed Grid Index

repositories. By utilizing the LIDAR data vault and the re-
cent extensions of the geospatial module of MonetDB, the
user can efficiently manage and process vast collections of
point cloud data. MonetDB stores the point cloud data
using a flat table approach. A lightweight and cache con-
scious secondary index called Imprints is used for execut-
ing a coarse filtering step, followed by the construction of a
fixed grid for the refinement step [10]. An implementation
of a secondary index based on a fixed grid is ongoing work.
Recently, a functional and performance benchmark was de-
veloped for comparing all aforementioned systems [18]. In
[18], the authors propose a benchmark based on the Dutch
elevation map that consists of 640 billion points.

3. PROCESSING POINT CLOUD DATA
In this section, we describe the data structures and al-

gorithms that we will examine in this paper for processing
point clouds. Point cloud data are represented by a set of
coordinates (x,y,z) and a set of accompanying attributes.
We store the point cloud data following a fully decomposed
model i.e., we create a relation PC having one column for
each coordinate and dataset attribute. Given that the den-
sity of point cloud data is fairly uniform, we experimented
with space-driven data structures for point cloud indexing.
For storing a collection of rectangles we create a relation
RECT with a single attribute r that stores rectangular geo-
metric objects of the form (xmin ymin, xmax ymax). In the
rest of this section, we describe the fixed grid index that we
implemented and we describe the two types of queries that
we examine in this paper, namely spatial selections and spa-
tial joins.

3.1 Indexing
We choose to index point cloud data using a fixed grid.

For creating the fixed grid, we decompose the search space
into rectangular cells. The resulting grid is a regular grid
that consists of nx×ny equi-area cells. Each cell is associated
with a position of an array that stores the object identifiers
(OIDs) of each point. A point p is assigned to cell c if c
contains the map geometry of p. For indexing n points using
a nx × ny regular grid, we need an array DIR[nx, ny] as a
directory and an array OID[n] for storing the OIDs of all
points. Each element DIR[i, j] of the directory contains a
pointer to the first element of the array OID that stores the
objects assigned to cell ci,j .

Figure 1 depicts a fixed grid indexing a collection of seven
points. The grid directory is a 2D array that contains the
position of the array OID storing the first point assigned
to each cell. The array OID contains the oids of all point



Algorithm 1 Scan

Input: X . Array with x coordinates
Y . Array with y coordinates
r . Query rectangle

Output: OID . Bit vector indicating the points that are
inside r
Set OID ← 0
for xi ∈ X do

if r.xmin ≤ xi ≤ r.xmax then
OID[i] = 1

end if
end for
for yi ∈ Y do

if r.ymin ≤ yi ≤ r.ymax then
OID[i] & =1

else
OID[i] = 0

end if
end for

ordered according to the cell that each point is assigned into.
Each oid indicates a position on the arrays x and y that store
the coordinates of the points.

3.2 Spatial Selections
The term spatial selection is used to describe a selection

based on a spatial predicate. A spatial predicate can be a
combination of topological, metric, or directional relations
between two spatial objects. In this paper we focus on win-
dow queries that ask for spatial features of a dataset that
are enclosed by a user-specified area.

Example 3.1. The following SQL query is a spatial se-
lection:

SELECT *

FROM PC

WHERE ST_Contains(

ST_Envelope(ST_GeomFromText("POLYGON((

xmin ymin, xmax ymin, xmax ymax,

xmin ymax, xmin ymin))"),

ST_Point(PC.x, PC.y));

The above query selects all points from the point cloud re-
lation PC that are within the user defined rectangle (xmin

ymin, xmax ymax). The functions prefixed with ST_ are
functions defined by the Simple Features Access standard
of the Open Geospatial Consortium [5].

Let us now discuss how we can evaluate a spatial selection
that takes as input a collection of points and returns as a
result a list of qualifying OIDs. We distinguish between the
cases of querying an unindexed and indexed point cloud.

Unindexed Point Cloud.
When the point cloud is not indexed, a full scan is re-

quired for evaluating a spatial selection. The scan opera-
tor starts by reading sequentially values from the x and y
columns and exhaustively evaluating the spatial predicate.
Since data are read sequentially, the scan operator exhibits
good spatial locality and allows efficient prefetching. We fol-
low a fully decomposed model where point coordinates are
stored in separate columns and only one column is accessed
at any time. We start by creating a bit vector that will
be used for storing the result-set. Afterwards, we examine
an x coordinate and if it satisfies the spatial predicate, the

Algorithm 2 Grid Index Lookup

Input: Index . Grid index for point cloud data
X . Array with x coordinates
Y . Array with y coordinates
r . Query rectangle

Output: OID . Bit vector indicating the points that are
inside r
Set OID ← 0
Compute Cells← compute Index cells that overlap r
for cellj ∈ Cells do

for xi ∈ cellj do
if r.xmin ≤ xi ≤ r.xmax then

OID[i] = 1
end if

end for
for yi ∈ cellj do

if r.ymin ≤ yi ≤ r.ymax then
OID[i] & =1

else
OID[i] = 0

end if
end for

end for

corresponding bit is set. We repeat this process for the y
coordinate. Algorithm 1 demonstrates this idea.

Indexed Point Cloud.
When an index over the point cloud dataset exists, it is

used for limiting the data that needs to be accessed for
evaluating the spatial selection. Given a rectangle r =
(xmin, ymin, xmax, ymax), we compute the grid cells that in-
tersect r. For each cell, we access the index to find all points
that are located inside the cell. The coordinates of each
point are retrieved and used to determine whether a point
is inside r. Algorithm 2 presents how the grid index is used
for evaluating a spatial selection.

3.3 Spatial Joins
A spatial join is a theta join between collections of spa-

tial objects where theta is a combination of topological or
directional predicates. We focus on spatial joins between
point clouds and collections of rectangles using the contains
spatial predicate.

Example 3.2. The following SQL query is a spatial join:

SELECT *

FROM PC, RECT

WHERE ST_Contains(RECT.r, ST_Point(PC.x, PC.y));

The above query selects all pairs of points and rectangles
which satisfy the spatial predicate ST_Contains.

Index on Point Cloud.
If there is an index on the point cloud but the rectangle

collection is not indexed, we perform the join using the In-
dexed Nested Loops algorithm. According to the algorithm,
we iterate the rectangle collection and for each rectangle, we
perform a grid index lookup. In contrast to Algorithm 2, we
do not use a bit vector for computing the results. First, the x
coordinate of the points is examined and a list of qualifying
OIDs is created. This set of OIDs is called set of candidates.
In a subsequent step, the y coordinates are examined. The
candidates are used to access only the y coordinates of the



Algorithm 3 Indexed Nested Loops

Input: Index . An array with the sets of idxs of the points
in each cell

X . Array with x coordinates
Y . Array with y coordinates
R . Array with rectangles

Output: OIDsr . List of OIDs of rectangles
OIDsp . List of OIDs of points

OIDsr ← EmptyList
OIDsp ← EmptyList
for rj ∈ R do

candidates← EmptyList
Compute Cells← the cells of the Index that overlap r
for cell ∈ Cells do

for xi ∈ cell do
if rj .xmin ≤ xi ≤ rj .xmax then

candidates.add(i)
end if

end for
end for
for i ∈ candidates do

if rj .ymin ≤ yi ≤ rj .ymax then
OIDsr.add(j)
OIDsp.add(i)

end if
end for

end for

points with qualifying x coordinates. Candidates with qual-
ifying y coordinates belong to the result-set. Algorithm 3
presents the idea of the Indexed Nested Loops.

Index on Both Relations.
When both the point cloud and the rectangle collections

are indexed, we evaluate the join using the Partition Based
Spatial-Merge Join (PBSM) [16] algorithm. The PBSM al-
gorithm assumes that both relations are indexed over the
same grid. The algorithm performs the join by comparing
all elements of each cell of one relation with all elements of
the same cell of the other relation. The idea of PBSM is
sketched in Algorithm 4.

4. IMPLEMENTATION
Let us now discuss how we implemented the algorithms

presented in Section 3. We discuss how we parallelised the
aforementioned algorithms, how we placed data in a NUMA
local manner and how we modified the grid index to reduce
the number of random memory accesses.

4.1 Parallelisation
We parallelised all algorithms using OpenMP [6]; an in-

terface that allows multi-platform shared-memory parallel
programming. Below, we describe the methodology we em-
ployed for parallelising each one of the four algorithms.

Scan: The parallelisation of the scan operator is per-
formed by splitting the point cloud data in pieces. The ar-
rays containing the x and y coordinates are logically split in
chunks of the same size and a separate thread is assigned to
each chunk. Each thread processes an independent part of
the dataset and writes the results at its own local structures
eliminating the need for synchronisation.

Grid Index lookup: We split the grid index lookup algo-
rithm in two phases. During the first phase, a single thread
tessellates the query rectangle and computes a discrete rep-
resentation of it. The tessellation allows us to approximate

Algorithm 4 PBSM

Input: Index . Grid Index
X . Array with x coordinates
Y . Array with y coordinates
R . Array with rectangles

Output: OIDsr . List of OIDs of rectangles
OIDsp . List of OIDs of points

OIDsr ← EmptyList
OIDsp ← EmptyList
for cell ∈ Index do

candidatesr ← EmptyList
candidatesp ← EmptyList
for rj ∈ cell do

for xi ∈ cell do
if rj .xmin ≤ xi ≤ rj .xmax then

candidatesr.add(j)
candidatesp.add(i)

end if
end for

end for
for k ∈ sizeof(candidatesp) do

j ← candidatesr[k]
i← candidatesp[k]
if rj .ymin ≤ yi ≤ rj .ymax then

OIDsr.add(j)
OIDsp.add(i)

end if
end for

end for

the query rectangle by a finite number of cells. In the second
phase, the intersecting cells are logically divided among all
threads. Each thread processes the points that are inside
the cells that have been assigned to it.

Indexed Nested Loops: We logically divide the set of
rectangles evenly among all threads. Each thread performs
a grid index lookup for each rectangle that has been assigned
to it. The index is shared among all threads and multiple
threads might access the same cells concurrently. Since only
read accesses are performed on them there is no need for
synchronisation.

Given that point cloud data are usually joined with collec-
tions of polygons that are roughly of similar area (e.g., cadas-
tral property boundaries), this approach distributes the load
evenly among all threads. For other cases, one should add
a pre-processing step where rectangles are split in chunks
according to their area.

PBSM: We logically divide the grid cells evenly among all
threads. Each thread processes sequentially all assigned cells
and for each cell it performs a nested loops joins between the
indexed points and rectangles.

4.2 Optimisations
We applied various well-known optimisation techniques

for making all algorithms more efficient. We employed tech-
niques like predication, loop unrolling and blocking wherever
applicable. For vectorisation, we rely on the capabilities of
the compiler.

Furthermore, we made additional optimisations that are
specific to the algorithms that we examine. In the case of the
Grid Index lookup and Indexed Nested Loops, we can safely
omit the evaluation of the spatial predicate over points that
are indexed at cells that are completely within the query
rectangle. Such points are immediately copied to the result
set. Only the cells that intersect the border of a query rect-
angle need to be examined in detail since they might contain



points that are located inside or outside the query rectangle.

Clustered Grid Index.
The grid index is used for reducing the number of points

that are examined when processing a spatial predicate. As
a result, only data that are likely to be an answer to a query
are transferred to the CPU. However, there is no guarantee
that points with coordinates stored in neighboring positions
in the x and y arrays will also be close in the plane. As
a result, the structure OID, that organises point OIDs ac-
cording to the cell that they belong into, contains sets of non
consecutive OIDs. Thus, for examining a spatial predicate
over a grid cell, we need to perform many random accesses
to the x and y arrays. In specific, each access to the x and y
arrays requires dereferencing a pointer resulting to a pointer
chasing situation. This makes prefetching impossible since
the hardware has no means of knowing where the data point
is placed, and increases cache and DTLB misses. In a multi-
threaded setting this problem is magnified and quickly the
memory bandwidth is saturated since each thread performs
random memory accesses and utilizes only a small portion
of the transferred data.

To overcome this problem, we also experiment with a
Clustered Grid Index. When creating a clustered grid in-
dex, the contents of the arrays x and y are physically re-
organized so that all points that are close in the plane are
also physically stored in neighbouring positions. As a result,
the grid directory contains the position of the aligned arrays
OID, x and y storing the first point assigned to each cell. A
spatial predicate can now be evaluated by accessing directly
sequential parts of the x and y arrays while the OID array
is accessed only for writing the qualifying OIDs to the result
set. Figure 1 depicts the organisation of a non-clustered and
clustered grid index.

NUMA local data placement.
High-end servers are equipped with interconnected sock-

ets of multi-core processors, each of which has its memory
controller and memory. Sockets are interconnected through
a Quick Path Interconnect (QPI) allowing them to access
remote memory on other sockets. This decentralised ar-
chitecture is called non-uniform memory access (NUMA).
The bandwidth of the QPI is significantly lower than the
bandwidth of the memory bus that connects each socket to
its local DRAM. Thus, the bandwidth of the QPI can be
separately saturated affecting the scale capabilities of the
algorithms that we examine in this paper.

For investigating the effect of the limited QPI bandwidth
we implemented a NUMA local version of all algorithms
where data are replicated in all NUMA nodes and each
thread processes a subset of the data stored in its local
DRAM. We opted for NUMA local data placement instead of
NUMA aware data sharding because a NUMA aware imple-
mentation of grid based algorithms would require changing
the parallelisation methodology employed in each algorithm,
adding an extra variable to the comparison. A straightfor-
ward NUMA aware implementation would require distribut-
ing the input x and y columns evenly on each NUMA node
and creating locally a separate grid index. The grid index
for the rectangle collection is in principle much smaller com-
pared to the grid index for the point cloud, thus it can be
replicated to all NUMA nodes.

5. EXPERIMENTAL EVALUATION
In this section we study the speedup of the algorithms

presented in Sections 3 and 4 as we increase the number of
worker threads.

5.1 Experimental platforms
We tested all algorithms on two hardware platforms with

different configurations, namely a server class machine and a
high-end server. The server is equipped with two Intel Xeon
E5-2650 at 2-2.8 GHz, each of which has 8 cores and 16
hardware threads. Each core has 32 KB L1I and L1D cache,
and 256 KB L2 cache. Each CPU has 20 MB of shared L3
cache. The server has 256 GB RAM in total. The high-end
server is equipped with four Intel Xeon E5-4657L at 2.4-2.9
GHz, each of which has 12 cores and 24 hardware threads.
Each core has separate 32 KB L1D and L1I cache, and 256
KB L2 cache. Each CPU has 30 MB of shared L3 cache.
The high-end server has 1 TB RAM in total.

5.2 Dataset
In practice, LIDAR data cover large convex quadrilateral

surfaces. The points cloud datasets are distributed in the
form of multiple files, each covering an axis aligned rectangu-
lar area. For example, the Dutch elevation map (AHN) dis-
tributes point cloud data for the city of Amsterdam in four
files, each of which contains on average 500 million points.
Following this practice, we generated a point cloud dataset
that consists of 500 million points covering an axis aligned
rectangular area. The points are uniformly distributed in
the plane and each point is assigned an 8-byte OID and a
pair of 8-byte integer coordinates. The resulting point cloud
dataset occupies 7.6 GB of storage.

For generating rectangles, we utilized the Dutch cadastral
property boundaries collection (Digitale kadastrale kaart).
This collections contains approximately 40,000 property
boundaries in the area covered by each AHN file for the city
of Amsterdam. We measured the number of AHN points
contained by each polygon and on average, the selectivity
factor was 0.011%. For this reason, we generated 40,000
rectangles, each of which is assigned a 4-byte OID and a
minimum bounding box that is represented by four 8-byte
integer coordinates.

5.3 Varying Parameters
For spatial selections, we measured the time required by

each algorithm to compute the OIDs that satisfy the spa-
tial predicate. We experimented with spatial predicates of
various selectivity factors, namely 1%, 10%, 25%, 50%, 75%
and 100%. For spatial joins, we generated three collections
of rectangles. On average, the selectivity factor for each
polygon is the measured 0.011%, its half 0.0055% and its
double 0.022%.

Additionally, we vary the number of worker threads used.
We start by running each algorithm using a single thread,
then we assign one, two, half the available cores, all available
cores and all available threads per socket. This means that
for the server we use 1,2,4,8,16 and 32 threads and for the
high-end server we use 1,4,8,24,48 and 96 threads.

5.4 Grid creation
Indexing 500 million (resp. 1 billion, 2 billion) points re-

quired 18.12 (resp. 36.53, 79.11) seconds. Indexing 40,000
rectangles required about 5 msec. The grid index occupies



3.8 GB of space for storing the OID array and 129 KB for
storing the grid directory.

5.5 Spatial Joins
We run each configuration on each machine five times and

report the average response time. Both indexed nested loops
and PBSM were tested using every possible combination of
NUMA agnostic vs NUMA local data placement and ran-
dom vs clustered grid index. We start the discussion for the
case where the average selectivity factor of each rectangle is
0.011%.

In Figures 2a and 2b, we observe that the response time,
for the Indexed Nested Loops algorithm, is affected by the
data placement policy. Since the algorithm is memory bound,
the benefit comes from replacing remote memory accesses
with local memory accesses. The utilized memory band-
width increases since requests are directed to all available
NUMA memory nodes. This observation becomes more
prominent when increasing the number of worker threads
since the QPI is quickly saturated when a large number of
threads perform remote memory requests. The measured
CPI when 8 threads are used dropped from 16.7 to 13. For
the same reason the speed-up of the algorithm at the server
is increased by 30% when the default grid is used and by 20%
when the clustered grid is used (Tables 1-4). Accessing re-
mote memory at the high-end server involves up to two QPI
links so the measured speed-up increases by 70% and 50%
when using the default or the clustered index respectively
(Tables 5-8).

In Figures 2a and 2b, we also observe that the response
time is heavily affected by the data access pattern imposed
by using the default or the clustered index. When using
8 threads at the server using NUMA local data placement
we measured that 28% of CPU stalls is attributed to DTLB
misses when the default grid index is used, while this per-
centage drops to 1.9% when the clustered index is used. As
a result, the percentage of retired micro-operations increases
from 1.6% to 30% and CPI drops from 16.70 to 0.88. Similar
results were observed in all other cases. PBSM exhibits that
the same behaviour but at a lesser extent as we observe in
Figure 3 and Tables 9-16. We observed the same behaviour
with all selectivity factors tested. For brevity, we omit the
respective plots.

5.6 Spatial Selections
We run each configuration on each machine seven times

and report the average response time. We tested all pos-
sible combinations of NUMA agnostic vs NUMA local data
placement and random vs clustered grid index. We start the
discussion for scan operator.

The change of the data layout from NUMA agnostic to
NUMA local improves the response time of the scan oper-
ator in both the server and the high-end server (cf. Figure
4). The observed behaviour matches that observed for the
indexed nested loops and the PBSM algorithms. We ob-
serve that the algorithm scales-up almost linearly when up
to 8 threads are used and degrades slightly when hyper-
threads are utilized. We observe that the scale-up between
the NUMA aware and NUMA local differ significantly at the
high end server. When using 48 threads, the scale-up of the
NUMA agnostic approach is only 6x while the NUMA local
approach has a scale-up factor 27x.

The change of the data layout from NUMA agnostic to

NUMA local does not improve significantly the response
time of the grid index (cf. Figure 5). The grid index lookup
examines exhaustively the points that are located close to
the border of the query rectangle while the rest points are
used to set the appropriate bits of the bit vector used for
storing the result set without examining their values. Thus,
using the clustered grid index is beneficial only when pro-
cessing points close to the border of the query rectangle
where the x and y values are retrieved. For this reason, we
observe at Tables 21-28 that the speed-up of the algorithm
is slightly affected by the usage of the clustered index.

6. CONCLUSIONS
In this paper, we studied how to parallelise grid based al-

gorithms for evaluating spatial selections and spatial joins
over massive point clouds in the context of a main-memory
columnar DBMS. We investigated the effect of parallelisa-
tion when point cloud data are stored according to a fully
decomposed model. We also investigated how to use a regu-
lar grid for quickly indexing point clouds and how it can be
used in a multi-core setting. We observed good scale-up for
a small number of threads, but the random accesses that in-
cur when using many threads quickly saturate the memory
bandwidth.

Using a clustered grid index increases the spatial local-
ity of the index accesses, leading to much faster solutions.
Additionally, with the NUMA architectures it is important
to partition the data in a NUMA local configuration and
modify the algorithms to minimise the accesses to remote
memory.
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Figure 3: PBSM
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Figure 4: Scan
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Figure 5: Grid index lookup

- 1 2 4 8 16 32
0.000055 1.00 1.27 2.53 4.80 8.46 11.62
0.00011 1.00 1.31 2.55 4.81 8.56 11.54
0.00022 1.00 1.32 2.61 4.90 8.73 11.64

Table 1: Indexed Nested Loops - NUMA Agnostic
Random Accesses - Server

- 1 2 4 8 16 32
0.000055 1.00 1.86 3.38 4.86 4.93 4.75
0.00011 1.00 1.93 3.52 5.14 5.21 5.00
0.00022 1.00 2.28 4.21 6.23 6.28 5.98

Table 2: Indexed Nested Loops - NUMA Agnostic
Clustered Accesses - Server

- 1 2 4 8 16 32
0.000055 1.00 1.89 3.68 6.72 11.92 15.74
0.00011 1.00 1.89 3.68 6.70 11.71 15.49
0.00022 1.00 1.93 3.76 6.84 11.85 15.46

Table 3: Indexed Nested Loops - NUMA Aware
Random Accesses - Server

- 1 2 4 8 16 32
0.000055 1.00 1.99 3.68 6.09 7.06 6.81
0.00011 1.00 2.03 3.79 6.23 7.14 6.80
0.00022 1.00 2.38 4.46 7.37 8.33 7.90

Table 4: Indexed Nested Loops - NUMA Aware
Clustered Accesses - Server

- 1 4 8 24 48 96
0.000055 1.00 1.83 3.53 7.71 8.81 8.63
0.00011 1.00 1.86 3.57 7.75 9.06 8.76
0.00022 1.00 1.89 3.66 7.85 8.95 8.76

Table 5: Indexed Nested Loops - NUMA Agnostic
Random Accesses - High-end Server

- 1 4 8 24 48 96
0.000055 1.00 2.99 4.41 5.20 4.88 4.33
0.00011 1.00 3.19 4.76 5.85 5.45 4.88
0.00022 1.00 3.31 5.11 6.45 6.03 5.37

Table 6: Indexed Nested Loops - NUMA Agnostic
Clustered Accesses - High-end Server

- 1 4 8 24 48 96
0.000055 1.00 3.87 7.45 20.26 32.55 34.41
0.00011 1.00 3.89 7.49 20.27 32.75 33.77
0.00022 1.00 3.90 7.49 20.24 32.36 33.32

Table 7: Indexed Nested Loops - NUMA Aware
Random Accesses - High-end Server

- 1 4 8 24 48 96
0.000055 1.00 3.81 7.11 13.86 13.50 11.40
0.00011 1.00 3.93 7.31 14.45 13.92 11.91
0.00022 1.00 4.02 7.49 14.98 14.16 12.04

Table 8: Indexed Nested Loops - NUMA Aware
Clustered Accesses - High-end Server



- 1 2 4 8 16 32
0.000055 1.00 1.47 2.79 4.99 8.91 11.48
0.00011 1.00 1.60 2.95 5.21 9.16 11.30
0.00022 1.00 1.79 3.30 5.76 10.01 11.75

Table 9: PBSM - NUMA Agnostic
Random Accesses - Server

- 1 2 4 8 16 32
0.000055 1.00 2.03 3.98 7.05 9.99 9.58
0.00011 1.00 2.04 3.91 7.20 10.11 9.54
0.00022 1.00 2.17 4.28 7.75 10.69 10.19

Table 10: PBSM - NUMA Agnostic
Clustered Accesses - Server

- 1 2 4 8 16 32
0.000055 1.00 1.91 3.55 6.14 10.58 13.44
0.00011 1.00 1.94 3.59 6.09 10.38 12.61
0.00022 1.00 2.01 3.80 6.45 10.64 12.35

Table 11: PBSM - NUMA Aware
Random Accesses - Server

- 1 2 4 8 16 32
0.000055 1.00 2.05 3.95 7.26 10.82 10.40
0.00011 1.00 2.03 3.97 7.19 10.54 10.02
0.00022 1.00 2.18 4.27 7.74 10.98 10.39

Table 12: PBSM - NUMA Aware
Clustered Accesses - Server

- 1 4 8 24 48 96
0.000055 1.00 2.25 4.31 9.80 12.71 13.33
0.00011 1.00 2.52 4.78 10.94 14.41 14.59
0.00022 1.00 2.81 5.31 12.53 16.03 15.90

Table 13: PBSM - NUMA Agnostic
Random Accesses - High-end Server

- 1 4 8 24 48 96
0.000055 1.00 4.00 7.45 16.38 16.43 14.01
0.00011 1.00 4.05 7.46 17.06 17.67 15.48
0.00022 1.00 4.03 7.53 17.97 18.64 16.26

Table 14: PBSM - NUMA Agnostic
Clustered Accesses - High-end Server

- 1 4 8 24 48 96
0.000055 1.00 3.82 7.18 16.93 26.43 26.01
0.00011 1.00 3.86 7.31 16.94 25.38 24.43
0.00022 1.00 3.93 7.47 17.63 24.27 22.74

Table 15: PBSM - NUMA Aware
Random Accesses - High-end Server

- 1 4 8 24 48 96
0.000055 1.00 4.05 7.70 18.23 20.39 17.24
0.00011 1.00 4.07 7.65 18.08 19.86 17.15
0.00022 1.00 4.05 7.61 18.56 19.60 16.92

Table 16: PBSM - NUMA Aware
Clustered Accesses - High-end Server

- 1 2 4 8 16 32
0.01 1.00 1.93 3.82 6.92 10.21 9.42
0.1 1.00 2.02 3.74 7.17 10.24 9.45
0.25 1.00 1.97 3.62 6.94 10.08 9.35
0.5 1.00 1.95 3.88 6.94 10.36 9.51
0.75 1.00 1.95 3.82 7.01 10.17 9.34

1 1.00 1.95 3.70 6.91 10.16 9.33

Table 17: Scan - NUMA Agnostic
Server

- 1 2 4 8 16 32
0.01 1.00 2.00 3.84 7.14 13.57 14.04
0.1 1.00 2.03 4.00 7.34 13.89 14.18
0.25 1.00 1.99 3.81 7.35 13.77 13.96
0.5 1.00 1.99 3.92 7.36 13.83 14.12
0.75 1.00 1.96 3.86 7.22 13.71 13.99

1 1.00 2.01 3.86 7.20 13.63 14.01

Table 18: Scan - NUMA Aware
Server

- 1 4 8 24 48 96
0.01 1.00 3.46 6.06 6.41 6.06 5.27
0.1 1.00 3.43 6.09 6.45 6.04 5.27
0.25 1.00 3.47 6.04 6.43 6.09 5.24
0.5 1.00 3.47 6.07 6.46 6.06 5.21
0.75 1.00 3.42 6.09 6.41 6.03 5.27

1 1.00 3.48 6.04 6.43 6.07 5.21

Table 19: Scan - NUMA Agnostic
High-end Server

- 1 4 8 24 48 96
0.01 1.00 3.90 7.29 19.33 27.87 20.66
0.1 1.00 3.88 7.37 19.32 26.92 21.02
0.25 1.00 3.90 7.46 19.32 26.62 20.31
0.5 1.00 3.90 7.40 19.48 26.92 21.02
0.75 1.00 3.91 7.40 19.32 26.33 20.31

1 1.00 3.92 7.51 19.16 27.22 20.65

Table 20: Scan - NUMA Aware
High-end Server

- 1 2 4 8 16 32
0.01 1.00 1.28 2.10 2.98 3.05 1.94
0.1 1.00 1.53 2.65 4.06 4.42 3.78
0.25 1.00 1.60 2.77 4.31 4.63 4.26
0.5 1.00 1.63 2.79 4.41 4.73 4.48
0.75 1.00 1.67 2.82 4.46 4.79 4.59

1 1.00 1.79 2.90 4.34 4.77 4.62

Table 21: Grid Index - NUMA Agnostic
Random Accesses - Server

- 1 2 4 8 16 32
0.01 1.00 1.44 2.19 2.88 2.97 1.70
0.1 1.00 1.72 2.83 4.15 4.37 3.66
0.25 1.00 1.67 2.91 4.36 4.64 4.20
0.5 1.00 1.73 2.94 4.44 4.74 4.45
0.75 1.00 1.76 2.91 4.47 4.79 4.53

1 1.00 1.79 2.92 4.43 4.79 4.60

Table 22: Grid Index - NUMA Agnostic
Clustered Accesses - Server

- 1 2 4 8 16 32
0.01 1.00 1.74 2.71 2.98 2.71 1.79
0.1 1.00 1.85 3.14 3.96 4.11 3.80
0.25 1.00 1.87 3.15 4.08 4.25 4.25
0.5 1.00 1.88 3.19 4.17 4.33 4.46
0.75 1.00 1.90 3.20 4.16 4.33 4.53

1 1.00 1.82 2.96 3.97 4.20 4.42

Table 23: Grid Index - NUMA Aware
Random Accesses - Server

- 1 2 4 8 16 32
0.01 1.00 1.77 2.56 2.63 2.42 1.39
0.1 1.00 1.92 3.09 3.87 3.90 3.51
0.25 1.00 1.91 3.15 4.01 4.10 4.02
0.5 1.00 1.93 3.16 4.08 4.21 4.30
0.75 1.00 1.92 3.19 4.14 4.25 4.41

1 1.00 1.88 3.04 4.02 4.19 4.39

Table 24: Grid Index - NUMA Aware
Clustered Accesses - Server



- 1 4 8 24 48 96
0.01 1.00 2.00 3.95 3.19 2.16 1.11
0.1 1.00 2.60 5.20 5.84 5.04 3.37
0.25 1.00 2.79 5.46 6.46 5.86 4.52
0.5 1.00 2.86 5.59 6.96 6.45 5.30
0.75 1.00 2.91 5.65 7.17 6.66 5.66

1 1.00 3.05 5.45 7.90 7.71 6.60

Table 25: Grid Index - NUMA Agnostic
Random Accesses - High-end Server

- 1 4 8 24 48 96
0.01 1.00 2.33 3.05 2.98 1.83 0.85
0.1 1.00 3.06 4.95 6.22 5.02 3.22
0.25 1.00 3.16 5.32 7.00 6.10 4.56
0.5 1.00 3.21 5.49 7.51 6.65 5.37
0.75 1.00 3.22 5.63 7.59 6.84 5.77

1 1.00 3.22 5.54 8.17 7.75 6.62

Table 26: Grid Index - NUMA Agnostic
Clustered Accesses - High-end Server

- 1 4 8 24 48 96
0.01 1.00 2.48 3.39 3.25 1.95 1.01
0.1 1.00 2.90 4.88 6.55 4.91 3.46
0.25 1.00 3.12 5.26 7.48 6.03 4.88
0.5 1.00 3.45 5.70 8.05 6.77 5.84
0.75 1.00 3.56 5.93 8.33 7.02 6.28

1 1.00 3.45 5.83 8.57 7.50 6.60

Table 27: Grid Index - NUMA Aware
Random Accesses - High-end Server

- 1 4 8 24 48 96
0.01 1.00 2.59 3.05 2.64 1.45 0.73
0.1 1.00 3.04 4.83 6.13 4.55 2.99
0.25 1.00 3.24 5.27 7.27 5.84 4.54
0.5 1.00 3.54 5.72 7.88 6.62 5.56
0.75 1.00 3.67 5.97 8.22 6.86 6.01

1 1.00 3.62 6.00 8.55 7.48 6.47

Table 28: Grid Index - NUMA Aware
Clustered Accesses - High-end Server
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