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Abstract Semantic indexing, or assigning semantic tags to video samples, is a key component for content-based access to

video documents and collections. The Semantic Indexing task has been run at TRECVid from 2010 to 2015 with the support

of NIST and the Quaero project. As with the previous High-Level Feature detection task which ran from 2002 to 2009, the

semantic indexing task aims at evaluating methods and systems for detecting visual, auditory or multi-modal concepts in

video shots. In addition to the main semantic indexing task, four secondary tasks were proposed namely the “localization”

task, the “concept pair” task, the “no annotation” task, and the “progress” task. It attracted over 40 research teams during

its running period.

The task was conducted using a total of 1,400 hours of video data drawn from Internet Archive videos with Creative

Commons licenses gathered by NIST. 200 hours of new test data was made available each year plus 200 more as development

data in 2010. The number of target concepts to be detected started from 130 in 2010 and was extended to 346 in 2011.

Both the increase in the volume of video data and in the number of target concepts favored the development of generic and

scalable methods. Over 8 millions shots×concepts direct annotations plus over 20 millions indirect ones were produced by

the participants and the Quaero project on a total of 800 hours of development data.

Significant progress was accomplished during the period as this was accurately measured in the context of the progress task

but also from some of the participants’ contrast experiments. This paper describes the data, protocol and metrics used for

the main and the secondary tasks, the results obtained and the main approaches used by participants.
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1. Introduction

The TREC conference series has been sponsored by

the National Institute of Standards and Technology

(NIST) with additional support from other U.S. gov-

ernment agencies since 1991. The goal of the con-

ference series is to encourage research in information

retrieval by providing a large test collection, uniform

scoring procedures, and a forum for organizations in-

terested in comparing their results. In 2001 and 2002

the TREC series sponsored a video “track” devoted

to research in automatic segmentation, indexing, and

content-based retrieval of digital video. Beginning in
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2003, this track became an independent annual evalu-

ation (TRECVID) with a workshop taking place just

before TREC1)∗. During the last 15 years of operation,

TRECVid has addressed benchmarking of many com-

ponent technologies used in video analysis, summari-

sation and retrieval, all with the common theme that

they are based on video content. These include shot

boundary detection, semantic indexing, interactive re-

trieval, instance retrieval, and ad hoc retrieval, rushes

summarisation, and others.

From 2002 to 2009 inclusive, TRECVid included a

task on detection of “High Level Features” (HLFs),

also known as “semantic concepts”2). In 2010, this task

evolved as the “Semantic Indexing” (SIN) task. Its goal

is similar; assigning semantic tags to video shots, but it

is more focused toward generic methods and large scale

and structured concept sets. A more general and var-

ied type of data has been collected by NIST than had

been used in previous years of TRECVid which was

split into several slices constituting the training and/or

∗ http://trecvid.nist.gov/
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testing sets for the 2010 to 2015 issues of the SIN task.

The SIN task has gradually evolved over the period

of its running, both in the number of target concepts

and the data set sizes. Also, besides the main (or pri-

mary) concept detection task, several variants of the

task (or secondary tasks) have been run, including a

“concept pair” task, a “localization” task, a “no anno-

tation” task, and a “progress” task. As with the earlier

HLF detection task, the indexed units in the SIN task

are video shots, not full video documents.

The semantic indexing task is related to the Pascal

Visual Object Classification (VOC)3), ILSVRC4) and

other benchmarking tasks whose goal is to automati-

cally assign semantic tags to still images. The purpose

of this paper is to gather together the major contri-

butions and to identify trends across the 6 years of

the semantic indexing track and its variations. The

paper is organized as follows: section 2 describes the

data used for the semantic indexing task, its origin and

organisation; section 3 describes the metrics used in

TRECVid for evaluation; section 4 describes the main

concept detection task and the results achieved across

participating groups; sections 5, 6, 7, and 8 describe the

concept pair, localization, no annotation and progress

secondary tasks respectively. Each task description in-

cludes a short overview of the methods used by various

participants.

This overview paper does not intend to be exhaustive

or an in-depth summary of all the approaches taken by

all the participants in all the 6 years of the running

of the SIN task. Instead, it aims at illustrating the

progress achieved over the period through a number of

selected contributions. Full details of all the work done

in the task, approaches taken and results achieved, can

be found in the annual workshop proceedings, available

on the TRECVid website∗.

2. Data

2. 1 IACC collections

In 2010, NIST collected a new set of internet videos

(referred to in what follows as IACC, standing for In-

ternet Archive Creative Commons) characterized by a

high degree of diversity in creator, content, style, pro-

duction qualities, original collection device/encoding,

language, etc., as is commonly found in much “Web

video”. The collection also has associated keywords

and descriptions provided by the video donor. The

∗ http://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html

videos are available under Creative Commons (CC) li-

censes∗∗ from the Internet Archive (IA)∗∗∗. The only

selection criteria imposed by TRECVid beyond the Cre-

ative Commons licensing is one of video duration where

the videos were required to be less than 6.4 min in du-

ration. Seven slices (or sub-collections) of about 200

hours of video each have been created. These are offi-

cially labeled: IACC.1.tv10.training, IACC.1.A-C, and

IACC.2.A-C and described in Table 1.

As can be seen, not all the slices or video sub-

collections have been selected in the same way:

IACC.1.A-C have been selected as the shortest

videos up to a duration of about 3.5 minutes (211

seconds) and split into three slices (A, B and C) in

a symmetric way by interlacing the list, sorted by

video length.

IACC.1.tv10.training has been selected as the

subsequent 200 hours among the next shortest

videos, up to about 4.1 minutes in duration.

IACC.2.A-C have been selected as the subsequent

600 hours of the next shortest videos up to about

6.4 minutes in duration, and then split into three

slices (A, B and C) in a symmetric way by interlac-

ing the list, sorted by video length. These include

a few videos shorter than 4.1 minutes as these had

been included into the global IACC collection sub-

sequently.

Table 1 also indicates which video collection slices were

used for system training and which were used for system

evaluation (testing) for each year of the SIN task. From

years 2011 to 2013 included, a new slice was introduced

each year as “fresh data” for year N while both the test

and training data from year N − 1 was merged to be-

come training data for year N − 1. From years 2013 to

years 2015 included, the training data (as well as the

annotations) were frozen so that the “progress” task

(described in section 8) could be conducted properly.

While the IACC.2.A-C slices were used as test collec-

tions for years 2013-2015 respectively as “fresh data”,

they were made available after 2013 so that partici-

pants could provide anticipated and blind submissions

for years 2014 and 2015 with their 2013 systems and

anticipated and blind submissions for year 2015 with

their 2014 systems.

2. 2 Master (reference) shot segmentation

As in the earlier HLF task, a common shot segmen-

tation was provided to participants so that they could

∗∗ https://creativecommons.org/licenses/
∗∗∗ https://archive.org/
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Table 1 IACC collections statistics

Collection total video min/mean/max video mean used for used for

(slice) duration (h) files duration (s) shots duration (s) training test

IACC.1.tv10.training 198 3,127 211/228/248 118,205 6.04 2010-2015 -

IACC.1.A 220 8,358 11/95/211 144,757 5.48 2011-2015 2010

IACC.1.B 218 8,216 11/96/211 137,327 5.72 2012-2015 2011

IACC.1.C 221 8,263 11/96/211 145,634 5.46 2013-2015 2012

IACC.2.A 199 2,407 10/297/387 110,947 6.46 - 2013

IACC.2.B 197 2,368 10/299/387 106,611 6.65 - 2013-2014

IACC.2.C 199 2,395 10/298/387 113,046 6.32 - 2013-2015

Total 1452 35,134 10/149/387 876,527 5.97 N.A. N.A.

make submissions in the same way and so that eval-

uation could be made consistently across submissions

using a standard information retrieval procedure. The

shot segmentation was performed using an improved

version of the LIG tool evaluated in the TRECVid 2006

shot boundary detection task. This tool has a good

detection rate, especially for gradual transitions5). Er-

rors in shot boundary detection are not as critical for

the concept detection evaluation as for the main search

task, and in the concept pair variant participants were

only asked to tell whether a target concept is visible,

or not, at least at some point within a given video. A

separate task has been defined for the evaluation of the

temporal and spatial localization of target concepts de-

scribed in section 6.

The reference segmentation of video into shots is

given in several formats, including simple frame num-

bers in a text file and an MPEG-7 version, the lat-

ter being the official reference. One MPEG-7 file is

provided for each video file of each (sub-)collection (or

slice). Additionally, for each issue (from 2010 to 2015),

an XML file specifies the list of files that should be used

for training and for testing.

2. 3 Key frames

A reference key frame has also been selected for each

video shot and the locations of these key frames are

included in the segmentation files. In order to select

the best key frame within each shot, three criteria were

used: (i) closeness to the center of the shot, in or-

der to avoid gradual transition regions if any, (ii) slow

motion in the neighborhood of the frame, in order to

avoid fuzzy contents, and (iii) high contrast, for having

a clean content representation. All these criteria were

computed on each video frame using a simple and ad

hoc metric. The corresponding scores were then nor-

malized and and averaged. The frame within a shot

having the highest score was selected. Archives with the

extracted key frames were also made available to par-

ticipants though SIN detection methods which use the

whole shot rather than just the key frames has become

the norm in TRECVid and elsewhere were encouraged.

2. 4 Speech transcription

Speech transcription of the audio track was gener-

ously contributed by the LIMSI laboratory using their

large vocabulary continuous speech recognition sys-

tem6). In practice, the IACC collection is highly multi-

lingual (tens of different spoken languages are men-

tioned in the meta-data) and many files also include

speech in different languages. Many files did not include

audio or included audio but no speech. The LIMSI tran-

scription process was therefore conducted in two steps.

In the first (for the files in which audio and speech

were present) they applied an automatic language de-

tection system. Then, when they detected a language

for which they had an automatic speech transcription

system, they produced a transcription, otherwise they

applied by default their English transcription system.

This latter choice is sensible because even if the actual

language spoken in the video is different, it may still in-

clude English words, especially for technical terms, and

proper nouns may also be recognized if pronounced in

a similar way.

2. 5 Target concept set

A list of 500 target concepts was generated, 346

of which have been collaboratively annotated by

TRECVid participants (see section 2. 6). The target

concepts were selected as follows. First, they were cho-

sen so that they include all the TRECVid HLFs from

2005 to 2009 in order to permit cross-collection exper-

iments. Second, they also include the CU-VIREO374

concept set7) which was also widely used in previous

TRECVid experiments as a subset of the annotated

part of the Large Scale Concept Ontology for Multi-

media (LSCOM)8). All of these concepts were already

selected using a number of criteria among which: ex-

pected usefulness in a content-based video search sys-

tem, coverage and diversity. This set was then com-

pleted by additional concepts selected among the 3000

available in the last version of LSCOM to which a few

were specifically added. The added concepts were se-
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lected in order to improve the coverage and diversity

of the set as well as for creating a number of generic-

specific relations among the concepts. Considering di-

versity, we specifically managed to have a significant

number of samples for the following concept types (not

exhaustive): humans, animals, vehicles, scenes, objects,

actions and multi-modal (involving audio). The struc-

ture of the concept set was enriched with two rela-

tions, namely implies and excludes. The goal here

was to promote research on methods for indexing many

concepts and subsequently using ontology relations be-

tween them to enhance the accuracy of concept detec-

tion.

The list of the 500 TRECVid SIN concepts is avail-

able on the TRECVid web site ∗. Each concept comes

with a TRECVid SIN identifier, the corresponding

LSCOM identifier, a name and a definition. In addi-

tion, the correspondence with previous TRECVid HLF

identifiers and with concept definitions in other bench-

marks (e.g. Pascal VOC) are also given when available

in order to facilitate cross-collection experiments.

2. 6 Collaborative annotation

As most concept detection methods rely on a super-

vised learning approach, it was necessary to create an-

notations for the training of participants’ systems. As

no funding was initially available for this annotation

process and as for the 2003-2009 HLF tasks, partici-

pants themselves were involved in the annotation pro-

cess, each of them contributing at least 3% of the target

volume while receiving, in return, the full set of anno-

tations. Some funding from the Quaero project∗∗ later

helped to increase the volume of annotations.

The set of target concepts and the set of training

video shots were both large and as a consequence, only

a fraction of the training set could be annotated, even

using the “crowd” of TRECVid SIN participants and

with Quaero support. Also, as most of the target con-

cepts were sparse or very sparse in the training col-

lection (less or much less than 1%), an active learning

procedure was used in order to prioritize annotations of

the most useful sample shots9).

A system with a web interface was provided to par-

ticipants for producing their annotations. They were

required to annotate one concept at a time for a set of

video shots represented by their reference key frames. If

the key frame alone was not sufficient to enable making

∗ http://www-nlpir.nist.gov/projects/tv2012/tv11.sin.500.concepts_

ann_v2.xls/
∗∗ http://www.quaero.org/

a good decision, they could play the full video shot. For

each (concept, shot) combination, they had to choose

a label as either positive (the concept is visible in the

shot), negative (the concept is not visible in the shot),

or skipped (ambiguous or bad example).

In addition to the active learning to select shots for

annotation, an active cleaning procedure was included

in the annotation system. Its aim was to improve the

annotation quality by asking for a “second opinion”

when manual annotations strongly disagreed with a pre-

diction made by cross-validation from other available

annotations. A second opinion was also systematically

asked for all positive and skipped annotations as these

were quite rare and their correction were likely to have

a significant impact10). In case of disagreement between

the first and second opinions, a third opinion was asked

for and a majority vote was applied. The system en-

forced that second and third opinions were asked of dif-

ferent annotators. The annotation system also made

use of the provided set of relations in order to increase

the number of annotations and to enforce a consistency

among them. In the last version of the collaborative

annotation, 8,158,517 annotations were made directly

by the participants or by the Quaero annotators and a

total of 28,864,844 was obtained by propagating those

initial annotations using the implies or excludes rela-

tions.

In order to improve annotation efficiency and as was

done in the years from 2011 to 2013, the test set of year

N − 1 was included in the development set of year N ,

the assessments on year N − 1 as well as the partici-

pants’ systems’ outputs on year N − 1 were all used to

bootstrap the active learning for the additional annota-

tions produced for year N . For each year from 2010 to

2013 a new set of annotations was performed and added

to the global pool.

3. Metrics

For the semantic indexing or concept detection task,

the progress task and the concept pair task, the of-

ficial TRECVid metric is the Mean Average Precision

(MAP) which is a classic metric in information retrieval.

In practice, however, MAP is evaluated on a statisti-

cal basis using the Inferred11) and Extended Inferred12)

Mean Average Precision method using the sample eval

tool∗∗∗ available from the TRECVid web site. Evalu-

ation is based on an assessment of a subset of the test

∗∗∗ http://www-nlpir.nist.gov/projects/trecvid/trecvid.tools/sample_

eval/
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Table 2 2010-2015 SIN tasks summary

Data Number of Concepts Secondary Tasks

Year Training Test Annotated Submitted Evaluated Concept Locali- No anno- Progress

data data concepts concepts concepts pairs zation tation

2010 IACC.1.tv10.training IACC.1.A 130 10/130 10/30 - - - -

2011 2010 train + 2010 test IACC.1.B 346 50/346 23/50 - - - -

2012 2011 train + 2011 test IACC.1.C 346 50/346 15/46 10 - Yes -

2013 2012 train + 2012 test IACC.2.A 346 60 38 10 10 Yes Yes

2014 2013 train IACC.2.B 346 60 30 - 10 Yes Yes

2015 2013 train IACC.2.C 346 60 30 - 10 Yes Yes

set built by pooling the top of the submissions from

all participants. Additionally, in the Inferred Average

Precision (InfAP) approach, the pools are split into

sub-pools, some of which are only partially assessed,

the first sub-pool being 100% assessed and the follow-

ing sub-pools being more and more sub-sampled. The

extended InfAP approach correspond to a further im-

provement in the estimation method. The main goal

of the inferred approach is to estimate the MAP value

with a good accuracy while using much less assessments.

In practice, we used it in order evaluate more concepts

(typically twice as many) for the amount of manpower

that was allocated for assessments. While doing this, we

remained conservative in the pool partitioning and in

the selection of the corresponding sub-sampling rates.

We also conducted experiments using the submissions of

previous years for which the whole pools were assessed

at 100% and checked that (i) the inferred MAP values

were very close to the actual ones, (ii) the ranking of

the systems was not changed.

4. Concept detection task

4. 1 Task definition

The task of automatic concept detection from video

is defined as follows:

“Given the test collection, master shot refer-

ence, and concept definitions, return for each

target concept a list of at most 2000 shot IDs

from the test collection, ranked according to

their likelihood of containing the target.”

The training conditions, data and annotations are not

part of the task definition. However, participant sub-

mission types are defined according to the following:

A used only IACC training data;

B used only non-IACC training data;

C used both IACC and non-IACC TRECVid (S&V

and/or Broadcast news) training data;

D used both IACC and non-IACC non-TRECVid

training data;

E used only training data collected automatically us-

ing only the concepts’ name and definition;

F used only training data collected automatically us-

ing a query built manually from the concepts’ name

and definition.

Type A corresponds to using only the official train-

ing data (as presented in Table 1) and the correspond-

ing collaborative annotation (described earlier in sec-

tion 2. 6). Type D corresponds to using whatever train-

ing data is available. Types E and F have been added

in order to encourage research on systems able to work

without prior annotation based on including an au-

tomatic crawling tool instead (described later in sec-

tion 7).

Table 2 gives an overview of the specifics of the 2010

to 2015 issues of the SIN task. The first part of the

table indicates what training (for type A submissions)

and testing data were used in each year. The second

part indicate the number of concepts for which annota-

tions were provided, the number of concepts for which

participants were required to submit results, and the

number of concepts that were actually evaluated. From

2010 to 2012 included, two versions of the task, “light”

and “full”, were proposed to participants. The numbers

are displayed as light/full in these cases. The third part

of the table indicates which of the secondary tasks were

available for the different years and the corresponding

number of targets for those secondary tasks, if relevant.

These secondary tasks are described in sections 5, 6, 7

and 8.

From 2010 to 2012, we attempted to scale up the task

in order to encourage the development of scalable meth-

ods and to follow the ImageNet and LSCOM trends to

increase the number of target concepts. Meanwhile, we

also offered a light version of the task so that teams

unable to follow the increase in the number of concepts

could still participate and so that advanced but not yet

scalable methods could also be evaluated. Considering

participants’ feedback, we froze the concepts set size to

346 concepts from 2011 onward. Also, since 2013, con-
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sidering that the 2010 to 2012 results were consistent

between the light and full submissions for the partic-

ipants that made both, we removed the light/full dis-

tinction, replacing it by a single intermediate “main”

task with 60 target concepts. These are a subset of the

previous 346 “full” concept set and, even though sub-

missions were required only for the 60 concepts in the

“main” set, annotations were still made available for

the full set and many participants actually computed

for the full set and submitted only on the main set.

4. 2 Results

Figures 1 to 6 show the performance obtained by

the SIN task participants for the 2010 to 2015 issues

of the task respectively. Participants were allowed to

make up to four A- to D-type submissions (not nec-

essarily one from each type) plus two additional E-

or F-type submissions when possible. For simplifying

the visualization, we display on the plots only the best

submission from each participant for each submission

type. Participants were required to define a priority

among their submissions according to their prediction

of which one would be the best-performing but we se-

lected here only the actual best one for each submission

type. As some participants made submissions with dif-

ferent types, those participants appear several times in

the plots.

The total number of participants were respectively

39, 28, 25, 26, 15 and 15 for the 2010 to 2015 issues

of the SIN task. From 2010 to 2012, the numbers in-

cluded participants to both the light and full versions

of the SIN task. However, as the light concept set was

included in the full one, all submissions for the full task

were added to the submissions for the light task. Re-

spectively, 28, 18 and 15 participants made submissions

to the full task only in the 2010, 2011 and 2012 issues.

As the test collections and the concepts selected for

evaluation differed each year, it is not possible to com-

pare directly the MAP performances across the differ-

ent issues of the task. The increase of best and median

MAP values from 2010 to 2013 is probably partly re-

lated to improvements in the methods but it is also

likely related to differences in the intrinsic difficulty of

the task because of the nature of the video used, and

the concepts selected. The size of the training set and

the number of available annotations also significantly

increased during the years of the task which was the mo-

tivation for the introduction of the progress secondary

task over the 2013-2015 period (section 8).

Similarly, for the 2010-2012 issues, even though the

test collection used is the same, it is not possible to com-

pare directly the MAP performances between the light

and full tasks as the concept sets are different. However,

it is possible to compare the ranking among systems (or

participating teams) that submitted results to the full

task (which also appear in the light task), by filtering

the submission to the smallest concept set. We can ob-

serve that these system/participant rankings are quite

consistent across the two versions of the task and even

though there are some permutations, there are quite

few of them and when they happen the performances of

the involved systems are quite comparable. This good

stability observed on the 2010-2012 issues validated the

choice of keeping only a concept set of intermediate size

(60).

For simplicity and for ease of comparison, we dis-

play all the submissions for the same year/task in a

single graph. However, it should be noted that fair

comparisons between approaches should in principle be

made only among submissions of the same type (even

within a same year/task). Differences in submission

types correspond to different training conditions, the

main difference being that some actually use more train-

ing data or different training data than others, possi-

bly with similar methods. The difference is especially

important between the A-D types that use explicitly

and purposely annotated data and the E-F types that

do not but use instead only data gathered via general

search engines which return noisy results that are not

manually checked or corrected.

Figure 7 shows the per concept InfAP for the 2015

main task. Results are very similar for the other

years. It can be observed that while the MAP is

close to 0.3, the per concept Average Precision (AP)

varies a lot. Up to 0.8 or more for “Anchorper-

son”, “Studio With Anchorperson” and “Instrumen-

tal Musician”, close to 0.1 for many others, and close to

0.01 for “Car Racing”. These differences are partly due

to the high and low frequencies of the target concepts

tn the test set and to the intrinsic difficulty of detecting

them.

In comparison, figure 8 shows the (inferred) con-

cept frequencies in the test collection. These frequen-

cies correspond to the AP of a system making ran-

dom prediction. Most concept frequencies are below 1%

and even below 0.5%. The average concept frequency

is of 0.62% while the MAP of the best and median

systems are respectively of 36.2% and 24.0%. It can

be observed too that concepts with similar frequencies
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Fig. 1 2010 full (top) and light (bottom) tasks results
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Fig. 2 2011 full (left) and light (right) tasks results
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Fig. 3 2012 full (left) and light (right) tasks results
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Fig. 4 2013 main task results
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Fig. 5 2014 main task results
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Fig. 6 2015 main task results

may obtain quite different Average Precisions and vice

versa. For instance, “Computers” and “Old People”

have similar frequencies but the AP is much higher for

“Computers” indicating that “Old People” is harder to

detect. Similarly, “Instrumental Musician” and “Stu-

dio With Anchorperson” have similar Average Preci-

sions but “Studio With Anchorperson” is much less

frequent indicating that “Instrumental Musician” is

harder to detect. This can be understood by the fact

that “Instrumental Musician” is a true multi-modal

target where it is required that the musician can be

simultaneously seen and heard. “Basketball” is quite

well detected, with an AP of 15.4%, even though it is

very infrequent with a frequency of 0.013%.

Figure 7 shows only the results for the top 10 sub-

missions of all participants. Though these include sev-

eral runs from same participants, they gather results

from several different participants and are quite of-

ten quite grouped, indicating that the best partici-

pants or systems always obtain very similar perfor-

mances for the same target concepts, even though the

median run (at a depth of 29) is significantly lower.

This is particularly true for instances of “Airplane”,

“Boat Ship”, “Demonstration Or Protest”, “Office”,

“Hills” or “Quadruped”. For some other concepts, the

AP varies much more within the top 10. This is the

case for: “Cheering”, “Government Leaders”, “Motor-

cycle”, “Telephones”, “Throwing” or “Flags”.

4. 3 Approaches

Though, as previously mentioned, the performance of

systems cannot be directly compared across years due

to changes in test data, target concepts and the amount

of annotation data available, significant progress has

been achieved over the six years during which the SIN

task was run. This is confirmed for the last three years

in the context of the progress secondary task as can be

seen in section 8 but it is likely that this was also the

case for the previous years. The approaches of the par-

ticipants significantly evolved over time leading to sig-

nificant increases in systems’ performance. All of them

rely on supervised learning using the provided training

data or other annotated data or both. Though there

were lots of variations and particular approaches, three

main phases could be observed.

In the first phase, many systems followed the ”Bag

of Visual Words” approach (BoVW) 13)14) which con-

sists of applying the “bag of words approach” popular

in textual information retrieval. In this approach, lo-

cal features (or descriptors) are extracted for a number
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Fig. 7 Top 10 InfAP scores by concept for the 2015 main task. Starred concepts were common between

the 2014 and 2015 main tasks.
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Fig. 8 Inferred concept frequency for the 2015 main task

of points or patches in images (key frames) or in video

shots, and are aggregated into a single global repre-

sentation. Local features are first quantized according

to a “dictionary” built by clustering features extracted

on training data. Images or video shots are then rep-

resented as histograms of quantized features. Among

the most popular local features are: the Scale Invariant

Feature Transform (SIFT)15) and its color version16) for

still images, and the Spatio-Temporal Interest Points

(STIP)17) for video shots. These representations can

be obtained from sparse sets of points or regions se-

lected using for instance a Harris-Laplace detector or

on dense sets following regular grids. Additionally, rep-

resentations can be computed either on a whole image

195

Invited Paper » TRECVid Semantic Indexing of Video: A 6-Year Retrospective 



or separately on various image decompositions includ-

ing pyramidal ones16). Other approaches also involves

bag of trajectories.

As alternatives or complements to the BoVW ap-

proach, participants used simpler descriptors like color

histograms, Gabor transforms or local extraction of

semantic information (semantic categories on image

patches). A few participants also used audio descrip-

tors, most of which were derived from sequences of Mel

Frequency Cepstral Coefficient (MFCC) vectors, either

via global statistics (mean, standard deviation, . . . ) or

again via the bag of words approach.

The shot or key frame representations are then used

for supervised learning, mostly using SVM classifiers.

Most participants used several different representations

(e.g. color, texture, interest points, audio, motion . . . )

and/or several machine learning methods and fused

them for obtaining better results. Fusion methods in-

cluded early and late fusion18), and kernel fusion19), ei-

ther in flat or in hierarchical ways20).

In the second phase, following their introduction in

still image representation, improved aggregation meth-

ods were introduced or designed for video shot represen-

tation. These include Fisher Vectors21), Vectors of Lo-

cally Aggregated Descriptors22), Vectors of Locally Ag-

gregated Tensors23), and SuperVectors24). These meth-

ods allowed a significant improvement over the basic

BoVW approach, even when using the same local de-

scriptors. These methods rely on the use of GMM rep-

resentations of the training data which capture more

information than the basic BoVW approach.

In the third phase, deep learning methods that made

a significant breakthrough in still image categorization

at ILSVRC 201225) were introduced and led to another

significant improvement over the classical feature ex-

traction and learning approaches. In contrast to these

classical approaches, Deep Convolutional Neural Net-

works (DCNN) are end-to-end solutions in which both

the feature extraction and the classifier training are per-

formed at once. The first layers extract a type of infor-

mation which is similar to the features/descriptors ex-

tracted in the classical approaches. These, called “deep

features”, turn out to be significantly more efficient that

the classical “engineered” ones, even when used with

classical machine learning for classifier training. The

last DCNN layers performs the final classification with

a single network for all the target concepts. The global

training of DCNNs guarantees and optimal complemen-

tarity between the feature extraction part and the clas-

sification part.

The TRECVid training data from the collaborative

annotation does not contain enough data for a complete

training of a large scale Deep Convolutional Neural Net-

work (DCNN). When tried, this approach performed

significantly less well than the two main alternative ap-

proaches also used in other domains. The first one con-

sists of partially retraining a DCNN already trained on

ImageNet data for adapting it to TRECVid (IACC)

data. In this approach, the first layers, corresponding

to the feature extraction part, are frozen and only the

few last layers are retrained. This is because the deep

features trained on ImageNet are very general and does

not depend much upon the training data or upon the

target concepts while the last layers are much more spe-

cific to the set of target concepts. It has been experi-

mentally observed that retraining only very few of the

last layers is the best choice, the optimal number be-

ing typically only two or even one depending upon the

DCNN architecture. The second main alternative to a

full DCNN retraining consist in extracting the output

of the few last layers and using them just as ordinary

features in a classical machine learning (e.g. SVM) ap-

proach. Once again, it has been observed that the last

two hidden layers and even the final output layer are

the best candidates.

Fusion proved to be very efficient when used in con-

junction with the deep learning approach. Such fusion

can be done in many different ways: late fusion of the

different network architectures, late fusion of a same

architecture but with different training conditions, late

fusion of partially retrained DCNNS and classical clas-

sifiers using deep features, late or early fusion of deep

features combined with classical classifiers, late fusion

of DCNN-based classifiers and fully classical systems us-

ing engineered features. Though all of these solutions

may have different performances, their fusion almost al-

ways outperform the best elementary component with

the general rule that the more elements are integrated

in a system, the best performances this system reaches,

possibly leading to very high system complexity as this

was the case already with the classical approaches.

Other completely independent methods have also

been used for further improving the system perfor-

mance, some of them not really new. Among them:

the use of multiple key frames for increasing the chance

of identifying the target concept in a video shot and the

use of the detection of a concept in adjacent shots for ex-

ploiting the local semantic coherency in video contents.
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In the context of DCNNs, the data augmentation ap-

proach has also been used, also leading to a significant

performance improvement.

The use of audio and motion (STIP or trajectory-

based) features does help in the classical approach but

with generally a modest contribution. No use of au-

dio or motion were considered yet in the best perform-

ing deep learning based approaches. Ontology relations

(implies and excludes) were provided but they did not

seem to be used directly by the participants, probably

due to the difficulty of integrating hard rules with de-

tection scores. However, these were used in the col-

laborative annotation for generating 28,864,844 total

annotations from the 8,158,517 direct ones. So these

relations were used indirectly in the training. Implicit

or statistical relations between concepts were also used

by some participants.

5. Concept Pair Task

For the 2012 and 2013 edition of the TRECVid

benchmark, a secondary concept pair task was offered

to SIN participants. This section motivates the task,

summarizes results, and highlights the approaches.

5. 1 Motivation

An important motivation for the regular SIN task is

to provide semantic tags for video retrieval technolo-

gies like filtering, categorization, browsing, and search.

While a single concept detection result has been proven

by many to be a valuable resource in all these con-

texts, several video retrieval scenarios demand more

complex queries that go beyond a single concept. Ex-

amples of concept pairs are Animal+Snow, Person+

Underwater and Boat/Ship + Bridges. Rather than

combining concept detectors at query time, the concept

pair task strives for detecting the simultaneous occur-

rence of a pair of unrelated concepts in a video, where

both concepts have to be observable simultaneously in

a shot. The overall goal of the concept pair task is

to promote the development of methods for retrieving

shots containing a combination of concepts that do bet-

ter than just combining the output of individual concept

detectors.

While it can be foreseen that existing single concept

detectors can also be trained using concept pair an-

notations, the combination of potential concept pairs is

massive. Hence, such a pair-annotation approach seems

unfeasible in practice and is therefore discouraged. By

design, the concept pair task did not provide any pair

annotations to participants.

5. 2 Results

The performance metric for this task is the (inferred)

MAP exactly as for the main task. The 2012 edition of

the concept pair task received a total of twelve submis-

sions from six different teams. The top run achieved

a score of 0.076 while the median score was 0.041.

In addition, the MediaMill team from the University

of Amsterdam provided four baseline runs using their

single-concept run as the basis. The runs simply relied

on the first concept occurrence only, the second con-

cept occurrence only, the sum of both concept detector

scores, and the product of both concept detector scores.

The baseline recognizing pairs by focusing on the first

concept only proved to be a surprisingly valuable tac-

tic, ranking third with a score of 0.056. For the pair

Driver+Female Human Face the baseline even came

out best. Motivated by the fact that systems for pair

detection have difficulty in finding evidence for concept

co-occurrence it was decided to continue the secondary

task in 2013.

In 2013 participation grew to ten teams, submitting a

total of 20 runs. Each participant was requested to sub-

mit a baseline run which just combines for each pair the

output of the groups two independent single-concept de-

tectors. In addition, the option to indicate the temporal

order in which the two concepts occurred in a video shot

was offered, but no teams participated in that. The top

run in 2013 achieved a score of 0.162. While this seems

much better than the score obtained in 2012, it should

be noted that the pairs changed and some may have

been easier, or less rare, than the ones in 2012. The best

performer for the pair Government Leader+Flags, for

example, scored 0.658. Among the teams who submit-

ted baselines, we found that three of them had base-

lines that achieved better scores than their regular runs,

while only two teams had all their regular runs improve

over the baseline. The best run simply combined in-

dividual concept detector scores by their product. As

their was no experimental evidence after two editions

of the task that dedicated approaches could outperform

the simple baselines it was decided to stop the concept

pair task after the 2013 edition for the time being.

5. 3 Approaches

The majority of runs in the concept pair task fo-

cused on combining multiple individual detectors by

well known fusion schemes, including sum, product and

geometric mean. Some considered compensation for

quality and imbalance in training examples of individ-

ual detectors by weighted fusion variants. Other ap-
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proaches learned the pair directly from the intersection

of annotations for the individual concepts or gathered

examples containing the pair from the web. Among the

more unique approaches was the submission from CMU

which considered looking at many concepts, beyond just

the pair, to enhance the prediction of pair-concepts us-

ing several semantically related concepts. Also unique

was the submission by the MediaMill team, which tried

to reduce the influence of the global image appearance

on individual concept detectors, by considering spatio-

temporal dependencies between localized objects. Un-

fortunately, none of these approaches were able to out-

perform the simple combination baselines. Time will

tell whether a concept pair is more than the sum of its

parts.

6. Concept Localization Task

In order to encourage more precise concept detectors,

in 2013 a new secondary task was initiated for localizing

the occurrence of visual concepts in both the temporal

and spatial domains. The main goals of this secondary

task are to test the precision of concept detectors to

the frame (temporal) and bounding box (spatial) lev-

els instead of just the shot-level, as in the main SIN

task. The better the systems do their design of precise

detectors, the more re-usable they are as they become

less dependent on the video context. During 2013 and

2014 this secondary task was run where systems partic-

ipating in the SIN task had the option to submit runs

to localize the first 1,000 shots. In 2015 the organiz-

ers decided to run this as an independent secondary

task where systems were given a set of relevant shots

and asked to return localization result sets. In total 10

concepts were chosen for localization. In the following

sections we discuss in more details the task, data, eval-

uation framework, metrics and results of participating

teams from 2013 to 2015.

6. 1 Task definition

This secondary task can be described as follows: for

each visual concept from the list of 10 designated for

localization, and for each I-Frame within the shot that

contains the target, return the x,y coordinates of the

upper left and lower right vertices of a bounding rect-

angle which contains all of the target concept and as

little else as possible. Systems may find more than one

instance of a concept per I-Frame and then may in-

clude more than one bounding box for that I-Frame,

but only one was used in the judging since the ground

truth contained only 1 per judged I-Frame, the one cho-

sen by the NIST assessor that was supposed to be the

most prominent (e.g., largest, clearest, most central,

etc.). Assessors were asked to stick with this choice if

a group of targets were repeated over multiple frames

unless the prominence changes and they have to change

their choice.

6. 2 Data

For this secondary task we used the same test data

sets (IACC.2.A, IACC.2.B, IACC.2.C) as used for SIN

from 2013-2015 as the basis for the localization task.

6. 3 Evaluation framework

Figures 9 and 10 show the evaluation framework at

NIST for the localization secondary task in 2013, 2014

and 2015 respectively. In 2013 for each shot found to

contain a localization concept in the main SIN task,

a sequential percentage (22 %) subset of the I-Frames

beginning at a randomly selected point within the shot

was selected and presented to an assessor. However, in

2014 and 2015, a systematic sampling was employed to

select I-frames at regular intervals (every 3rd I-frame

in 2014 and every alternate I-frame in 2015) from the

shot.

Fig. 9 2013-2014 Evaluation Framework

Fig. 10 2015 Evaluation Framework

For each image the assessor was asked to decide first

if the frame contained the concept or not, and if so, to

draw a rectangle on the image such that all of the visible

concept was included and as little else as possible.

ITE Trans. on MTA Vol. 4,  No. 3 (2016)

198



In accordance with the secondary task guidelines, if

more than one instance of the concept appeared in the

image, the assessor was told to pick just the most promi-

nent one and to box it in. Assessors were told that in

the case of occluded concepts, they should include in-

visible but implied parts only as a side effect of boxing

all the visible parts.

Early in the assessment process it became clear that

some additional guidelines were needed. For example,

sometimes in a series of sequential images the assessor

might know from context that a blurred area was in fact

the concept. In this case we instructed the assessor to

judge such an image as containing the concept and to

box in the blurry area.

A minimum of 5 assessor half-days for each of the 10

concepts to be judged was planned (total of 200 labor

hours). This was based on some preliminary tests at

NIST where it was estimated that each assessor could

judge roughly 6,000 images in the time allotted.

Table 3 describes, for each concept, the total number

of shots judged to contain the concept and the number

of I-Frames comprised by those shots from 2013-2015.

Note that the two concepts “Chair” and “Hand” were

replaced in 2015 by “Anchorperson” and “Computer”

due to the very high frequency of occurrence of “Chair”

in the test collection and the ambiguity of the definition

of the concept “Hand” (A close-up view of one or more

human hands, where the hand is the primary focus of

the shot).

Table 3 Number of TP shots and I-frames per concept

Name True shots I-Frames

Airplane 594 10,229

Boat Ship 1,296 2,917

Bridges 662 884

Bus 561 12,027

Chair 2,375 93,206

Hand... 1,718 20,266

Motorcycle 584 12,086

Telephones 508 19,163

Flags 1,219 41,886

Quadruped 1,233 50,448

Anchorperson 300 14,119

Computers 300 15,814

6. 4 Measures Used

Temporal and spatial localization were evaluated us-

ing precision, recall and f-score based on the judged

I-frames. The I-frame is judged as a true frame tem-

porally if the assessor can see the concept. The spatial

recall and precision is calculated using the overlap area

between the submitted bounding box and the ground

truth box drawn by the assessor. NIST then calculated

an average for each of these score values for each con-

cept and for each run.

6. 5 Evaluations and Results

In this section we summarize the participants’ results

from 2013-2015 by the type of localization measured. In

general, 4 teams finished the first year localization sec-

ondary task, submitting total of 9 runs while 1 team

finished the second year secondary task with 4 submit-

ted runs. In 2015 when the task became independent

from the semantic indexing task, 6 teams finished with

a total of 21 runs. As the results of 2014 may not in-

dicate real conclusions about systems performance be-

cause only 1 team finished the task we will skip the

results from that year and discuss only the 2013 and

2015 results.

( 1 ) Temporal Localization Results

Figures 11 and 12 show the mean precision, recall and

F-scores of the returned I-frames by all runs across all

10 concepts in 2013 and 2015 respectively.

Fig. 11 2013: Temporal localization results by run

In 2013 all runs reported much higher recall (reaching

a maximum above 50%) than precision or F-score ex-

cept 1 team (FTRDBJ) which had close scores for the

3 measures. Lower precision scores (maximum 20%)

indicate that most runs returned a lot of non-relevant

I-frames that did not contain the concept. In 2015 sys-

tems reported much higher F-score values compared to

the previous two years as 9 out of 21 runs scored above

0.7, and 8 runs scored above 0.6 F-score. We believe

these high scores are side-effect of only localizing true

positive shots (output of the semantic indexing task)

compared to localizing just raw shots (as in 2013-2014)
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Fig. 12 2015: Temporal localization results by run

Fig. 13 2013: temporal precision and recall per concept

for all teams

which may include true positive as well as true negative

concepts.

To visualize the distribution of recall vs precision, we

plotted the results of recall and precision for each sub-

mitted concept and run in Figures 13 and 14 for 2013

and 2015 respectively. We can see in Figure 13 that

the majority of systems submitted many non-target I-

frames, achieving high recall and low precision while

very few found a balance. However, in 2015 most con-

cepts achieved very high values for both precision and

recall (above 0.5).

Fig. 14 2015: temporal precision and recall per concept

for all teams

Fig. 15 Visual samples of good results

( 2 ) Spatial Localization Results

Figures 15 and 16 show sample results of good

and less good spatial localization results, respectively.

These sample results are shown for the 10 concepts

listed in table 3, “chair” and “hand” being excluded.
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Fig. 16 Visual samples of less good results

Fig. 17 2013: Spatial localization results by run

We tried to pick hard positive examples in Fig 15

(small size, occluded,low illumination, etc) to demon-

strate how a sophisticated localization system can per-

form while we picked easy examples in Fig 16 (centered,

big, clear, etc) where results are not good. This varia-

tion in performance shows the gap between a top sys-

tem and low ranked system. Figures 17 and 18 show the

performance by run for spatial localization (correctly re-

turning a bounding box around the concept). In 2013

scores were much lower than for the temporal measures

and barely reaching above 10% precision. This indi-

cates that finding the best bounding box was a much

harder problem than just returning a correct I-frame.

In 2015 the F-scores range was less than the tempo-

ral F-score range but still higher than the previous two

years. Overall, 8 out of the 21 runs scored above 50%

and another 8 runs exceeded 40%. The distribution

of recall vs precision performance in figures 19 and 20

shows an interesting observation that systems are good

at submitting an accurate approximate bounding box

size which overlaps with the ground truth bounding box

coordinates. This is indicated by the cloud of points in

the direction of positive correlation between precision

and recall. It can also be shown that in 2015, perfor-

mance is much better as the distribution of points are

moving away from low precision and recall values (less

than 0.2) which is on the contrary obvious in 2013.

Fig. 18 2015: Spatial localization results by run

6. 6 Approaches

Most approaches by participating teams started by

applying selective search26) or EdgeBox27) algorithms to

extract a set of candidate boxes independent from the

concept category. Features are then extracted from pro-

posed boxes either in a bag of words framework or more
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Fig. 19 2013: spatial precision and recall per concept

for all teams

Fig. 20 2015: spatial precision and recall per concept

for all teams

recently using deep learning models such as VGG-16,

fast-RCNN (Region-based Convolutional Neural Net-

works) or Inception deep neural networks28). Support

vector machines are usually applied as a final layer for

classification. In addition, few teams employed De-

formable Part-based models29) with color or texture fea-

tures. Deep learning-based approaches, especially the

RCNN-based ones, performed the best.

6. 7 Summary and Observations on Localiza-

tion Tasks

The localization secondary task was a successful ad-

dition to the semantic indexing main task in 2013 and

2014 and it was decided to run it independently in 2015.

In general, detecting the correct I-frames (temporal)

only was easier than finding the correct bounding box

around the concepts in the I-frames (spatial) and over-

all, systems can find a good approximate bounding box

size that overlaps with the ground truth box but still

not with high precision.

In 2015 the scores were significantly higher, mainly

because we aimed to make systems just focus on the lo-

calization task, bypassing any prediction steps to decide

if a video shot included the concept or not as was done

in the previous two years in the main semantic index-

ing task. This may have caused the task to be relatively

easy compared to a real-world use case where a local-

ization system would have no way to know beforehand

if the video shot already included the concept or not.

In future localization tasks we plan to give systems raw

shots (which may include true positive or true negative

concepts) simulating a semantic indexing predicted shot

list for a given concept. We also plan to test systems on

a new set of concepts which may include some actions

which span much more frames temporally compared to

only objects that may not include much motion.

7. No Annotation Task

For the 2012 to 2015 issues of TRECVid, a “no anno-

tation” secondary task was offered to SIN participants.

This section describes how that task worked and the

outcomes.

7. 1 Motivation

The motivation behind launching a “no annotation”

secondary task is a reflection of the difficulty associ-

ated with finding good training data for the supervised

learning tools which are used in automatic concept de-

tection. As seen throughout this paper, and especially

in subsection 2. 6, the overhead behind manual annota-

tion of positive, and even negative, examples of concept
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occurrence is huge. The potential for automatically har-

vesting training data for supervised learning from web

resources has been recognised by many, including the

first such work by30),31),32) and subsequently by others.

With this in mind, TRECVid offered a secondary SIN

task in which no training data for the concepts was pro-

vided to participants. There were two variations of the

task offered in each of the 4 years, described earlier in

section 4 and repeated here:

E used only training data collected automatically us-

ing only the concepts’ name and definition;

F used only training data collected automatically us-

ing a query built manually from the concepts’ name

and definition.

What is intended here is that participants are encour-

aged to automatically collect whatever training data

they can, and most will use web resources like word-

based image search or word-based search of video re-

sources such as YouTube. This proposition is attractive

because it means that in theory there is effectively no

restriction to the range, or the type of semantic con-

cepts for which we can build detectors for video and

this opens up huge possibilities for video search.

The potential downside to this idea is that the effi-

cacy of these detectors will depend on how accurately

participants could locate a good quality set of training

data. With manual annotation of training data we ex-

pect the annotations to be accurate and there will be

few, if any, false positives whereas with automatically-

collected training data we are at the mercy of the tech-

niques that participants use to harvest such data. In

particular, for abstract concepts this will be even more

difficult and even for semantic concepts which refer to

(physical) objects like “motor car”, “tree” or “computer

screen”, it is a challenge to automatically locate many

hundreds of positive examples with no false positives

creeping into the training set. However with the quality

of image search on major search engines improving con-

stantly, some of that earlier work in the area like that

reported in30),31),32) is already quite dated in that they

were then dealing with a level of image search quality

which is now much improved. An additional problem

to the level of noise in automatically crawled data is the

possible domain mismatch between the general material

that can be gathered from the web and the specific do-

main for which we may want to build a concept detector

for.

7. 2 Results

Table 4 shows the number of runs submitted by par-

ticipants for the E- and F-type SIN task condition, for

each of the 4 years this secondary task was offered.

Table 4 Number of runs submitted in the “no annota-

tion” secondary task

Year Type E Type F

2012 1 4

2013 6 3

2014 4 0

2015 0 0

From this we can see we had very low participation

with only 18 runs from just a few participants over 3

of the 4 years this was offered. What was interesting

about those results was the performance, as measured

in terms of mean InfAP. In 2012 the best-performing

category A result was 0.32 infAP with a median across

submissions of 0.202 while the best-performing category

F result was 0.071, with a median of 0.054. The “no

annotation” results fall far short of the full category A

but for a first running of the secondary task, this was

encouraging. By 2014 (there were no results submitted

in 2015), the best category E submission scored 0.078

against a best category A submission of 0.34 (mean

0.217). Once again these results are encouraging but

with low interest in the task and no participation in

its last year, we may have already tapped into all the

interest that there might be in this topic.

7. 3 Approaches

For the (limited) number of participants who submit-

ted runs in this task, some used the results of searches to

YouTube as a source of training data, others used the

results of searches to Google image search, and some

used both.

One of the participating teams (the MediaMill group

at the University of Amsterdam) investigated three

interesting research questions, described at33). They

found that . . .

• Tagged images are a better source of training data

than tagged videos for learning video concept detectors;

• Positive examples from automatically selected

tagged images shows best performance;

• Negative training examples are best selected with

a negative bootstrap of tagged images

One of the things that this secondary task has raised

is the question of whether a no annotation approach

to determining concept presence or absence is better

applied a priori at indexing time, as in this task, or

dynamically at query time. One of the disadvantages

of indexing video by semantic concepts in advance of
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searching is that we need to know, and define, those

concepts and that limits subsequent searching and video

navigation to just those concepts that have been built

and applied to the video collection. Building concept

detectors at query time allows concepts to be dynami-

cally constructed, if this can be achieved with reason-

able response time.

Recent work such as the one by34) has shown that it is

possible to take a text query and download several hun-

dreds of top-ranked images from Google image search,

compute visual features of those images on-the-fly and

use these as positive examples for building a classifier

which is then applied to a video collection to detect the

presence (and absence) of video shots containing the

concept represented by the Google image search query,

and to do all this within a couple of seconds while the

searcher waits for query results. In the work reported

to date this is shown to work well for visually distinct

objects like “penguin”, “guitar” or “London bus” where

the issues of quality of the training set in terms of how

many false positives creep into the top-ranked images

when searching for penguins, guitars or London buses,

is not so important. Further work to refine and improve

the training set will mean that more challenging con-

cepts should be detectable and this would offer a real

alternative to what was promoted in this secondary SIN

task.

8. Progress Task

8. 1 Motivation

Evaluation campaigns like TREC, TRECVid, Ima-

geNet LSVRC and many others are very good for com-

paring automatic indexing methods at a given time

point. The evaluation protocols are usually well de-

signed so that comparisons between methods, systems

and/or research teams are as fair as possible. The fair-

ness of the comparison relies for a significant part on

the fact that all systems are compared using the same

training data (and annotations) and that test data are

processed blindly with results being submitted within

the same deadline. It also relies on the trust granted

to the participants that they do respect the guidelines,

especially considering blind processing. While it is ac-

ceptable that they have a look at the results for checking

that these make sense and for detecting or fixing ma-

jor bugs, they should never do any system tuning by

analyzing them.

This approach implies that when such campaigns are

organized periodically, new fresh test data are made

available for each issue because a lot of information can

be obtained via the analysis of past results, taking them

into account in a new version of the system. Applying

the new system on past data will then result in biased

and invalid results. This is the approach used for the

SIN task (as can be seen in Table 2) and more generally

at TRECVid.

While it is good to compare various systems or meth-

ods at a given time point, it is also interesting to mon-

itor the overall evolution of the state of the art meth-

ods’ performance over time. As previously mentioned,

it is not possible to do this directly using the results

obtained from consecutive issues of TRECVid because

they differ on the test samples, on the evaluated cat-

egories and/or on the amount of training data. The

ideal solution would be that regular participants keep

a version of their system from each year and apply it,

unchanged, for each of the subsequent years. Even in

this case, the comparison would not be meaningful if

new training data became available in the intervening

period. For practical reasons, it is often complicated to

maintain over years, a number of previous versions of

the systems and, in the best cases, some participants

are able to make one reference submission using their

best system from the previous year. Some studies have

shown that significant progress has been achieved over

time in the past35). However, these have been made

a posteriori, and while their conclusions are valuable,

they did not strictly follow the blind submission pro-

cess. Also, they concerned only submissions from a sin-

gle participant.

The “progress” secondary task was developed follow-

ing the feedback from a number of participants from

2010 to 2012. Its goal was to obtain meaningful com-

parisons between successive versions of systems and to

accurately measure the performance progress over time.

It was conducted on the 2013 to 2015 issues by:

• releasing the test data for the three 2013 to 2015

issues at once;

• freezing the training data and annotation sets (no

new annotations were made available in 2014 and 2015);

• freezing the concept set for which submissions were

requested;

• requiring participants each year to directly submit

runs for the current issue and for all the available next

issues (i.e. in 2013, participants submitted runs for the

2013, 2014 and 2015 test collections; in 2014, they sub-

mitted runs for the 2014 and 2015 test collections; in

2015, they submitted runs only for the 2015 test collec-
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tion).

Apart from the fact that some submitted runs are

anticipated submissions for future years, this secondary

task is exactly the same as the main SIN task described

in section 4. Submissions to the progress task corre-

sponding to the current year are the same as those for

the main task by the same participant. Submissions

made by a participant for the future years are included

in the pool of submissions for these future years. These

anticipated submissions have been filtered out in the

presentation of the results in section 4 but they were

included in the same evaluation process, including their

insertion in the pooling process for assessment.

Submitting to the progress secondary task required

little effort from participants just running their systems

on one, two or three slices of the test data instead of

only just one, while the main work was in the design,

the training and the tuning of their systems. The rule

of not using new annotations for the 2014 and 2015 sub-

missions was specific to the progress task. Some par-

ticipants to the main task that did not submit to the

progress task and actually used the 2013 and/or 2014

assessment as additional annotations, especially for pa-

rameter tuning by cross-validation on them. This pos-

sibly induced a small disadvantage for the participants

to the main task that strictly followed the progress task

protocol.

8. 2 Results

Six groups participated in the progress task by sub-

mitting anticipated runs in 2013 and 2014: Eurecom,

IRIM, ITI CERTH, LIG/Quaero, UEC and insightdcu.

Figure 21 shows the performance obtained on the 2015

test collection with their 2013, 2014 and 2015 systems.

For most of them, a significant performance improve-

ment is observed. Some of the points, e.g. Eurecom

and UEC 2013 submissions, are “outliers”, their low

performance being due to bugs in their submissions. In

the case of Eurecom, IRIM and LIG-Quaero, most of

the performance gains come from the use of more and

more deep features. For IRIM and LIG-Quaero, it also

comes from the use of multiple key frames in 2015. The

typical performance gain between 2013 and 2015 is of

about 30% in relative MAP value. It was mostly due

to the use of deep learning, either directly via partial

retraining, or indirectly via the use of deep features, or

via combinations of both.

In addition to the official progress task, some partici-

pants like the University of Amsterdam often submitted

one run for the current year using their previous year’s

best system as a baseline. Though this approach does

not strictly follow the progress task protocol, it still

produces meaningful results that also demonstrate sig-

nificant progress over years. Additionally, some partici-

pants like the University of Helsinki compared the year-

on-year progression of their PICSOM system over 10

years36), including most of the current semantic index-

ing task period but also the previous High-Level Feature

(HLF) detection tasks of TRECVid 2005 to 2009.
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Fig. 21 Progress task results: performance on 2015 test

data from 2013, 2014 and 2015 systems.

9. Post-campaign experiments

The TRECVid advisory committee has decided to

stop (or suspend) the Semantic Indexing task in 2016.

The main reason is that a lot has been learned on this

problem for which many techniques are now mature and

effective and it is time to move back to the previously

suspended main video search task. In the context of

the new Ad hoc Video Search (AVS) task, semantic in-

dexing is likely to play a significant role and it will still

be indirectly evaluated as a key component.

The data, annotations, metrics, assessment and pro-

tocol of the task will remain available for the past

TRECVid participants or for new groups that would

like to use them for post-campaign experiments. This

is similar to what is proposed for the Pascal VOC Chal-

lenge3) closed in 2012 and for which it is still possible

to evaluate submissions for the past campaigns and for

which an evaluation server is still running and a leader-

board is permanently maintained. This will be slightly

different in the case of the TRECVid semantic task.
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First, the “ground truth” on the test data has been re-

leased for the SIN task while it is maintained hidden for

Pascal VOC. However, in both cases, the validity of the

results rely on the trust granted to the participants that

they will not tune their system on the test data; this is

a bit harder in the case of VOC but still possible since a

number of test submissions are possible. In the case of

the TRECVid SIN task, participants to post-campaign

experiments should not in any case tune their systems

on the test data; for the results to be valid and fair,

system tuning should be done only by cross-validation

within the development data. A second difference is

that there will be no evaluation server; the evaluation

will have to be made directly by the participants using

the provided ground truth and the sample eval tool

available on the TRECVid server.

10. Conclusion

The Semantic INdexing (SIN) task has been running

at TRECVid from 2010 to 2015 inclusive with the sup-

port of NIST and the Quaero project. It followed the

previously proposed High-Level Feature (HLF) detec-

tion task which ran from 2002 to 20092). It attracted

over 40 participants during the period. The number

of participants gradually decreased during the period,

while it increased during the previous HLF task, but

still 15 groups finished during the last two editions.

The task was conducted using a total of 1,400 hours

of video data drawn from the IACC collection gathered

by NIST. 200 hours of new test data was made avail-

able each year plus 200 more as development data in

2010. The number of target concepts started from 130

in 2010 and was extended to 346 in 2011. Both the in-

crease in the volume of video data and in the number of

target concepts favored the development of generic and

scalable methods. A very large number of annotations

was produced by the participants and by the Quaero

project on a total of 800 hours of development data.

In addition to the main semantic indexing task, four

secondary task were proposed: the “localization” task,

the “concept pair” task, the “no annotation” task, and

the “progress” task.

Significant progress was accomplished during the pe-

riod as this was accurately measured in the context of

the progress task but also from the participants’ con-

trast experiments. Two major changes in the methods

were observed: a first one by moving from the basic

“bag of visual words” approach to more elaborate ag-

gregation methods like Fisher Vectors or SuperVectors,

and a second one with the massive introduction of deep

learning, either via partially retrained network or via

the use of features extracted using previously trained

deep networks. These methods were also combined with

many other like fusion of features or of classifiers, use of

multiple frame per shot, use of semantic temporal con-

sistency, and use of audio and motion features. Most

of this progression was directly made possible via the

development data, the annotations, and the evaluations

proposed in the context of the TRECVid semantic in-

dexing task.
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