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Abstract

In this paper we summarize our TRECVID 2015 [12] video
recognition experiments. We participated in three tasks:
concept detection, object localization, and event recognition,
where Qualcomm Research focused on concept detection and
object localization and the University of Amsterdam focused
on event detection. For concept detection we start from the
very deep networks that excelled in the ImageNet 2014 com-
petition and redesign them for the purpose of video recog-
nition, emphasizing on training data augmentation as well
as video fine-tuning. Our entry in the localization task is
based on classifying a limited number of boxes in each frame
using deep learning features. The boxes are proposed by an
improved version of selective search. At the core of our mul-
timedia event detection system is an Inception-style deep
convolutional neural network that is trained on the full Im-
ageNet hierarchy with 22k categories. We propose several
operations that combine and generalize the ImageNet cat-
egories to form a desirable set of (super-)categories, while
still being able to train a reliable model. The 2015 edition of
the TRECVID benchmark has been a fruitful participation
for our team, resulting in the best overall result for concept
detection, object localization and event detection.

1 Task I: Concept Detection

Up to 2014 the best video concept detection systems in
TRECVID combined traditional encodings with deep con-
volutional neural networks [16,17], this year we present our
system entry that is based on deep learning only. We start
from the very deep networks that excelled in the ImageNet
2014 competition [13] and redesign them for the purpose of
video recognition. Each of our runs was a mixture of In-
ception Style [18] and VGG Style networks [15]. The input
for each network is raw pixel data, the output are concept
scores. The networks are trained using error back propa-
gation. However, in contrast to ImageNet, there are too
few labeled examples in the TRECVID SIN 2015 set [1] for
deep learning to be effective. To improve the results, we
took networks that had already been trained on ImageNet
and re-trained them for the 60 TRECVID 2015 SIN con-
cepts. We train a network and apply it on the keyframe

and six additional frames per shot, we take the maximum
response as the score per shot.

Inception Style Networks The GoogLeNet/Inception ar-
chitecture [18] with batch normalization [5] was used as the
foundation for the Inception Style approaches. These mod-
els were pre-trained in-house on various selections of the Im-
ageNet ‘fall 2011’ dataset. For fine-tuning Inception mod-
els, an ‘Alex-style’ [8] fully connected head was placed on
top of the Inception 5b layer. These models were then fine-
tuned on different sets of TRECVID data with different sets
of augmentation, including, scale, vignetting, color-casting
and aspect-raio distortion as in [22]. This resulted in a total
of 42 networks.

VGG Style Networks There were several VGG architec-
tures [15] used for the TRECVID entry based on a mix-
ture of VGG Net D and VGG Net E networks. The initial
weights for the networks were obtained from VGGs Ima-
geNet trained models. These models were then fine-tuned
on different sets of 2014 and 2015 TRECVID data with
different sets of augmentation, including, scale, vignetting,
color-casting and aspect-raio distortion as in [22]. This re-
sulted in a total of 14 networks.

1.1 Submitted Runs

We submitted four runs in the SIN task, which we summa-
rize in Figure 1. Our Gargantua run uses a non-weighted
fusion of all available models. It scores an MAP of 0.360
and is the best performer for 7 out of 30 concepts. The
Mann run uses a weighted fusion of all models per category.
This run obtains an MAP of 0.359 and is the best performer
for 6 concepts. Our other runs are based on fewer models,
selected based on their validation set performance. The Ed-
munds run is a non-weighted fusion of 32 models and scores
0.349 MAP (best for 3 concepts). Our Miller run uses only 7
models and obtains the best overall MAP of 0.362, with the
highest score for 12 out of 30 concepts. In this run the inter-
nal validation set was also added during learning, without
verifying its effectiveness at training time. Taken together
our runs are the best performer for 20 out of 30 concepts,
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Figure 1: Comparison of Qualcomm Research video concept detection experiments with other concept detection approaches in the
TRECVID 2015 Semantic Indexing task.
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82 other concept detections

Qualcomm Research concept detections

Figure 2: Qualcomm Research video concept detection runs com-
pared with other concept detection approaches in the TRECVID
2015 Semantic Indexing task.

and the four best performers amongst all submissions, see
Figure 2.

2 Task II: Object Localization

Up to 2014 the best video object localization systems in
TRECVID combined box proposals [19] with traditional en-
codings and deep convolutional neural networks [16,17,20],
this year we present our system entry that is based on box
proposals encoded with deep learning only.

Deep learning features for boxes The deep learning fea-
tures are extracted using two of the Inception deep neural
networks from the SIN taks submission. Compared to a
standard AlexNet (29.9 MAP on our validations set), the

Table 1: Overview of Qualcomm Research object localization exper-
iments on our internal validation set. Note the MAP improvement
of our deep learning system over last years best TRECVID performer
using Fisher with FLAIR [20].

Method Box proposals MAP

Fisher with FLAIR (TZIFT) Selective Search 20.3

Fisher with FLAIR (ZIFT) Selective Search 24.1

Fusion of Fisher with FLAIR (ZIFT+TZIFT) Selective Search 26.5

SVM on AlexNet 1,000 features Selective Search 29.9

SVM on Inception 1,000 features Selective Search 37.3

SVM on Inception 2,048 features Selective Search 39.8

SVM on Inception 2,048 features Selective Search++ 40.2

SVM on Inception 4,096 features Selective Search 40.3

SVM on Inception 4,096 features Selective Search++ 42.4

Fusion of Inception 2,048 & 4,096 Selective Search 43.7

Fusion of Inception 2,048 & 4,096 Selective Search++ 45.3

use of an Inception network brings us an extra 7.4% MAP
(37.3 MAP). One network is trained to recognize 2,048 Im-
ageNet categories deemed relevant to TRECVID, the other
to recognize 4,096 categories. Compared to a more stan-
dard 1,000 ImageNet category network (37.3 MAP), these
obtain 39.8/40.3 MAP on our internal validation set of box-
annotated TRECVID keyframes. When combined, the two
features give us a 43.7 MAP. This is a significant improve-
ment over last years Fisher with FLAIR features [16, 20],
which scored 26.5 MAP on our internal validation set.

Box proposals Our entry in the TRECVID 2015 localiza-
tion task is based on classifying a limited number of boxes
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Figure 3: Comparison of Qualcomm Research video object localization experiments with other localization approaches in the TRECVID
2015 Object Localization task.

Table 2: Overview of Qualcomm Research object localization runs
on our internal validation set.

Run Threshold Max boxes Recall Precision F-scores MAP

Gamora 0.5 1 34% 55% 0.42 30.9

Rocket 0.0 1 41% 42% 0.41 35.0

Starlord -0.5 1 47% 24% 0.32 38.1

Groot -1.1 3 64% 7% 0.12 43.5

in each frame using deep learning features. The boxes are
proposed by an improved version of selective search. In Ta-
ble 1, the difference between the standard proposal method,
known as selective search fast or quick in the literature [19],
and the improved selective search, Selective Search++, is
1.6% MAP: from 43.7 to 45.3 MAP on our internal valida-
tion set.

Localization system training For training an SVM model
to classify boxes, we obtain positive object boxes through
human annotation. The negative examples are picked ran-
domly and then we follow the commonly used hard negative
mining approach to collect extra negative examples [19,20].
With the trained SVM models, we classify the box proposals
generated by selective search. This forms a localization sys-
tem that for each frame outputs a number of boxes together
with confidence scores per box.

2.1 Submitted Runs

All our runs are based on the same set of boxes and confi-
dences (those from the setting which achieved 45.3 MAP),
with different thresholds and limits on the number of boxes
applied. The different choices aim to optimize either pre-
cision or recall, or to strike a balance between both. The
different runs are listed in Table 2 with their characteristics
on our internal validation set. The results for the 10 object
categories evaluated over 6 different measures is shown in
Figure 3.

The Groot run is aimed at high recall: it predicts up to
3 boxes per image, to account for multiple object instances.
However, this run has a worse pixel recall than those that
predict only a single box (Starlord run). In the evalua-
tion only one box is annotated by NIST, and there is a
penalty for predicting 3 boxes if there is only one instance.
Even though this run will find more object instances, it does
not outweigh the penalty for two ‘false positives’. In terms
of iframe recall, it does score better than Starlord. Our
Gamora run aims at high precision. It obtains the highest
score in 19 out of 60 cases, especially in iframe precision,
pixel precision, pixel recall and pixel fscore. Our Rocket run
is in between Gamora and Starlord in terms of the thresh-
old. It is meant to balance precision and recall, but is almost
always outperformed by Gamora (on precision/f-score) or
Starlord (on recall). Overall, given the 10 objects and 6
different measures, we have one run with the highest scores
in 19 cases, and a total of 23 best scores when considering
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Figure 4: Comparison of University of Amsterdam’s video event detection experiments with other event detection approaches in the
TRECVID 2015 Multimedia Event Detection task, as learned from ten ad hoc examples, ten pre-specified examples or hundred pre-
specified examples.

all 4 runs.

3 Task III: Event Recognition

Last year, our event recognition system was founded on a
VideoStory embedding [3]. Rather than relying on prede-
fined concept detectors, and annotations, for the video rep-
resentation [4,7,9], VideoStory learns a representation from
web-harvested video clips and their descriptions. This year
our event detection efforts focus on deep learning. The net-
work, Google’s Inception network [18], is trained on a large
personalized selection of ImageNet concepts [13] and applied
to the frames of the event videos. Below, we outline how
the deep network is used in all submissions and fused with
other modalities.

Event detection without examples For the event detec-
tion submission without using any video training examples,
we employ a semantic embedding space to translate video-
level concept probabilities into event-specific concepts, as
also suggested in [2, 6]. The probabilities are computed by
averaging frame-level scores from the probability layer of
the deep network. The event-specific concepts are taken as
the top-ranking terms from the event kit, based on tf-idf.
The embedding space is a word2vec model [11]. The score
of a test video is calculated as the maximum concept score
across the event-specific concepts. To improve performance,
we a apply a transformation that re-weights concepts based
on concept inter-relatedness. This creates a higher prior for
the concepts integral to the event. We use the similarity in
the word2vec space to generate these weights.

Event detection with ten examples For the event detec-
tion submission based on ten examples, we consider two
runs. A run using only the deep learning features and a fu-

sion run with several other modalities. For the deep learning
features, we compute frame representations twice per second
at both the pool5 layer and the probability layer. For both
layers, the features are averaged per video and then normal-
ized. A histogram intersection kernel SVM model is trained
on the representations from both layers and the scores for a
test video are summed. For the fusion, we combine the two
deep learning features with two additional modalities. The
first modality is based on motion features. MBH and HOG
descriptors are computed along improved dense trajectories
for each video [21]. The motion descriptors are then aggre-
gated into a video representation using Fisher Vectors [14]
and classified using a linear SVM. The second modality is
based on audio features. MFCC coefficients and their first
and second order derivatives are computed in each video and
again aggregated using Fisher Vectors. Here, a histogram
intersection kernel SVM model is trained on the audio rep-
resentations. All four models are fused by summing the
scores.

Event detection with hundred examples For the event
detection submission based on hundred examples, we also
consider a run based on deep learning features only and a
fusion run. The deep learning run is identical to the ten
example run. For the fusion, we use the four represen-
tations as explained above, along with a fifth representa-
tion based on the bag-of-fragments model [10]. The bag-
of-fragments model re-uses the pool5 layer for the frame
representations. For each event, the most discriminative
video fragments are discovered from the hundred training
examples and these fragments are max-pooled over a video
to obtain the fragment-based video representation.



3.1 Submitted Runs

For event detection without examples, our system yields an
inferred Average Precision score of 0.039 on the full test
set. The main results for ten and hundred examples are
shown in Figure 4 using the Mean Inferred AP score. For
both the ad-hoc and pre-specified runs, our system is the
top performer. For the ten ad hoc examples, our system
obtains a score of 0.425. For the ten pre-specified examples,
our fusion run yields the best overall result, while the run
using only the deep learning features is competitive. Finally,
for event detection with hundred pre-specified examples, our
fusion run is the top performer and the run based on deep
learning features only is the runner-up, further indicating
its effectiveness.
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