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Abstract

Computational color constancy aims to estimate the color of the light source. The
performance of many vision tasks, such as object detection and scene understanding,
may benefit from color constancy by using the corrected object colors. Since traditional
color constancy methods are based on specific assumptions, none of those methods can
be used as a universal predictor. Further, shallow learning schemes are used for training-
based color constancy, possibly suffering from limited learning capabilities.

In this paper, we propose a new framework using Deep Neural Networks (DNNs) to
obtain accurate light source estimation. We reformulate color constancy as a DNN-based
regression approach to estimate the color of the light source. The model is trained using
datasets of more than a million images. Experiments show that the proposed algorithm
outperforms the state-of-the-art by 9%. Especially in cross dataset validation, our ap-
proach reduces the median angular error by 35%. Our algorithm operates at more than
100 fps during testing.

1 Introduction
The appearance of the same object under different light sources may vary due to the different
color of the light sources. Computational color constancy [1, 2, 4, 5, 10, 13, 14, 16, 22, 27,
30, 34] aims to recover the color of the light source under which an image is recorded and
subsequently correct for it such that the same objects appear the same. Many computer
vision tasks may benefit from color constancy, such as stereo vision, object recognition, and
tracking.

In general, there are two groups of color constancy algorithms. The first group of algo-
rithms are statistics-based methods, such as the Gray-World [2], the White-Patch [24, 26]
and the Gray-Edge algorithm [32]. These algorithms are based on a number of imaging as-
sumptions. For example, the Gray-World algorithm assumes that the average reflectance in
a scene, from which an image is taken, is gray. The White-Patch algorithm is based on the
assumption that the maximum response of the color channels is caused by a perfect white
reflector. Because statistics-based algorithms are based on restrictive assumptions of the
imaging conditions, they are limited in their applicability. The second group of algorithms
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are learning-based approaches, such as the gamut mapping algorithm [13], the svr-based
algorithm [15], neural networks [29] and the exemplar-based algorithm [23]. In general,
existing learning-based methods are constrained to shallow learning models based on hand-
crafted, low-level visual features such as pixels and edges. However, image features are
intrinsically hierarchical and should automatically be learnt from the image data to avoid
any bias in (hand-crafted) feature construction.

To this end, instead of learning shallow feature representations, we exploit deep learning
architectures by means of Convolutional Neural Networks (CNN). Different from existing
methods which rely on predefined low-level features, we propose to use CNNs to learn fea-
ture hierarchies to achieve robust color constancy. A deep CNN model is used consisting
of eight (hidden) layers. Such a deep model will yield multi-scale image features composed
of pixels, edges, object parts and object models. Our deep learning approach needs large
amounts of data with ground-truth for training. Unfortunately, there are no such datasets
available for color constancy. Therefore, we propose a different training approach. Our
approach consists of learning a deep architecture using a sequence of training data for the
estimation of the color of the light source. First, a hierarchy of visual features is automat-
ically learnt to capture the essence of image structures of generic images. To this end, the
model is trained on the ImageNet, which contains more than 1.2 million images, for the task
of image classification. Then, the obtained generic feature presentation is adjusted to the
color constancy problem by training on the ImageNet dataset using existing color constancy
algorithms to provide the labels. Finally, the obtained deep learning architecture is retrained
on existing (publicly available) ground truth datasets. Although, the (off-line) training is
computationally expensive, the (online) testing, to estimate the light source color, is real-
time (i.e. more than 100 fps).

In summary, the novel contributions are as follows. Our approach 1) is not constrained by
any imaging assumption, 2) provides different deep learning frameworks for color constancy,
3) learns image features instead of hand-crafted ones, 4) provides different hierarchical visual
features rather than low-level ones, and 5) provides real time color constancy.

2 Color Constancy

For a Lambertian surface, the image value fc(x) = { fR, fG, fB} is defined by the light source
e(λ ), the surface reflection s(x,λ ) and the camera sensitivity function c(λ ):

fc(x) =
∫

ω

e(λ )s(x,λ )c(λ )dλ , (1)

where ω is the visible spectrum of the wavelength λ , c = {R,G,B} and x is the spatial
coordinate. With the assumption that the recorded color of the light source depends on the
color of the light source e(λ ) and the camera sensitivity function c(λ ), the color of the light
source is defined as follows:

e =

 eR
eG
eB

=
∫

ω

e(λ )c(λ )dλ . (2)

Following the literature [12, 17, 20], we use the diagonal model to represent the change
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of the color of the light source: Ru
Gu
Bu

=

 eR 0 0
0 eG 0
0 0 eB

 Rc
Gc
Bc

 , (3)

where {Ru,Gu,Bu} is the color taken under a unknown light source, {Rc,Gc,Bc} is the trans-
formed color so as it appears as it has been recorded by a canonical light source. {eR,eG,eB}
is the color of the light source to be estimated. In this paper, we use perfect white (i.e.
( 1√

3
, 1√

3
, 1√

3
)T as the canonical illuminant. To obtain the image under the canonical illumi-

nant, the diagonal model is used.

3 Deep Learning for Color Constancy
A three dimensional vector Y = (yR,yG,yB)

T is used to represent the light source. An image
with a labeled ground-truth light source is denoted by (x,Y) where x is the image data and Y
is the light source. Note that the light source used in our algorithm is normalized as follows:

Y←−
√

3
Y√

y2
R + y2

G + y2
B

, (4)

ensuring that light sources with different intensities have the same scale.

3.1 DNN-based Regression
We formulate color constancy as a regression problem:

Ŷ = ψ(x;θ), (5)

where Ŷ is the output estimation of the light source, x is the input image, ψ is the model
and θ represents the parameters of the model. In this paper, model ψ is a deep convolutional
neural network. We build model ψ based on the architecture of [25] as it provides outstand-
ing performance for image classification and object localization. Our architecture has eight
layers including five convolutional and three fully connected layers. The input of the first
layer of the model is an image with a predefined size which is equal to the number of pixels
multiplied by the number of channels (i.e. 3). Hence, the model uses raw images as input.
No hand crafted features are extracted beforehand. As shown in Figure 1, the last layer of
the model is the output target value of the regression which is a three dimensional vector.

The model consists of eight layers denoted by C1, C2, C3, C4, C5, F6, F7, F8. The
first five layers are convolutional layers. The last three layers are fully collected layers. The
last layer F8 is the output of the model which has three dimensions. Combining all the
layers, the total number of parameters in this model is very large. Therefore, large scale
datasets with ground-truth light source labels are required to directly apply this model to
the color constancy problem. However, such large scale dataset are not available. To this
end, we propose an alternative training procedure consisting of different training steps in the
following section.

3.2 Sequential Training
In this section, we discuss our sequential training procedure. In the first step, the model is
trained on the dataset of ImageNet LSVRC-2010 [7] which contains 1.2 million images. The

Citation
Citation
{Krizhevsky, Krizhevsky, and Hinton} 2012

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009



4 LOU ET AL.: COLOR CONSTANCY BY DEEP LEARNING

Figure 1: The architecture of the convolutional neural network. This architecture has eight
layers in total. The first five layers are convolutional layers and the last three layers are fully
connected layers. The input of the model is a raw image with three channels (i.e. R, G, B).
The output of the model is a three dimension vector corresponding to the estimated color of
the light source. The numbers in the figure represent the output dimensions of each layer.

aim is to generate a hierarchy of visual features to encompass image structures of generic
images. Then, this model is adjusted to the color constancy problem by retraining on the
ImageNet dataset using labels computed by existing color constancy algorithms. Finally, the
obtained deep learning architecture is retrained on (real, but smaller) ground-truth datasets.

3.2.1 Net1: Training on ImageNet using Object Labels

Figure 2: The first step of our training process: Training on ImageNet using Object Labels.

The ImageNet dataset contains 1.2 millions of labeled images. Each image has a label
indicating which object is present in the image. There are 1000 object categories. In this
step, we train the model on ImageNet to derive features for object description. In this way, a
rich and generic feature hierarchy is learnt to capture the complex visual patterns in generic,
real-world images. As shown in Figure 2, the ‘network’ is the first seven layers of the model
shown in Figure 1. The last layer is replaced by a 1000 dimensional vector. The soft-
max loss function is used for training. The aim of the first training step is to obtain a pre-
trained feature model representing general images. Since the ImageNet dataset contains 1000
object categories, it provides a variant back-propagation information module for training. We
denote the parameters obtained by training on ImageNet as the Net1 network.

3.2.2 Net2: Training on ImageNet with Net1 Parameters using Labels from Existing
Color Constancy Methods

Now, the obtained model is retrained on ImageNet in the context of color constancy. Images
in ImageNet do not have corresponding ground-truth light source labels. Therefore, existing
color constancy methods are used to estimate the color of the light source Ŷ for each image in
ImageNet. As shown in Figure 3, the estimated light source Ŷ = (ŷr, ŷg, ŷb)

T is used as label
to train the model. We use the Euclidian loss, which results in the following optimization
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Figure 3: The second step of our training process: Training on ImageNet with Net1 Param-
eters using labels of existing color constancy methods.

function:
argmin

θ
∑

i
||Ŷi−ψ(xi;θ)||22, (6)

where Ŷi is the estimated light source for the i− th image xi using different existing color
constancy methods such as the gray-shades, gray-edge or gamut mapping algorithm. ψ(xi;θ)
is the light source prediction using the model, as defined by Equation 5.

In this stage, the aim is to retrain and adjust the parameters of Net1 for the purpose
of color constancy. We perform retraining of the (initial) parameters of Net1 based on
light source estimation obtained by existing color constancy algorithms as labels. Although
any other or combination of color constancy algorithms can be used to generate the la-
bels for the ImageNet dataset, the gray-shades and gray-edge algorithms are used due to
their efficiency and good performance. The resulting sets of parameters are denoted by
Net2−GrayShades and Net2−GrayEdge respectively. The obtained feature represen-
tations Net2−GrayShades and Net2−GrayEdge are merely adopted (color constancy)
versions of Net1. It is hypothesized that the obtained models Net2−GrayShades and
Net2−GrayEdge replicate the performance of the color constancy methods used to pro-
vide the labels i.e. the gray-shades and gray-edge algorithms.

3.2.3 Net3: Retraining Net2 parameters on datasets with real ground-truth labels

Figure 4: The parameters of the deep model, corresponding to the coefficients of the feature
hierarchy obtained in the previous learning stages, are fine-tuned using existing (publicly
available) datasets with ground-truth label sets (e.g. Grayball [6] and ColorChecker [19]).

The parameters of the obtained deep model, corresponding to the coefficients of the fea-
ture hierarchy obtained in the previous learning stages, are retrained using existing (publicly
available) datasets with (real) ground-truth label sets (e.g. Grayball [6] and ColorChecker
[19]). In these datasets, the ground-truth color of the light source is given for each image un-
der which it has been recorded. In the experiments, it will be shown that Net2−GrayShades
outperforms Net2−GrayEdge. Therefore, we use Net2−GrayShades as initial parameters
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to retrain the model with a Euclidian loss. The parameters of this network are denoted by
Net3.
4 Experiments
In this section, we assess the performance of the proposed deep learning framework and
compare it with state-of-the-art color constancy algorithms.

4.1 Dataset and Evaluation Criterion
Two standard benchmark datasets, the Grayball [6] and the ColorChecker [19], are used. The
Grayball dataset contains 11,346 real-world images. In each image, a gray ball is placed in
the right-bottom of the image to obtain the ground-truth light color. During training and
testing, the gray ball has been removed from the image. Gamma correction has been ap-
plied. The ColorChecker dataset contains 568 real-world images. Since each image has a
ColorChecker placed in the scene, the illuminant ground truth is known. The ColorChecker
has been removed from the image during training and testing.

To evaluate the performance of the different algorithms, the angular error is used:

ε = cos−1(ê,e), (7)

where e is the ground-truth light source and ê is the estimated one. The mean, median and
standard deviation of the angular errors are reported for each algorithm.

For the Grayball [6] dataset, following previous papers, we split the dataset into 15 sub-
sets. Each time, one subset is used as the testing set and all the remaining images are used
as training sets. The experiment is completed after each subset has been used as testing set.
For the ColorChecker [19] dataset, we split the dataset into 3 subsets. Each time, one subset
is used as testing and the other two sets are used as training. The final result is reported by
averaging the result for each image.

4.2 Experiment 1: Grayball Dataset
As stated above, for the Grayball dataset, 15-fold cross validation is used. We report on the
results of Gray-Shades, Gray-Edge, the proposed model trained on ImageNet (i.e. Net2−
GrayShades and Net2−GrayEdge in Section 3.2.2) and the proposed model retrained on
the Grayball dataset (i.e. Net3 in Section 3.2.3).

Table 1: The results on the Grayball dataset.

Methods mean median std
Gray-shades [11] 5.4◦ 4.6◦ 3.8◦

Net2−GrayShades (This paper) 5.5◦ 4.7◦ 3.8◦

Net3−GrayShades (This paper) 4.8◦ 3.7◦ 3.9◦

Gray-edge [32] 6.2◦ 4.6◦ 5.0◦

Net2−GrayEdge (This paper) 6.5◦ 5.6◦ 4.4◦

Net3−GrayEdge (This paper) 5.2◦ 3.9◦ 4.5◦

As described in section 3.2.2, we use the resulting parameters of the Gray-Shades and
Gray-Edge as labels to retrain the model on ImageNet to obtain Net2−GrayShades and
Net2−GrayEdge respectively. Table 1 shows that Net2−GrayShades and Net2−GrayEdge
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have similar performance as the Gray-shades respectively the Gray-Edge algorithm. As hy-
pothesized, the obtained convolutional neural network Net2 replicates the performance of
the color constancy method(s) used to provide the labels. Then, after retraining Net2−
GrayShades on real data (i.e. Grayball dataset) the obtained deep model Net3 significantly
outperforms the previous CNN’s. In the remainder, Net2 is equal to Net2−GrayShades,
because Net2−GrayShades outperforms Net2−GrayEdge.

In conclusion, the proposed deep learning approach is able to automatically learn feature
hierarchies to capture the essence of visual patterns in images to achieve color constancy.

4.3 Experiment 2: Extended Grayball Dataset: Data Argumentation

(a) GT(0◦) (b) 4.14◦ (c) 6.80◦ (d) 9.36◦ (e) 11.22◦ (f) 22.78◦

Figure 5: A number of images generated by applying simulated light sources on the original
images.

Table 2: Results obtained on the Grayball dataset. NetFinal is trained on the extended Grayball
dataset.

Methods mean median std
Elfiky et al. (TIP 2014) [9] 5.4◦ 4.5◦ -
Prinet et al. (ICCV 2013 ) [28] 5.4◦ 4.6◦ -
Gao et al. (ECCV 2014) [18] 6.0◦ 5.1◦ -
Joze et al. (PAMI 2014) [23] 4.4◦ 3.3◦ -
Net3 (This paper) 4.8◦ 3.7◦ 3.9◦

NetFinal (This paper) 3.9◦ 3.0◦ 3.3◦

Deep learning approaches greatly benefit from large training datasets. Since ground-truth
labels are expensive to get (especially for the color constancy problem), data augmentation
is widely exploited by different deep learning approaches. For example, in image denoising,
extra training data is generated by applying simulated noise [33]. In deep learning-based
image classification, Krizhevsky et.al [25] use image translations and horizontal reflections
to generate more training images.

Inspired by these data augmentation methods, in this paper, we use data augmentation
to obtain more training data for color constancy. Specifically, for each training image, we
correct for the color of the light source using the diagonal model of the ground-truth. Using
Eq. 3, the canonical image is obtained, as shown in Fig. 5(a). Then, simulated light sources
can be applied to the corrected image using the diagonal model in Eq. 3. Any simulated light
source color can be used i.e. the Spectral Power Distribution (SPD) of different light sources
such as tungsten halogen, fluorescent lamp, high pressure sodium, or daylight. However,
many of them are less frequently present than others depending on the scenes from which the
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images are recorded. Therefore, in this paper, simulated light sources are derived from the
training dataset. By clustering the ground-truth light color of the training set into k clusters,
we obtain k simulated light sources by collecting the means of each cluster. In this way,
per image, k additional training images are obtained with different ground-truth illuminant
(k = 10 in our experiments). Note that data augmentation is only performed on the training
images. We test the algorithm on the original testing images. We denote the proposed model
trained on the extended Grayball dataset as NetFinal. Fig. 5 shows a number of images
obtained by the proposed data augmentation method.

It can be derived from Table 2, that our deep learning model NetFinal significantly out-
performs all previous CNN’s models, and all existing state-of-the-art algorithms. It reduces
the median angular error by 9%, from 3.3 ([23]) to 3.0. Further, our algorithm is more effi-
cient and general than Joze et al. [23]. Their method is computational expensive due to e.g.
image segmentation. Furthermore, the method of Joze et al. [23] requires nearest neighbour
classification for each segment of the testing image. Our algorithm processes images in more
than 100 fps with GPU implementation (i.e. real-time color constancy).

4.4 Experiment 3: ColorChecker Dataset: Small Dataset
In this section, the proposed deep learning approach is evaluated and compared to state-
of-the-art algorithms on the ColorChecker [19] dataset. During training, the parameters of
Net2 (in section 3.2.2) obtained by training on imagenet is used as the initial parameters of
the network. Then, we retrain the parameters on the ColorChecker [19] dataset to obtain
the final CNN, denoted by NetColorChecker. No data augmentation is used. Further, the
ColorChecker dataset is small. The average results are reported in Table 3. We only report
the mean and median results for algorithms that did not report their standard deviation in their
papers. It can be derived that the proposed algorithm obtains similar results in comparison
to [23], but the proposed method outperforms all the other algorithms.

Table 3: Results obtained for the ColorChecker dataset. NetColorChecker is trained on the Imagenet
dataset and retrained on ColorChecker.

Methods mean median std
Drew et al. (ECCV 2012) [8] 4.1◦ 2.8◦ -
Gijsenij et al. (IJCV 2008)[21] 4.1◦ 2.5◦ -
Chakrabarti et al. (PAMI 2012) [3] 3.7◦ 3.0◦ -
Weijer et al. (ICCV 2007) [31] 3.5◦ 2.5◦ -
Gao et al. (ECCV 2014) [18] 3.4◦ 2.6◦ -
Joze et al. (PAMI 2014) [23] 3.1◦ 2.3◦ -
NetColorChecker (This paper) 3.1◦ 2.3◦ 3.3◦

4.5 Experiment 4: Cross Dataset Validation
In this section, we evaluate the generalization capabilities of the proposed algorithm. To this
end, the model is trained on the extended Grayball dataset [6], (i.e. NetFinal in section 4.3),
and tested on the ColorChecker dataset [19]. None of the previous papers have reported on
the cross (inter) dataset except for Joze et al. [23]. From Table 4, it can be derived that our
algorithm significantly outperforms the method of [23]. The error reduction is 35% in terms
of median angular error. This is an indication that the proposed CNN approach is able to
learn generic feature hierarchies to achieve robust color constancy.
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Table 4: Results obtained on the ColorChecker dataset. Our model and the model of Joze et al. [23]
are trained on the Grayball dataset and tested on the ColorChecker. Our NetFinal is the fine-tuned
model on Extended Grayball as shown in section 4.3.

Methods mean median std
Joze et al. (PAMI 2014) [23] 6.5◦ 5.1◦ -
NetFinal (This paper) 4.7◦ 3.3◦ 5.3◦

4.6 Experiment 5: Feature Visualization
Different from existing methods which rely on predefined low-level features, the proposed
CNN learn multi-scale features to achieve robust color constancy. To illustrate the inclusion
of higher-order image structures, in Figure 6, the F7 hidden unit is shown. F7 features are
extracted first from each image of the Grayball dataset. Per one dimensional feature, we
cluster the features into groups. Then, the average image of the Grayball for each group is
shown. As shown in Figure 6, it can be derived that a number of high level image structures
are indicated by the hidden unit of F7.

Figure 6: Visualization of hidden unit of F7. Each row visualizes one dimension of F7 shown
in figure 1.

4.7 Experiment 6: Training Scheme Validation
Because of the lack of large scale training datasets, we have proposed a three-step learning
strategy to train CNNŠs to estimate the color of the light source. To validate this approach,
the influence of the pre-training steps is investigated. Therefore, two experiments are con-
ducted without pre-training. First, instead of using the parameters obtained in the first step as
the initial parameters, we directly train the network on the ImageNet dataset with generated
light sources. For the second experiment, instead of using the parameters obtained in the
second step as the initial parameters, we directly train and evaluate the obtained network on
the Grayball dataset.

As shown in 5, the model (directly trained on ImageNet i.e. without pre-training) with
light source generated by Gray-shades does not perform as good as the Gray-shades algo-
rithm. This implies that the model (directly trained on ImageNet) is not sufficiently able to
learn proper features for color constancy. In Figure 7, we show the parameters learned with
pre-training and without pre-training. For the parameters with pre-training, clear semantic,
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Table 5: Results on the Grayball dataset without pre-training.

Methods mean median std
Gray-shades [11] 5.4◦ 4.6◦ 3.8◦

Directly trained on ImageNet 6.7◦ 5.6◦ 4.6◦

Directly trained on Grayball 8.7 7.1 4.9

hierarchical image patterns are obtained. However, for the parameters without pre-training,
the patterns are noisy and less distinctive. In conclusion, our three-step training strategy is
a valid approach to compute proper image features (for color constancy) which are intrinsi-
cally hierarchical and represent the underlying image structures.

(a) conv1 (b) conv2 (c) conv3 (c) conv4
Figure 7: Visualization of parameters learned with and without pre-training. The first row is
parameters learned with pre-training and the second row is parameters without pre-training.

5 Conclusion
Previous color constancy algorithms are limited by their assumptions, hand-crafted features
and shallow learning models. Therefore, for the first time, we have introduced deep learning
for color constancy enabling deep feature representations.

Our experiments show that the deep learning framework obtains accurate results on real-
world datasets. For inter dataset cross validation, it is demonstrated that the proposed algo-
rithm outperforms the state-of-the-art. Our algorithm is very efficient as it processes images
with 100 fps.
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