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Abstract

This paper aims for generic instance search from one
example where the instance can be an arbitrary 3D object
like shoes, not just near-planar and one-sided instances like
buildings and logos. Firstly, we evaluate state-of-the-art in-
stance search methods on this problem. We observe that
what works for buildings loses its generality on shoes. Sec-
ondly, we propose to use automatically learned category-
specific attributes to address the large appearance varia-
tions present in generic instance search. On the problem
of searching among instances from the same category as
the query, the category-specific attributes outperform ex-
isting approaches by a large margin. On a shoe dataset
containing 6624 shoe images recorded from all viewing an-
gles, we improve the performance from 36.73 to 56.56 using
category-specific attributes. Thirdly, we extend our meth-
ods to search objects without restricting to the specifically
known category. We show the combination of category-level
information and the category-specific attributes is superior
to combining category-level information with low-level fea-
tures such as Fisher vector.

1. Introduction

In instance search, the objective is to retrieve all images
of a specific object given a few query examples of that ob-
ject 3L 116} 250 131]]. We consider the challenging case of
only 1 query image and admitting large differences in the
imaging angle and other imaging conditions between the
query image and the target images. A very hard case is a
query specified in frontal view while the relevant images in
the search set show a view from the back which has never
been seen before. Humans solve the search task by employ-
ing two types of general knowledge. First, when the query
instance is a certain class, say a female, answers should
be restricted to be from the same class. And, queries in
the frontal view showing one attribute, say brown hair, will
limit answers to show the same or no such attribute, even
when the viewpoint is from the back. In this paper, we use
and evaluate these two types of general knowledge to han-

dle a wide variety of circumstances for instance search.

In instance search, excellent results have been achieved
by restricting the search to buildings [3| 4} [29]. Searching
buildings can be used in location recognition and 3D recon-
struction. Another set of good results has been achieved in
searching for logos [20, 134} 40] for the estimation of brand
exposure. And, [44] searches for book and magazine cov-
ers. All these cases of instance search show good results
for near-planar, and one-sided objects. In this work, we aim
for broader classes of query instances. We aim to perform
generic instance search from 1 example. Generic implies
we consider arbitrary objects, and not just planar objects.
And, generic implies we aim to use one approach not op-
timized for a certain type of instances, such as RANSAC
matching the planarity of the objects. In our case, instances
can be buildings and logos, but also shoes, clothes and other
objects.

The challenge in instance search is to represent the query
image invariant to the (unknown) appearance variations of
the query while maintaining a sufficiently rich represen-
tation to permit distinction from other, similar instances.
To solve this, most existing approaches in instance search
match the appearance of spots in the potential target to the
query [16} 19} 29} 40, i41]. The quality of match in these
approaches between two images is the sum of similarities
over all local descriptor pairs. The difference between the
cited approaches lies in the way local descriptors are en-
coded and in the computation of the similarity. Good per-
formance has been achieved by this paradigm on buildings,
logos and scenes from a distance. However, when searching
for an arbitrary thing with wider range of viewpoint vari-
ability, more sides, and possibly having self-occlusion and
non-rigid deformation, these methods are likely to fail as lo-
cal descriptor matching becomes unreliable in these cases.
For instance search from only one example, more informa-
tion on the target object is always needed, coupled to a rep-
resentation robust against appearance variations to success-
fully address generic instance search.

In this paper we propose to use attribute representa-
tion [10, 23] to handle a wide range of visual appear-
ances. In this way, we aim to be more robust against ap-



pearance variations than the low-level image representa-
tion, like the bag-of-words histogram [39]] and Fisher vec-
tor [28]. We rely on attribute representation as it has been
shown advantageous in classification when training exam-
ples are insufficiently covering all variations in low-level
feature space [10, 45]], surely present in the one-example
challenging case. We propose to learn automatically a list
of category-specific and non-semantic attributes, which are
discriminative among instances of the same category. An
instance can be represented as a specific combination of
the attributes, and instance search boils down to finding the
most similar combinations of attributes.

In order to address the possible confusion of the query
with instances from other categories, we propose to first
search at the concept-level and then zoom in to search
within the category. In this way, we are able to reduce the
search space of all pixel configurations tremendously while
still being reasonably sure that we do not lose the target.

It is advantageous when there is only 1 query image, to
use slightly more user provided information. In addition
to the interactive specification of the object region in the
query image, in the paper we require the specification of
the category the query instance belongs to.

2. Related work

Most approaches in instance search rely on gathering
matches of local image descriptors [39} 129,16, 141} 40, [19],
where the differences reside in the way the local descrip-
tors are encoded and the matching score of two descriptors
is evaluated. Bag-of-words (BoW) [39.[29] encodes a local
descriptor by the index of the nearest visual word. Ham-
ming embedding [16] improves upon BoW by adding an
extra binary code to better describe the position of the lo-
cal descriptor in space. The matching score of a pair of
descriptors is 1 if they are in the same word and the Ham-
ming distance between binary signatures is smaller than a
certain threshold. VLAD [17] and Fisher vector [27] im-
prove over BoW by representing the local descriptor with
an extra residual vector, obtained by subtracting the mean
of the visual word or the Gaussian component respectively.
In VLAD and Fisher vector, the score of two descriptors
is the dot product of the residuals when they are in the
same word, and O otherwise. [41} 40] improve VLAD and
Fisher vector by replacing the dot product by a thresholded
polynomial similarity and an exponential similarity respec-
tively to give more credits to closer descriptor pairs. [[19]] en-
codes a local descriptor by only considering the directions
to the visual word centers, not the magnitudes, outperform-
ing Fisher vector on instance search. With these methods,
good performance has been achieved on buildings, logos,
and scenes from a distance. These instances can be con-
ceived as near-planar and one-sided. For buildings, logos,
and scenes from a distance the variation in the viewing an-

gle is limited to a quadrant of 90 degrees at most out of the
full 360 circle. For limited variations in viewpoint, matches
of local descriptors can be reliably established between the
query and a relevant example. In this work, we consider
generic instance search, not only flat instance search, where
the instance can be an arbitrary object with wider range of
viewpoint variability and more sides. We evaluate existing
methods for approximately flat instance search on this prob-
lem of generic instance instance.

Attributes [10, (11} [23]] have received much attention re-
cently. They are used to represent common visual properties
of different objects. Attribute representation has been used
for image classification [10l 45] [2]. Attributes have been
shown to be advantageous when the training examples are
insufficiently covering the appearance variations in the low-
level feature space [10, 45)]. Inspired by this, we propose
to use attribute representation to address generic instance
search, where there is only 1 example available and there
still exists a wide range of appearance variations.

Attributes have been used for image retrieval [38, 121 146}
45, 132]. In [38) 121} 146], the query is defined by textual at-
tributes instead of images and the goal is to return images
exhibiting query attributes. The query attributes need to be
semantically meaningful. In this work, we address instance
search given one query image, which is a different task as
the correct answers have to exhibit the same instance, and
we use non-semantic attributes. [45.[32] also consider non-
semantic attributes, but for category retrieval instead of in-
stance search.

The use of category-level information to improve in-
stance search has been explored in [48] (8] [13]]. [13] uses
category labels to learn a projection to map the original
feature to a lower-dimensional space such that the lower-
dimensional feature incorporates certain category-level in-
formation. In this work, instead of learning a feature map-
ping, we augment the original representation with addi-
tional features to capture the category-level information.
[8] expands Fisher vector representation with the concept
classifier output vector of the 2659 concepts from Large
Scale Concept Ontology for Multimedia (LSCOM) [24].
In [48], a 1000-dimensional concept representation [1] is
utilized to refine the inverted index on the basis of seman-
tic consistency between images. Both [48]] and [8]] combine
category-level information with low-level representation. In
this work, we consider the combination of category-level
information with category-specific attributes, not low-level
representation.

2.1. Contributions

Our work makes three contributions. We propose to pur-
sue generic instance search from 1 example where the in-
stance can be an arbitrary 3D object recorded from a wide
range of imaging angles. We demonstrate that this problem



is harder than the approximately flat and one-sided instance
search of buildings [29], logos [20] and remote scenes [[16].
We evaluate state-of-the-art approaches on this problem.
We observe what works best for buildings loses its general-
ity for shoes and reversely what works worse for buildings
may work well for shoes.

Secondly, we propose to use automatically learned
category-specific attributes to handle the wide range of ap-
pearance variations in generic instance search. Here we as-
sume we know the category of the query instance which
provides critical knowledge when there is only one query
image. Information of the query category can be given
through interactive user interface or automatic image cat-
egorization (e.g., shoe, dress, efc.). On the problem of
searching among instances from the same category as the
query, category-specific attributes outperform existing in-
stance search methods by a large margin when large appear-
ance variations exist.

As our third contribution, we extend our methods to
search objects without restricting to the known category.
We propose to augment the category-specific attributes with
category-level information which is carried by the deep
learning features learned from large-scale image catego-
rization and the category-level classification scores. We
show combining category-level information with category-
specific attributes is superior to combining category infor-
mation with low-level features such as Fisher vector.

3. The difficulty of generic instance search

The first question we raise in this work is how the state-
of-the-art methods perform on generic instance search from
1 example where the query instance can be an arbitrary
thing. Can we search for other objects like shoes with the
same method for buildings? To that end, we evaluate sev-
eral existing instance search algorithms on two datasets, the
Oxford buildings dataset [29] and a shoe dataset collected
in this work.

We evaluate four methods. M1 (ExpVLAD): A recent
work [40]] introduces locality at two levels to improve in-
stance search from one example. The method considers lo-
cality in the picture by evaluating multiple candidate loca-
tions in each of the database images. It also considers lo-
cality in the feature space by efficiently employing a large
visual vocabulary for VLAD and Fisher vector and by an ex-
ponential similarity function to give disproportionally high
scores on close local descriptor pairs. The locality in the
picture was shown effective when searching for instances
covering only a part of the image. And the the locality in
the feature space was shown useful on all the datasets con-
sidered in the paper. M2 (Triemb): [19] proposes triangu-
lation embedding and democratic aggregation. The trian-
gulation embedding encodes a local descriptor with respect
to the visual word centers using only directions, not magni-

tudes. As shown in the paper, the triangulation embedding
outperforms Fisher vector [35]. The democratic aggrega-
tion assigns a weight to each local descriptor extracted from
an image to ensure all descriptors contribute equally to the
self-similarity of the image. This aggregation scheme was
shown better than the sum aggregation. M3 (Fisher): We
also consider Fisher vector as it has been widely applied in
instance search and object categorization where good per-
formance has been reported [18, 35]. M4 (Deep): It has
been shown recently that the activations in the top layers of
a deep convolutional neural network (CNN) [22] serve as
good features for several computer vision tasks [33| 16, [12].
We evaluate the deep learning features on generic instance
search.

Datasets. Oxford buildings dataset [29], often referred
to as Oxford5k, contains 5062 images downloaded from
Flickr. 55 queries of Oxford landmarks are defined, each by
a query example. Oxford5k is one of the most popular avail-
able datasets for instance search, which has been used by
many works to evaluate their approaches. Figure |lalshows
two buildings from the dataset.

As a second dataset, we collect a set of shoe images from
Amazorl] It consists of 1000 different shoes and in total
6624 images. Each shoe is recorded from multiple view-
ing angles including views from front, back, top, bottom,
side and some others. One image of a shoe is considered
as the query and the goal is to retrieve all the other images
of the same shoe. Although these images are with clean
background as often seen on shopping websites, this is a
challenging dataset mainly due to the presence of consider-
ably large viewpoint variations and self-occlusion. We re-
fer to this dataset as CleanShoes. Figure [1b|shows 3 shoes
from CleanShoes. There is a shoe dataset available, pro-
posed by [7]. However, this dataset is not suited for in-
stance search as it does not contain multiple images for one
shoe. [37] also considers shoe images, but the images are
well aligned, whereas the images in CleanShoes provide a
much wider range of viewpoint variations.

Implementation details. For M1, M2 and M3, we use
the Hessian-Affine detector [26]] to extract interest points.
The SIFT descriptors are turned into RootSIFT [4]. The
full 128D descriptors are used for M1 and M2, follow-
ing [40, [19], while for Fisher vector, the local descriptor is
reduced to 64D using PCA, as the PCA reduction has been
shown important for Fisher vector [18}[35]]. The vocabular-
ies for Oxford5k are trained on Paris buildings [30]], and the
vocabularies for CleanShoes are learned on a random sub-
set of the dataset. The vocabulary size is 20k, 64 and 256
for M1, M2 and M3 respectively, following the correspond-
ing references [40, |19} [18]]. We additionally run a version
of Fisher vector with densely sampled RGB-SIFT descrip-

IThe properties are with the respective owners. The images are shown
here only for scientific purpose.
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Figure 1: (a) Examples of two buildings from Oxford5k,
and (b) Examples of three shoes from CleanShoes. There
exists a much wider range of viewpoint variability in the
shoe images.

tors [43]], denoted by Fisher-D. For M4, we implement the
CNN proposed in and use the output of the second fully
connected layer as the image representation. The CNN is
trained using ImageNet categories. The search performance
is measured using mean average precision (mAP).

Results and discussions. Table[Ilsummarizes the results
on Oxford5k and CleanShoes. ExpVLAD adopts a large vo-
cabulary with 20k visual words and the exponential simi-
larity function. As a result, only close descriptor pairs in
the feature space matter in measuring the similarity of two
examples. This results in better performance than others
on Oxford5k where close and relevant local descriptor pairs
do exist. However, on the shoe images where close and
true matches of local descriptors are rarely present due to
the large appearance variations, ExpVLAD achieves lowest
performance. Both Triemb and Fisher obtain quite good re-
sults on buildings but the results on shoes are low. This is
again caused by the fact that local descriptor matching is
not reliable on the shoe images where large viewing angle
differences are present. Triemb outperforms Fisher, consis-
tent with the observations in [19]]. In this work, we do not

method] Oxford5k  CleanShoes

ExpVLAD 76.54 16.14
Triemb 61.64 25.06
Fisher 56.72 20.94
Fisher-D 53.62 36.27
Deep 45.50 36.73

Table 1: Performance of different methods for instance
search: ExpVLAD [4Q], Triemb [I9], Fisher [18] and
Deep [22, [6]. For Fisher vector, we consider two ver-
sions. Fisher denotes the version with interest points and
SIFT descriptors, and Fisher-D uses densely sampled RGB-
SIFT descriptors. The results on Oxford5k are based on
our own implementation, consistent with those reported
in [40, [5, [6]. ExpVLAD achieves better performance
than others on Oxford5k, but gives lowest result on Clean-
Shoes. On the other hand, Deep obtains best performance
on CleanShoes, but has lower result than others on Ox-
ford5k.

consider the RN normalization because it requires ex-
tra training data to learn the projection matrix and it does
not affect the conclusion we make here. Fisher-D works
better than Fisher on CleanShoes by using color informa-
tion and densely sampled points. Color is a useful cue for
discriminating different shoes, and dense sampling is better
than interest point detector on shoes which do not have rich
textural patterns. However, Fisher-D does not improve over
Fisher on Oxford5k.

Overall, the performance on shoes is much lower than
on the buildings. More interestingly, ExpVLAD achieves
better performance than others on Oxford5k, but gives low-
est result on CleanShoes. On the other hand, Deep obtains
best performance on CleanShoes, but has lower result than
others on Oxford5k. We conclude that none of the existing
methods work well on both buildings, as an example of 2D
near-planar instance search, and shoes, as an example of 3D
full-view instance search.

4. Attributes for generic instance search

Attributes have been shown advantageous in catego-
rization when the training examples are insufficiently cov-
ering the appearance variations in the low-level feature
space [10} 45, 2. In our problem, there is only 1 example
available and there still exists a wide range of appearance
variations. As a second question we raise in the paper, can
we employ attributes to address generic instance search? In
this section, we focus on searching among things known to
be of the same category using category-specific attributes.



In the literature, two types of attributes have been
studied, semantic attributes [23, 2] and non-semantic at-
tributes [45) 136]]. Obtaining semantic attributes requires a
considerable amount of human efforts and sometimes do-
main expertise, making it hard to scale up to a large num-
ber of attributes. Moreover, the manually picked attributes
are not guaranteed to be discriminative for the task under
consideration [45]. On the other hand, non-semantic at-
tributes do not need human annotation and have the capac-
ity to be optimized for the recognition task [45] [36]. For
some tasks, like zero-shot learning [2] and image retrieval
by textual attributes query [38], it is necessary to use hu-
man understandable attributes. However, in instance search
given 1 image query, having semantic meaning is not really
necessary. In this work, we use non-semantic data-driven
attributes. Provided with a set of training instances from
a certain category, we aim to learn automatically a list of
category-specific attributes and use these attribute to per-
form instance search on new instances from the same cate-
gory.

We consider three criteria for learning the category-
specific attributes. As the first criterion, the attributes need
to be able to make distinction among the instances. The
second criterion is that the attributes need to be shareable
among visually similar training instances. Attributes spe-
cific to one training instance are less likely to be descriptive
for unknown instances than those shared by several training
instances. And sharing needs to be restricted only among
visually similar training instances as the latent common pat-
terns among visually dissimilar instances are less likely to
be detected on new instances. The third criterion is that the
redundancy between the learned attributes needs to be low.
Considering the above three standards, we employ an exist-
ing approach [45] which fits well with our considerations.
Given n training instances from the same category and aim-
ing for k attributes, the method learns an instance-attribute
mapping A € R"** by

maximize
A

f1(A) + Af2(A) +7f3(4), (D)

where f1(A), f2(A) and f5(A) are defined as follows:

FAA) =D Ai = Apl3,
i

n (2)
fa(A) = = > SijllAi — Az I3,
2]

f3(4) =~ ATA - I|[3.

A;. is the attribute representation of the i-th instance. f; (A)
ensures instance separability. .S;; represents visual similar-
ity between instance ¢ and instance j, measured a priori in
the low-level feature space, and f2(A) encourages similar

Figure 2: Examples of two cars.

attribute representations between visually similar instances,
inducing shareable attributes. f3(A) penalizes large re-
dundancy between attributes. After getting the instance-
attribute mapping A where each column represents one at-
tribute, k attribute classifiers are learned. The learned clas-
sifiers are applied on the examples of unknown instances to
generate attribute representation, and search is done in the
attribute space.

Datasets. We evaluate the learned category-specific at-
tributes on shoes, cars and buildings. For shoes, we consider
the CleanShoes described in the previous section. For cars,
we collect 1110 images of 270 cars from eBay. We denote
it by Cars. One image of a car is considered as query and
the goal is to find other images of the same car. Figure 2]
shows some examples of two carﬂ For buildings, we com-
pose a small dataset by gathering all the 567 images of the
55 Oxford landmarks from Oxford5k. We denote it by Ox-
fordPure. We reuse the 55 queries defined in Oxford5k.

For training shoe-specific attributes, we collect 2100 im-
ages of 300 shoes from Amazon, the same source where
we collect CleanShoes. For learning car-specific attributes,
we collect 1520 images of 300 cars from eBay. For learn-
ing the building-specific attributes, we use a subset of the
large building dataset introduced in [6]. We randomly pick
30 images per class and select automatically the 300 classes
that are most relevant to OxfordPure according to the visual
similarity. We end up with in total 8756 images as some
URLSs are broken and some classes have less than 30 exam-
ples. For all shoes, cars and buildings, the instances in the
evaluation sets are not present in the training sets.

Implementation details. We use Fisher vector [35] with
densely sampled RGB-SIFT [43] as the underlying repre-
sentation to learn the attribute classifiers. The same Fisher
representation is used to select the relevant training exam-
ples for learning building-specific attributes. The visual
proximity matrix S in equation 2] is built as a mutual 60-
NN adjacent matrix. The proximity between two training
instances is computed as the average similarity between the
images of the two instances in the Fisher vector space.

2The properties are with the respective owners. The images are shown
here only for scientific purpose.



attributes. dim  CleanShoes
Manual 40 18.99
Randomized 40 28.15
Learned 40 37.59
Randomized 1000 55.36
Learned 1000 56.56

Table 2: Performance of different attributes. The result of
randomized attributes is the average of 5 runs. Data-driven
non-semantic attributes outperform manually defined at-
tributes. The learned attributes [45] achieve best perfor-
mance, but if the number of attributes is high, the small
difference in performance with randomized attributes per-
mits skipping the learning phase.

Results and discussions. In the first experiment, we
compare the learned attributes [45] with two alternatives,
manually defined attributes and randomized attributes, on
CleanShoes. For manually defined attributes, we use the
list of attributes proposed by [14]. We manually annotate
the 2100 training images. In the reference, 42 attributes
are defined. However, we merge super-high and high of
“upper” and “heel height” because it is hard to annotate
super-high and high as two different attributes, resulting in
40 attributes. To generate a randomized attribute, we ran-
domly split the training instances into two groups, assum-
ing that instances in one group have a common visual as-
pect which the other instances do not. Such randomized
attributes have also been considered in [10] for image cate-
gorization. As shown in Table 2] with the same number of
attributes, data-driven non-semantic attributes work signifi-
cantly better than the manual attributes. Learned attributes
are considerably better than the randomized ones when the
number of attributes is low. The random splits do not take
into account the underlying visual proximity of the training
instances and the attributes cannot generalize well on new
instances. Such problem is alleviated when a large number
of splits are considered. Figure [3] shows three learned at-
tributes. Although the attributes have no explicit semantic
meaning, they do capture common patterns between shoes.

In the second experiment, we compare the learned at-
tributes with existing approaches evaluated in the previ-
ous section on CleanShoes, Cars and OxfordPure. Table E]
shows the results. The attribute representation works sig-
nificantly better than the others on the shoe dataset and
the car dataset. Attributes are superior in addressing the
large appearance variations caused by the large imaging
angle difference present in the shoe and car images, even
though the attributes are learned from other instances. The
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Figure 3: Three learned attributes. Each row is one at-
tribute and the shoes are the ones that have high response for
that attribute. Although the automatically learned attributes
have no semantic meaning, apparently they capture sharing
patterns among similar shoes. The first attribute represents
boots. The second attribute describes the high heels and the
third one captures the round toe.

method| dim  CleanShoes Cars OxfordPure
ExpVLAD — 16.14 23.70 87.01
Triemb 8064 25.06 18.56 75.33
Fisher 16384 20.94 18.37 70.81
Fisher-D 40960 36.27 20.89 67.41
Deep 4096 36.73 22.36 59.48

Attributes 1000 56.56 51.11 77.36

Table 3: Performance of learned attributes and existing
methods [40, [19, 18} [22]]. Attributes achieve much better
performance than others on shoes and cars, and are on par
with others on buildings.

attribute representation also works well on the buildings.
Besides, compared to others, attribute representation has
a much lower dimensionality. We conclude that the pro-
posed method using automatically learned category-specific
attributes is more generic than other approaches.

S. Categories and attributes for generic in-
stance search

In this section, we consider searching for an instance
from a dataset which contains instances from various cat-
egories. As the category-specific attributes are optimized
to make distinctions among instances of the same category,
they might not be able to distinguish the instance of interest
from the instances of other categories. In order to address
the possible confusion of the query instance with instances
from other categories, we propose to use the category-level
information also.

We consider two ways to capture the category-level in-
formation. First, we adopt the 4096-dimensional output of



Query Inserted into Pascal VOC 2007 classification dataset

Figure 4: Examples of two shoes from StreetShoes. The left
are the query images and the rest are inserted into Pascal
VOC 2007 classification dataset [9] which provides distrac-
tor images. We only consider the shoe segment in the query
example to ensure the target is clear.

the second fully connected layer of a CNN [22] as an ad-
ditional feature, as it has been shown the activations of the
top layers of a CNN capture high-level category-related in-
formation [47)]. The CNN is trained using ImageNet cat-
egories. Second, we build a general category classifier to
alleviate the potential problem of the deep learning feature,
namely the deep learning feature may bring examples that
have common elements with the query instance even if they
are irrelevant, such as skins for shoes and skies for build-
ings. Combining the two types of category-level informa-
tion with the category-specific attributes, the similarity be-
tween a query ¢ and an example d in the search set is com-
puted by

S(Qa d) = Sdeep(‘]a d) + SclaSS(d) + Sattr(q, d): 3)

where Sgeep(q, d) is the similarity of ¢ and d in the deep
learning feature space, Sgqss(d) is the classification re-
sponse on d and Sg4,-(q, d) is the similarity in the attribute
space.

Datasets. We evaluate on shoes and buildings. A small
set of 15 shoes and in total 59 images is collected from two
fashion blogsﬂ These images are recorded in streets with
cluttered background, different from the ‘clean’ images in
CleanShoes. We consider one image of a shoe as the query
and aim to find other images of the same shoe. The shoe im-
ages are inserted into the test and validation parts of the Pas-
cal VOC 2007 classification dataset [9]. The Pascal dataset
provides distractor images. We refer to the dataset contain-
ing the shoe images and the distractors as StreetShoes. Fig-
ure|2_f| shows two examples. To learn the shoe classifier, we

3http://www.pursuitofshoes.com/ and http://www.seaofshoes.com/.
The properties are with the respective owners. The images are shown here
only for scientific purpose.

method| StreetShoes  OxfordSk
Deep(128D) 21.68 62.36
Fisher(128D) 9.38 50.00
Attributes(128D) 3.10 58.37
Deep + Fisher 19.76 61.24
Deep + Attributes 18.43 72.16
Deep + Classifier + Fisher 22.70 56.50
Deep + Classifier + Attributes 30.45 65.14

Table 4: Performance on StreetShoes and Oxford5k. The
proposed method of combining the category-specific at-
tributes with two types of category-level information out-
performs the combination of category-level information
with Fisher vector.

use the 300 ‘clean’ shoes for attributes learning in the pre-
vious section as positive examples and consider the training
part of the Pascal VOC 2007 classification dataset as nega-
tive examples.

For buildings, we use Oxford5k. To train the building
classifier, we use all the training images for attribute learn-
ing in the previous section as positive examples and con-
sider the images from the Pascal VOC 2007 classification
dataset as negative examples. The building images in the
training set are not clean, still containing elements like skies
and trees, and we expect the building classifier will not be
as useful as the shoe classifier.

Implementation details. We only consider the object
region in the query image to ensure the target is clear. It
is worth to mention that although only the object part in
the query image is considered, we cannot completely get
rid of skins for some shoes and skies for some buildings.
We use selective search [42] to generate many candidate
locations in each database image and search locally in the
images as [40]. We adopt a short representation with 128
dimensions. Specifically, we reduce the dimensionality of
the deep learning features and the attribute representations
with a PCA reduction. And for Fisher vectors, we adopt the
whitening technique proposed in [15]], proven better than
PCA. We reuse the attribute classifiers from the previous
section.

Results and discussions. The results are shown in Ta-
ble @] On StreetShoes, the proposed method of combin-
ing category-specific attributes with two types of category-
level information achieves the best performance, 30.45 in
mAP. We observe that when considering deep features alone
as the category-level information, the system brings many
examples of skins. The shoe classifier trained on ‘clean’
shoe images is effective in eliminating these irrelevant ex-
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Figure 5: Top 5 returned images for two query instances. For the first instance, it has 5 relevant images in the search set, and
4 of them are returned in the top 5 positions. For the second instance, there is only 1 relevant example in the search set and it
is returned at the first position. The irrelevant results are very similar visually to the query.

amples. Figure [5] shows the top 5 results of two query in-
stances returned by the proposed method. On Oxford5k, the
same method achieves the second best performance, 65.14.
The best performance is obtained by combining category-
specific attributes with deep features only. The building
classifier does not help probably due to two reasons. One
is that the building classifier is learned on cluttered images
with skies and grasses and hence cannot well handle the
problem of the deep features mentioned before. Had we
had clean building images for training, the classifier would
probably help improve the performance. Another reason is
that a large portion of the images in Oxford5k are buildings
and the classifier may push examples of irrelevant buildings
to the top of the ranking list. The building classifier would
probably be more useful in a larger dataset which contains
many non-building examples. The fact that Oxford5k con-
tains many building images also explains why category-
specific attributes alone can already achieve quite good per-
formance, 58.37. Overall, we conclude that the proposed
method of combining the category-specific attributes with
two types of category-level information is effective, outper-
forming the combination of category-level information with
Fisher vector.

6. Conclusion

In this paper, we pursue generic instance search from 1
example. Firstly, we evaluate existing instance search ap-
proaches on the problem of generic instance search, illus-
trated on buildings and shoes, two contrasting categories of
objects. We observe that what works for buildings does not
necessarily work for shoes. For instance, employs large
visual vocabularies and the exponential similarity function

to emphasize close matches of local descriptors, resulting in
large improvement over other methods when searching for
buildings. However, the same approach achieves worst per-
formance when searching for shoes. The reason is that for
shoes which have much wider range of viewpoint variability
and more sides than buildings, matching local descriptors
precisely between two images is not reliable.

As a second contribution, we propose to use category-
specific attributes to handle the large appearance variations
present in generic instance search. We assume the cat-
egory of the query is known, e.g., from the user input.
When searching among instances from the same category
as the query, attributes outperform existing approaches by
a large margin on shoes and cars. The best performances
on CleanShoes and Cars achieved by existing approaches
are 36.73 and 23.70, while the learned category-specific at-
tributes achieve 56.56 and 51.11 at the expense of knowing
the category of the instance and learning the attributes. For
instance search from only one example, it may be reason-
able to use more user input. On the building set, Oxford-
Pure, the category-specific attributes obtain a comparable
performance. We conclude the proposed method using au-
tomatically learned attributes is more generic than existing
approaches.

Finally, we consider searching for an instance in datasets
containing instances from various categories. We propose
to use the category-level information to address the pos-
sible confusion of the query instance with instances from
other categories. We show combining category-level infor-
mation carried by deep learning features and the categoriza-
tion scores with the category-specific attributes outperforms
combining the category information with Fisher vector.
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