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Abstract

Content-based event retrieval in unconstrained web
videos, based on query tags, is a hard problem due to large
intra-class variances, and limited vocabulary and accu-
racy of the video concept detectors, creating a “semantic
query gap”. We present a technique to overcome this gap
by using continuous word space representations to explic-
itly compute query and detector concept similarity. This
not only allows for fast query-video similarity computation
with implicit query expansion, but leads to a compact video
representation, which allows implementation of a real-time
retrieval system that can fit several thousand videos in a
few hundred megabytes of memory. We evaluate the ef-
fectiveness of our representation on the challenging NIST
MEDTest 2014 dataset.

1. Introduction

Content-based video retrieval from a large database of
unconstrained web videos is challenging due to large intra-
class variations and difficulty of extracting semantic content
from them. Exemplar-based methods have shown some suc-
cess [24, 25] for video retrieval; here a set of positive videos
along with a larger number of “background” videos is used
to learn a distribution of features and concepts that can be
used to measure similarity. We focus on concept tag-based
retrieval as providing video exemplars is cumbersome, if
not impossible, in many situations.

A key requirement for tag-based retrieval is for the multi-
media system to extract semantic concepts, such as objects
and actions, from videos. However, given the state-of-the-
art, we can expect such extraction to be noisy. Addition-
ally, though we can train detectors for tens of thousands of
concepts, the vocabulary used for natural language retrieval
may be significantly larger. Thus, we are faced with a “dic-
tionary gap”.

Early approaches for content-based retrieval find appli-
cation in the image domain, where exemplar images were
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used as queries [20]. Recently, attempts were made to ad-
dress the zero-shot image retrieval problem, where image
queries were replaced with text queries [6, 22, 11], raising
the issue of the “semantic query gap”. These approaches
propose automatic image captioning methods that, as a by-
product, allow text queries to be used for image retrieval.
This has been made possible due to datasets [27, 13], that
have fine-grained sentence captions for images.
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Figure 1. Methods classified based on semantic video embedding

In the absence of such datasets for videos, content-
based retrieval methods rely on outputs from a seman-
tic concept detector bank to close the ‘“semantic query
gap”. While [14] uses exemplar videos as queries, the ap-
proaches [4, 26, 10, 2, 9, 8, 15] address the zero-shot re-
trieval problem. Based on the semantic video representation
extracted from the detector bank (Figure 1), we consider the
following three types of methods:

Concept Space (CoS) The response vector of the concept
detector bank is used for semantic representation of a
video. Thus, a video is represented as a point in a space
that has dimensionality equal to the number of concept
detectors.

Dictionary Space (DiS) Each concept in the detector bank
is associated with one, or more words in a dictionary
that are deemed semantically related to it, based on
some similarity measure associated with the dictio-
nary. The score of each detector is distributed over the



“similar” words, possibly using the similarity scores.
Thus, the detector bank response vector is mapped to a
vector of scores in a space where each dimension cor-
responds to a word in the dictionary. Such an embed-
ding is typically sparse, since the size of a dictionary is
many times larger than the number of concepts in the
detector bank.

Continuous Word Space (CWS) Each concept in the de-
tector bank may be associated with a point in some
continuous word space. Such a point may not neces-
sarily correspond to a word in a dictionary, but may
be a “blend” of continuous word vectors correspond-
ing to different words. For each detector concept, the
response score, combined with its continuous word
space vector, is used to represent the video as a point
in the continuous word space.

We propose a retrieval technique, falling under CWS em-
bedding scheme, to implicitly map query concepts with the
closest concepts in the detector vocabulary (e.g. “cake” may
be mapped to “food” in absence of a cake detector), and ag-
gregate their scores to help fill the “semantic query gap”.
Our method allows for retrieval by a single tag or a set of
tags; more tags are likely to be descriptive and discrimina-
tive. It yields a compact video representation in a continu-
ous semantic space, which can fit several hundred thousand
videos in a few gigabytes of memory. We implemented a
real-time, interactive retrieval system that can run on a thin
client.

We also extend the method of [4], which is originally
based on a CoS embedding scheme, for application to query
tag-based retrieval for videos in the wild. To represent
DiS methods, we implement the approach in [26], modify-
ing low level details for fair comparison with the proposed
CWS and CoS schemes. We evaluate the three approaches
on the challenging NIST MEDTest 2014 [18] dataset.

In our CWS approach, since query tags map to the video
embedding space, query-video similarity can be computed
as a dot product in a low-dimensional space. The mapping
offers multiple advantages. Embedding videos in a contin-
uous word space:

1. results in implicit query expansion (mapping query
tags to multiple, semantically related tags)

2. leads to compact video representation due to low di-
mensionality of the space, which is a significant gain,
as the detector bank may contain a large number of
concepts

3. allows fast scoring for each video

2. Related Work

In this section, we present video retrieval approaches
that are relevant to our method.

Exemplar-based video retrieval

A video retrieval approach using few video exemplars as
queries has been presented in [14]. Each video (in a query
and the database) is represented as a vector of concept
detector bank responses (CoS embedding). It evaluates
multiple similarity measures to compute similarity between
query and database videos, as well as early and late fusion
schemes to obtain ranked lists in case of multiple video
queries. Presenting K-shot retrieval experiments, the
work concludes that for K < 9, the retrieval pipeline
(using cross-correlation similarity metric and late fusion
aggregation) outperforms supervised classifiers, trained
using the K query videos as positive exemplars.

Query tag-based video retrieval

Semantic tag-based retrieval methods have been pro-
posed in [4, 26, 10, 2, 9, 8, 15].

The approaches in [26, 15] can be classified as DiS
methods. In [26], both videos and queries are embedded
as sparse vectors in a high-dimensional vocabulary space,
where each dimension corresponds to a concept in a text
corpus. The detector scores are propagated to the top closest
vocabulary matches for each concept in the detector bank,
using a corpus similarity measure.

The method of [15] requires a set of “source” videos,
tagged with concepts supplied by human annotators. The
tags are propagated to a test video using similarity scores
computed between ‘“source”-test video pairs, based on a
mid-level video representation. Once a test video is repre-
sented as a set of tags, the idea is to use standard document
retrieval techniques for text queries. While their method
shows promising results, it suffers from the drawback that
it relies on a set of human-annotated videos. The “source”
set used for evaluation contains a set of carefully annotated
videos, with tags semantically related to the domain of ap-
plication. Thus, it is not clear how the method will perform
with noisy, and possibly unrelated, web-scale annotations.

The work in [4] belongs to the class of CoS embeddings.
While it does not directly address the problem of query
tag-based retrieval, it trained action classifiers on a subset
of classes from the “UCF-101" [23] dataset, and used the
names of held-out classes as queries for unsupervised re-
trieval. The response of the trained detectors is used as the
mid-level concept bank video representations, and a contin-
uous word space is used to select and aggregate scores of
the top K detectors semantically closest to the query. The
approach exhibits favorable performance over supervised
classifiers trained using up to 5 positive exemplars. Since
the concepts in the detector bank are few, and semantically



correlated with the set of held out classes (sports actions), it
is not obvious if the method will successfully apply to our
domain, where the detector bank consists of thousands of
potentially unrelated concepts with noisy responses.

The papers [9, 8] have proposed re-ranking approaches
to improve retrieval results. The work [9] combines mul-
tiple ranked lists generated using different modalities from
retrieval, exploiting both semantic, as well as low-level fea-
tures. Authors in [8] propose a re-ranking scheme for multi-
modal data inspired from curriculum learning methods pro-
posed in [1, 12]. Since re-ranking approaches post-process
initial ranked lists, they may be considered as “add-ons” to
the methods evaluated in this paper.

The image retrieval method of [21] comes closest to our
proposed CWS approach. They learn a mapping from im-
ages to a semantic word space using a neural network, and
use the embedding to distinguish between “seen” and “un-
seen” classes using novelty detection. An image labeled to
belong to a seen class is classified using detectors trained
on image-based features that were trained using exemplars.
The unseen class images are classified by ranking according
to distance from the continuous word space embedding of
the class name.

In contrast, our CWS embedding uses a natural map-
ping function to embed concept detector bank responses, by
combining them with their corresponding continuous word
space embeddings.

3. Technical Approach

The approaches in each of the three dimensions studied
in this paper begin with extraction of mid-level semantic
features over videos. We detail below our “continuous word
space” embedding method, and an extension of the “con-
cept space” embedding approach of [4]. We also include
an overview of the “dictionary space” embedding method
of [26].

3.1. Continuous Word Space (CWS) Embedding

We begin by mapping feature bank concepts to their re-
spective continuous word space vectors. Each video is then
mapped to the continuous word space by computing a sum
of these concept bank vectors, weighted by the correspond-
ing detector responses.

User query tags are mapped to the continuous word
space, and aggregated to form a single query vector. Fi-
nally, videos are scored using a similarity measure in the
common space. The framework is illustrated in Figure 2.

3.1.1 Mid-level semantic video representation

We represent a video V; as a vector of concept bank con-
fidence scores, f; = (w1, wia, ..., w; N)T, corresponding

concept, tag,
Wl . s
concept,* tag, + Query]
wo| « L s
[t concepts* tag, *
o e e
scoring —
concepts| [ + :
I
ol concept, a
w,, . Pl
L Query embedding
[} .
Low-
= T
scoring - f Video_Score; (= q'f;)
(noisy) !
concepts T
Video embedding D Concept Bank Vector
e [—1 ContinuousWord Space Vector

Figure 2. Video and Query Embedding framework

to semantic concepts {c1,ca,...,cny}. Owing to seman-
tic interpretation, such a representation is more useful for
event-level inference than standard bag-of-words.

The video feature is assumed to be an L;-normalized
histogram f; of these concept scores, which are scaled con-
fidence outputs of detectors trained on the corresponding
concepts.

3.1.2 Concepts and Queries to Continuous Word
Space

We map each semantic feature concept c; to its correspond-
ing continous word representation vector v(c¢;). Since it is
possible that no (case-insensitive) exact match exists in the
vocabulary, matches may be computed by heuristic match-
ing techniques (Section 4.4).

A user query can contain one, or more tags. Each tag
is mapped to its corresponding continuous word space rep-
resentation, if it exists. The query vector ¢ is an Lo-
normalized sum of these vectors, which is equivalent to the
Boolean AND operator over input tags. More sophisticated
schema (such as in [7]) may be desgined for query repre-
sentation and combination, but this is not explored in this

paper.

3.1.3 Embedding Function

We interpret a video as a text document, with the feature
response vector being a histogram of word occurence fre-
quency. The video feature vector is mapped to continuous
word space by computing sum of concept vectors (mapped
in Section 3.1.2), weighted by their corresponding feature
responses. To avoid including noisy responses in the repre-
sentation, only a thresholded set of top responses is used. If
we denote f{ to be the embedding for video v;, then



fE= ) wiv(e)
crel;
where C; is the set of top responses for that video. The

weights w;j are equivalent to w;; up to scale, to ensure
17l = 1.

Since the number of concepts in a concept bank can be
large, and if detectors are trained with reasonable accuracy,
it is expected that the bulk of the feature histogram will
be distributed among a few concepts. Aggregating high-
confidence detector responses helps in suppressing the re-
maining noisy detector responses.

3.1.4 Scoring videos

Videos are scored using the dot product similarity measure.
This measure has the advantage of implicitly performing
query expansion, i.e., responses of feature concepts seman-
tically related to the query tags will be automatically aggre-
gated, e.g., if a user queries for “vehicle”, then responses
in video V;, for related tags (assuming they are among the
thresholded concepts), such as “car”, or “bus”, will be ag-
gregated as follows:

q" f¢ = v(vehicle)” Z wy, % v(cy)
ck€C;
= v(vehicle)” [w;.,, * v(car) + w;y,, * v(bus)]

+ v(vehicle)” Z w; x0(g) v(c:)

C%\
CIE{car,bus}
~ v(vehicle)” [w;,, * v(car) + wy,, * v(bus)] + 0
since unrelated concepts are expected to be nearly orthogo-
nal.

3.2. Concept Space (CoS) Embedding

The authors in [4] applied their retrieval method to the
“UCF-101” [23] dataset. The goal of their method was to
transfer knowledge from detectors trained on a known set
of classes, to create a detector for an unseen class. This
was achieved by aggregating detector scores of the known
classes, weighted by their semantic similarity to the unseen
class, using a continuous word space. We briefly describe
the key components of their approach, and our modifica-
tions that extend its application to the domain of query tag-
based retrieval for unconstrained web videos:

’

’

Mid-level representation In [4] classifiers were trained
for a held out set of classes. These classifiers were
then applied to the target class, and their confidence
scores were concatenated to obtain a video representa-
tion. We replace these classifiers by our detector bank,
as described in Section 3.1.1. As in their work, we use
this as the final video representation, yielding a con-
cept space video embedding.

Unseen class representation In [4], a class name is repre-
sented by its continuous word representation, trained
on Wikipedia articles. Each detector concept is sim-
ilarly mapped to this space. The representations are
used to rank concepts with respect to the query by
computing the dot product similarity score. We extend
this idea, and replace the unseen class with the set of
query tags.

Scoring videos The query-video similarity score is com-
puted as a sum of the top K detector responses,
weighted by the class-concept similarity score ob-
tained in the previous step. We leave this unmodified
in our extension.

3.3. Dictionary Space (DiS) Embedding

For completeness, we provide a high-level overview of
the method presented in [26], which is evaluated in this
work. The authors first trained multiple concept detector
banks and applied them to each video, to obtain a set of
mid-level concept space representations. In a given detec-
tor bank, for each concept, they obtain the top K similar
words in a corpus, using a similarity score derived from the
corpus. The confidence score of a concept detector for each
video is distributed to the top K similar words, weighted
by the corresponding similarity score. Thus, each detector
bank response is mapped to a sparse vector in the dictionary
space.

The tags in a query (which are a subset of the word cor-
pus) are used to create a sparse vector in the dictionary
space. The dimensions corresponding to each query tag are
set to 1.0, while the rest are set to 0.0. For each detector
bank, a similarity score with the query vector is computed
as a dot product in this space. These similarity scores are
fused to obtain the final query-video similarity score.

4. Experiments

In this section, we present the setup for tag-based re-
trieval experiments on the challenging NIST MEDTEST
2014 dataset [18]. We evaluate the performance of our con-
tinuous word space embedding approach, our concept space
embedding extension of [4], and our implementation of the
dictionary space method of [26].

4.1. Dataset

The MED dataset [18] provided by NIST consists of un-
constrained Web videos downloaded from the Internet. The
2014 release consists of 20 complex high-level events, such
as “Bike trick” and “Wedding shower” (a complete list is
given in Table 1).

The dataset consists of two splits: 1) EventKit (or EK)
includes some training videos (not relevant to our method),



along with a description of each event, consisting of the se-
quence of actions, activities, scenes, and objects typically
associated with it; and 2) MEDTest 2014 contains 27,269
test videos. This split has around 20 positive video sam-
ples, and 5,000 background (negative) videos, per event.

4.2. Concept Bank

In our concept bank, each concept is a node (internal or
leaf) in the ImageNet hierarchy [3], which itself is a sub-
graph of the WordNet [17] hierarchy. It has N ~ 15,000
noun phrases, that consist of scenes, objects, people, and
activities. Training images for each detector were obtained
from the corresponding nodes in the ImageNet hierarchy.
The detector bank is a deep convolutional neural network
with multi-class softmax outputs.

The histogram f; for video V; is computed by average
pooling of L;-normalized frame-level responses computed
on frames sampled at equally spaced intervals, and then re-
normalizing. Average pooling is preferred as it exhibits sta-
ble performance for noisy concept detectors [14].

For fair comparison, we use this concept bank for both
the “concept space” ([4] uses “UCF-101" class names), and
“dictionary space” ([26] uses detectors trained in-house) ap-
proaches.

4.3. Continuous Word Space

We use the word2vec [16] framework for obtaining con-
tinuous word space mapping of concepts. The word rep-
resentation is obtained as a by-product of training a skip-
gram neural network language model. The word2vec map-
ping used in our pipeline was trained on the Google News
dataset. This dataset yields a 300,000 word vocabulary, and
each word is mapped to a 300-dimensional vector. We used
this corpus due its large vocabulary size.

The authors show in [16] that summing up vectors cor-
responding to each word in a sentence leads to a discrim-
inative sentence representation, assuming that it contains a
small number of words. By using only the top detector re-
sponses (Section 3.1.3), our embedding function is consis-
tent with the above assumption, and is likely to produce a
discriminative video image. We empirically threshold, and
aggregate top 30% detector responses in the histogram, as
it yields good retrieval results with our concept bank.

In [4], the authors use the word2vec representation
trained on Wikipedia articles, while in [26], the Gigaword
corpus [5] is used. For comparable results, we use the
Google News corpus trained word2vec representation for
evaluating both approaches.

4.4. Vector Mapping for Concept Bank

Since concepts may not have precise matches in the con-
tinuous word space vocabulary, we find a match in the fol-
lowing order:

1. Use the exact match, if available.

2. If it is a compound word with no exact matches, or
a multi-word phrase, we search for exact matches for
the constituent atomic words. If one or more atomic
words match, then the original concept is mapped to
an Lo-normalized sum of the corresponding vectors.

3. If no match found in previous step, the concept is dis-
carded, and mapped to a zero vector.

4.5. Evaluation

For each event, we pick nouns from the supplied descrip-
tion in the EventKit, and use them as query tags to evaluate
retrieval performance. Since retrieval performance depends
on availability and quality of relevant detectors, rankings
will vary with different query tags for the same event. Thus,
we report the best performing tag (highest mean average
precision or mAP) using our pipeline.

Using the tags selected above, for each event, we com-
pare our method’s performance with our extension of the
CosS technique presented in [4]. We use our heuristics (Sec-
tion 4.4) for mapping detector concepts to continuous word
space vectors. As per the authors’ recommendation, we test
performance using K = 3, 5, and present results for the best
performing parameter value, K = 3. Here, K indicates the
number of top related concept detectors used for scoring.

For the DiS baseline of [26], since the value of K (de-
notes the number of nearest words in the dictionary for
each detector concept) used in their experiments is not men-
tioned in the paper, we repeat the experiment with values of
K = 3,5,7. We present results for K = 5, which results in
the highest AP. In our case, there is only one detector bank
(which corresponds to the image modality), so the multi-
modal fusion techniques presented in [26] are not applica-
ble.

We also test several tag combinations for a query, and
present the best perfoming combinations for the CWS em-
bedding, per event. Tags are combined using AND boolean
semantics: query vectors for individual tags are averaged,
and then Lo-normalized, to obtain the final query vector.
This is equivalent to late fusion by averaging video scores
using individual tags. For comparison, the same tags are
used as query inputs to the CoS and DiS methods.

5. Results

For each event in the MED2014 dataset, the Average Pre-
cision (AP) score using selected single tag queries are pre-
sented in Table 1, and using multiple tag queries in Table 2.
While the mean Average Precision (mAP) for a single tag
query using our CWS method is comparable with CoS and
DiS methods, our multiple tag results demonstrate signifi-
cant gains.



ID Event Name Tags DiS CoS CWS

21 Bike trick bicycle 0.0417 0.0253  0.0475
22 Cleaning an appliance cooler 0.0479 0.0492  0.0521
23 Dog show rink 0.0082 0.0066 0.0103
24 Giving direction cop 0.0500  0.0551 0.0477
25 Marriage proposal marriage 0.0015 0.0029  0.0039
26 Renovating a home furniture 0.0086 0.0110 0.0236
27 Rock climbing climber 0.1038 0.0649 0.0823
28 Town Hall meeting speaker 0.0842 0.1025 0.1145
29 Winning a race without a vehicle  track 0.1217 0.1374 0.1233
30 Working on a metal crafts project — repair 0.0008 0.0079  0.0564
31 Beekeeping apiary 0.5525 0.5697 0.5801
32 Wedding shower wedding 0.0120 0.0120 0.0248
33 Non-motorized vehicle repair bicycle 0.0247  0.1559 0.0191
34 Fixing musical instrument instrument 0.0131  0.0179 0.1393
35 Horse-riding competition showjumping 0.2711 0.2832  0.2940
36 Felling a tree forest 0.1593 0.1468 0.1303
37 Parking a vehicle vehicle 0.0813  0.0882 0.0768
38 Playing fetch dog 0.0073  0.0079  0.0054
39 Tailgating jersey 0.0022  0.0028 0.0031
40 Tuning a musical instrument piano 0.0687 0.0363  0.0795
mAP 0.0830 0.0892  0.0957

Table 1. Retrieval performance (AP metric) using single query tag on the NIST MEDTEST 2014 dataset using our “continuous word space”
(CWS), our “concept space” (CoS) extension of [4], and “dictionary space” (DiS) [26] embedding approaches.

ID Event Name Tags DiS CoS CWS
21 Bike trick bicycle chain 0.0307 0.0208 0.0747
22 Cleaning an appliance cooler refrigerator 0.0512 0.0493  0.0551
23 Dog show exhibition hall dog competition 0.0060 0.0142  0.0489
24 Giving direction cop map 0.0068 0.0615 0.0351
25 Marriage proposal woman ring 0.0031  0.0031 0.0029
26 Renovating a home furniture ladder 0.0092 0.0110 0.0884
27 Rock climbing mountaineer climber 0.1038 0.0674 0.1192
28 Town Hall meeting speaker town_hall 0.0842 0.0991 0.1381
29 Winning a race without a vehicle ~ swimming track 0.1241  0.1887  0.2185
30 Working on a metal crafts project  metal solder 0.0024  0.0028 0.0264
31 Beckeeping honeybee apiary 0.0929 0.5530 0.5635
32 Wedding shower gifts wedding 0.0120 0.0110 0.0191
33 Non-motorized vehicle repair bicycle tools 0.0090 0.1538 0.0414
34 Fixing musical instrument instrument tuning 0.0249 0.0179  0.2692
35 Horse-riding competition showjumping horse 0.2765 0.2863  0.2985
36 Felling a tree tree chainsaw 0.0409 0.0440 0.0521
37 Parking a vehicle parking vehicle 0.0621  0.0882 0.0504
38 Playing fetch dog beach 0.0077  0.0079  0.1006
39 Tailgating jersey car 0.0034 0.0028 0.0036
40 Tuning a musical instrument piano repair 0.1004 0.0320 0.1458
mAP 0.0526 0.0857 0.1176

Table 2. Retrieval performance (AP metric) for multiple query tags on the NIST MEDTEST 2014 dataset using our “continuous word
space” (CWS), our “concept space” (CoS) extension of [4], and “dictionary space” (DiS) [26] embedding approaches. The entries where
performance is lower than their corresponding single tag scores, are underlined.

For the case of multiple tag queries (Table 2), most lar, large bumps in performace are observed for the events
events show improved performance over the corresponding 26, 29, 34, 39, and 40. This can be explained by implicit
single tag result, using the CWS embedding. In particu- query expansion aggregating related high quality concept



detectors, whose responses combine favorably during late
fusion.

In contrast, both CoS and DiS methods exhibit a perfor-
mance drop for several events, using multiple query tags.
This can be explained by sensitivity to the fixed parameter
K. In the case of CoS, the value of K that was aggregat-
ing sufficient detector responses for a single tag, may not
be enough for multiple tags. The DiS approach will select
K nearest dictionary words for every query tag, and may
end up selecting concepts that have aggregated scores of
noisy detectors. While it is not evident how to select K in
case of multiple tags, our CWS embedding avoids this issue
by aggregating all relevant detector responses (equivalent
to adaptively setting K equal to the number of concepts), as
shown in Section 3.1.4.

For visualization, we selected a few tags from the Single
tag column in Table 1 and show screenshots from the top 5
videos retrieved by our system in Figure 3. It may be noted
that the tags “forest” and “vehicle” do not have matching
detectors in the concept bank. Hence, the rankings are based
on implicit query expansion resulting from the continuous
word space video representation.

tage from tie

h27th storm...

Figure 3. Top 5 video screenshots for single query tags in row 1)
“forest”, 2) “bicycle”, 3) “climber”, 4) “vehicle”. Ranks decrease
from left to right.

Using our CWS representation, assuming 8-byte double
precision floating point numbers, we can fit 200,000 videos
(the entire TRECVid [19] database) in 460 MB of memory,
versus concept bank representation, which requires over 22
GB.

While the CWS embedding is inherently slightly
more computationally intensive, relative to CoS and DiS
schemes, it tends to capture diverse detection responses.
This is critical in case one, or more, query tags do not have
any corresponding concepts in the detector bank. In such
a case, strong responses belonging to semantically related
concept detectors may not be captured among the top K
responses. This becomes apparent in AP scores for events
30 and 34. The query tags, “repair” and “instrument” do

not have corresponding concepts in the detector bank, but
our CWS embedding captures relevant responses, vastly im-
proving results.

For the case of single tag queries, AP scores are com-
parable for a given event across columns, suggesting that
performance may be limited by the availability and reli-
ability of semantically relevant detectors in the concept
bank. Since detector aggregation depends on correlations
captured by the continuous word space, the system per-
formance may improve by training word2vec on a special-
purpose corpus, that captures scene level correlations.

6. Efficiency

For real-time web-scale applications, careful implemen-
tation can significantly reduce query time, as well as disk
usage, for the methods evaluated in this paper, without af-
fecting retrieval performance.

A naive implementation would be to store features for
each video separately on disk. For CoS and DiS methods,
this would entail iterating through many small files to com-
pute similarity score. Instead, a reverse index implementa-
tion, would considerably speed-up the computation. Further
speed-ups can be obtained by sparsifying detection vector
responses using the method of [10]. However, that requires
the creation of a HEX graph for the concepts in the detector
bank, whose size grows quadratically with the number of
detectors.

Even though the proposed CWS embedding neccessi-
tates computation of full query-video dot product, speed-
ups can be obtained by using an indexing structure, such as
a BSP tree, or KD tree. Since video representation is com-
pact, all videos at the leaf of such a structure can be loaded
into memory in one shot, reducing disk I/O time. Since
retrieval systems are typically concerned with only the top
few videos, we can safely discard a large fraction of the
database, and only rank videos that are deemed to be close
enough by the indexing data structure. The CWS scheme is
also expected to benefit from sparsification using [10].

7. Conclusion and Future Work

We presented a novel “continuous word space” (CWS)
video embedding framework for retrieval of unconstrained
web videos using tag-based semantic queries. In addi-
tion, we extended the method in [4], to create a “con-
cept space” (CoS) video embedding pipeline, and imple-
mented the “dictionary space” (DiS) video embedding re-
trieval method of [26]. We evaluated the retrieval perfor-
mance of these three methods on the challenging NIST
MEDTest 2014 [18] dataset.

The evaluation results show that our CWS framework
outperforms the CoS, DiS based methods. Even though
our naive implementation of the CWS method is expensive



in comparison to reverse indexing implementations of the
CoS and DiS methods, it yields a significantly compact rep-
resentation in comparison to a mid-level concept detector
bank vector representation. This allows implementation of
a real-time interactive system on a thin client by loading
a database of hundreds of thousands of videos into main
memory.

Using the method of [10] for noisy detector response re-
moval, instead of the top 30% score heuristic, is expected
to improve the retrieval performance of our CWS embed-
ding, while maintaining a small memory footprint, and low
latency.

We used the word2vec [16] continuous word space rep-
resentation pre-trained on the Google News corpus, which
may not capture scene- or event-leval correlations very well,
e.g., in news articles, the phrase “road” may not be very
highly correlated with a “stop sign”. This correlation be-
comes important for scene identification. Retrieval perfor-
mance of each method should improve by training on a
special-purpose corpus. Lastly, the base retrieval results can
be further improved using re-ranking methods, such as [8].
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