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ABSTRACT

We propose a patch-specific metric learning method to im-
prove matching performance of local descriptors. Existing
methodologies typically focus on invariance, by completely
considering, or completely disregarding all variations. We
propose a metric learning method that is robust to only a range
of variations. The ability to choose the level of robustness al-
lows us to fine-tune the trade-off between invariance and dis-
criminative power.

We learn a distance metric for each patch independently
by sampling from a set of relevant image transformations.
These transformations give a-priori knowledge about the be-
havior of the query patch under the applied transformation
in feature space. We learn the robust metric by either fully
generating only the relevant range of transformations, or by a
novel direct metric. The matching between query patch and
data is performed with this new metric.

Results on the ALOI dataset show that the proposed
method improves performance of SIFT by 6.22% for geomet-
ric and 4.43% for photometric transformations.

1. INTRODUCTION

Viewing and lighting condition changes in real-world scenes
cause substantial variations in image feature representations.
Significant progress has been made in developing image rep-
resentations that are invariant to transformations such as pho-
tometry [1, 2] or geometry [3, 4, 5, 6]. Image representations
invariant to such changes are beneficial for applications such
as object recognition, image retrieval and scene recognition.

A full invariant representation, unfortunately, leads to a
decrease in discriminative power [7]. This drawback is due to
distinguishing transformations that a full invariant representa-
tion cannot capture. For example, under rotational invariance
a ”6” is identical to a ”9”, and under shading invariance the
texture of ”grass” turns into ”moss”. Another disadvantage of
invariant image representations is that they negatively influ-
ence stability [8, 9, 10]. This is due to their sensitivity to noise
when the image signal is low or ambiguous. For example, a
rotational invariant based on the dominant orientation [5] be-
comes unstable when multiple equally dominant orientations
are present. Illumination invariant representations based on
intensity normalization such as normalized-rgb or hue [2] be-
come unstable for low intensity values.

Fig. 1. 2D PCA projection of SIFT extracted from dataset
samples (blue); 1000 affine transformations of the top-left im-
age patch (red); same-class samples (yellow). The top row is
the original space, the bottom row is after learning the metric.

Current invariant methods are always ”on”. One can ei-
ther choose to use the invariance, or choose not to use it.
There is no middle-ground. It is not possible to have invari-
ance for only some shading or only slight rotations. These
rigid properties of current invariants play a central role in the
trade-off between invariance and discriminative power. Here,
we propose to replace these binary on/off invariants, by steer-
ing the invariance to a limited range of disturbances. Such
a limited degree of invariance is called robustness. For ex-
ample, in the case of rotation, the proposed method can de-
termine that a ”6” is only invariant up to ±45o of (and thus
robust to) rotation, therefore eliminating the confusion with
”9”.

By allowing a degree of invariance, a single global image
representation cannot be used as it depends on the specific
image content how the limited transformation range will take
effect, which is illustrated by the ”6” and ”9” example. There-
fore, the proposed method is required to achieve robustness
on a per-patch basis. Fig. 1 (top) illustrates that feature dis-
tributions after a transformation depend on the patch content,
since even instances within the same class behave differently
(red versus yellow). The bottom row of Fig. 1 illustrates the
effect of steerable invariance applied to each patch.

To achieve robustness, we compute a Mahalanobis metric
for each individual patch. In effect, the metric weights the
subset of feature dimensions that require robustness. For this,
a relevant subset of transformations is generated and a met-
ric that is specific for only those transformations is learned.
We present two approaches for learning the metric: (i) full
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and (ii) direct. The full method generates synthetic image
patches, extracts descriptors for each patch, and obtains ro-
bustness through a metric that is learned on these descriptors.
In the direct approach, we generate a transformation map only
once, and use this map to directly estimate the metric from the
patch without explicitly generating any synthetic images.

2. RELATED WORK

Approaches that aim to achieve (full) invariance either use a
transformation model based on the laws of physics [1, 2] or a
model of the observed variations [3, 4, 11, 5]. The two disad-
vantages of invariants, stability and discriminative power, can
be addressed by propagating camera noise parameters [8] or
by deriving quasi-invariants [9]. Noise propagation requires
proper noise estimation and the quasi-invariants are incompa-
rable over different images and thus cannot be used for match-
ing.

In contrast to employing pre-determined models, (deep)
learning methods learn invariant features from unsupervised
training examples [12, 13, 14]. Such methods do not explic-
itly model invariance as they attain robustness from training
examples. Therefore, learning methods require large amounts
of training data which is hard to obtain. Moreover, learning
approaches do not directly incorporate known physical laws
of the world. In this work, we use a hybrid approach of mod-
eling robustness by learning from synthetically generated ge-
ometric and photometric data.

Synthetically generated data can be used to directly cre-
ate variation in the train and test samples [15, 16, 17]. Other
brute-force methods like ASIFT [18] generate a full range of
affine transformations for both training and testing images
which are used in an exhaustive matching scheme. Similar
to our work, Simard et al. [19] avoid brute-force approaches
and use synthetically generated images to learn a robust dis-
tance metric which is tangent to the manifold that is spanned
by the generated transformations. We also learn a robust met-
ric, however, where Simard et al. [19] require pixel values to
estimate a manifold, our method estimates a Mahalanobis dis-
tance, which is applicable to any feature representation such
as SIFT. To improve discriminability of a local descriptor,
Cai et al [15] also propose to learn a projection matrix for
a limited range of affine transformations through generated
data. However, it is important to note that the authors learn a
global projection whereas this paper proposes to learn patch
specific projections. Fig. 1 illustrates that the same transfor-
mations applied to even the same class instances has different
effects for different patches. These variations are thus patch-
dependent and might not reflect the appropriate effect on other
patches from the same class.

This paper has following contributions: (i) we demon-
strate that a full invariant representation leads to a decrease
in the discriminative power of a descriptor. Accordingly, we
propose to limit the degree of invariance and augment the dis-
criminativeness of a descriptor. (ii) we demonstrate that a sin-

gle global image representation cannot be used as the effect
of transformation essentially depends on the specific image
content. Thus, a patch specific metric is proposed. (iii) we
propose two alternatives to learn per-patch metric: by either
explicitly applying transformations or obtaining directly from
the patch.

3. PER-PATCH METRIC LEARNING

We first develop a metric that is learned from synthetically
generated transformations of photometric and geometric dis-
tortions.
Geometric Transformations. Images are subject to geomet-
ric distortions introduced by perspective effects caused by
view point changes. For small patches, the perspective trans-
formation (x′, y′)T can be approximated by an affine trans-
formation for a given point (x, y)T asx′y′

1

 =

sx cosα −τx sinα tx
τy sinα sy cosα ty

0 0 1

xy
1

 , (1)

where s denotes scale, τ represents shearing, α is the ro-
tation angle, and t denotes translation. Sample generation
involves repetitive random selection from appropriate param-
eter ranges.
Photometric Transformations. To model photometric
changes, we assume Lambertian reflection. Accordingly,
the color response (I) for the visible spectrum (λ), using
a camera with spectral sensitivity (f ) and an illumination
source with the spectral power distribution (e) can be defined
as

I = ~n.~s

∫
λ

e(λ)ρ(λ)f(λ)dλ. (2)

s, n and ρ denote the illumination direction, the surface nor-
mal and the surface albedo respectively. To obtain photomet-
ric robustness, we generate variations caused by Lambert’s
Law. For the same surface patch the viewpoint and illuminant
spectral power distribution are the same. The color response
can only vary due to changes in illumination direction (i.e. ρ,
f , e and n remain constant). Therefore, the changes in I can
be modeled by illuminating the patch from different positions
(See Fig. 2).

The center of the image patches are considered to be at
(0, 0, 0) and placed perpendicular to the light source posi-
tion. Then, the light source position is systematically sampled
within a certain radius. The patches are sufficiently small to
be assumed planar. Hence, surface normals are equal for the
patch under consideration. Thus, the light source direction
is the only factor determining the effect of the photometrical
changes.

3.1. Metric Learning

A Mahalanobis distance metric between image features xi
and xj is parameterized by the matrix M ,
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Fig. 2. Illustration of photometric changes. The color re-
sponse of point p changes due the angle between the incident
light (L) and surface normal (yellow arrow) at the point p.
According to Lambertian law, if this angle becomes smaller,
the color response becomes brighter.

dM (xi,xj) =
√
(xi − xj)TM(xi − xj), (3)

where M is a positive semi-definite matrix. A straightfor-
ward approach to compute M is to use M = C−1 where C is
the empirical feature covariance of the training data [20, 21].
The rationale behind using the inverse covariance as a metric
is that a high variance in a feature dimension means that this
dimension is not very stable. The most informative dimen-
sions are those that have low variances.

For large-scale matching it is convenient to use fast index-
ing techniques such as trees [22]. Such techniques typically
work with the Euclidean distance. To this end, the metric can
be rewritten to

(xi − xj)
TWTW (xi − xj) = ||Wxi −Wxj ||2, (4)

where W = M−
1
2 . This effectively scales the feature

space with an affine transformation W to allow the Euclidean
distance to be used for metric M .

Robustness is obtained by generating a limited range of
transformations for a single patch. From these generated sam-
ples C is estimated, which is then used to compute M .

We coin this simple method for metric learning the full
approach, since it needs to fully generate a large number of
transformations for a patch in order to extract the image fea-
tures and estimate the covariance matrix.

3.2. Direct Metric Estimation

Instead of using the brute-force approach of computing C
by explicitly generating patches and extracting features from
them, we propose a direct approach to estimate the metric
per-patch. In the direct approach, the covariance is estimated
from a single patch.

Let (x be an image feature vector as a column, with N
dimensions. For clarity, we start with pixel values to explain
the direct metric estimation, i.e. x is a vector of pixels. Later
we show our method readily applies to other descriptors.
Pixel Values. The direct metric is a combination of two terms,
a transformation probability DT that a pixel moves to a dif-
ferent position after transformation T , and the patch-specific
covariance term V of the feature values.

Let DT be a symmetric matrix of size NxN , containing
the probabilities PT (i|j) of a pixel at position j affecting the
position of pixel i under a transformation T . Note that this
transformation is independent of the actual feature values.
MatrixDT represents the per-pixel transformation probability
which is determined by simulating a large set of transforma-
tions and comparing the transformed patch with the ground
truth location obtained through the homography in eq 1.

The matrix V of size NxN is the variance matrix with el-
ements σ(i, j) representing the covariance of pixel values at
position i with respect to position j. To compute the covari-
ance matrix, we need the expected average weighted pixel
value xi at position i after the transformation T , which is
given by:

E[xT (i)] =
N2∑
j=0

PT (i|j)x(j) = DTx
T , (5)

where xT represents the pixel vector x after the transfor-
mation T . The expected value of the transformed image xT
is denoted by E[xT (i)] and represents the average image of
all transformations that are present in DT . The covariance
σ(i, j) after transformation T is then

σ(i, j) = E
[(
E[xT (i)]− xT (i)

)(
E[xT (j)]− xT (j)

)]
. (6)

Note that in the transformation of xT (i) and xT (j) it is al-
lowed for pixels to move independently to other pixels. Eq 6
can be rewritten in matrix form to obtain V directly

WV = [[DT > 0]] •
(
DTx1

T − (xT1)T
)
, (7)

V =
1

N2
DT •WVW

T
V , (8)

where 1 is a column vector of all ones, • denotes element-
wise multiplication and [[·]] indicate Iverson brackets which
resolves a (matrix) element to 1 when the argument is true,
and 0 otherwise. The metric is computed by M = V −1, and
the transformation by W = V −

1
2 .

SIFT. For other descriptors, the DT matrix of transformation
probabilities can be reused and is not required to be recom-
puted. The V matrix, however, has to be adapted to the spe-
cific form of the descriptor. In the case of SIFT, DT is con-
verted to Dsift

T of size 128x128. In contrast to generating all
possible sift values, Dsift

T has to be computed once only.
The 128 dimensions of SIFT comprise of a 4x4 spatial

grid and 8 angular bins (4x4x8). We use the pixel-based trans-
formation probabilities DT to directly calculate the probabil-
ity P sift

T (i|j) for spatial SIFT bins i and j with

P SIFT
T (i|j) =

N2∑
y=0

[[f(x) = i]][[f(y) = j]]PT (x|y), (9)

where the function f(x) maps the pixel at location x to the
correct SIFT-bin i. For the angular transformation probabili-
ties, we assume independence with the spatial bins. The unit
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circle is sampled with 360 vectors and transformations are ap-
plied to these vectors. Since the original orientation is known,
this results in counting how often a vector switches bins after
the transformations. The joint 128x128 matrix Dsift

T is calcu-
lated by multiplying the angular probabilities with the spatial
probabilities.

4. EXPERIMENTS

Dataset and Implementation Details. The full and direct
metric methods are evaluated on the ALOI dataset [23] for
SIFT descriptor robustness against geometric and photomet-
ric distortions. The ALOI dataset contains 1000 objects un-
der varying imaging conditions. We use variations due to
camera viewpoint and illumination direction as geometric and
photometric distortions respectively. To annotate matching
pairs, the same procedure is followed as in [24]. In total 8300
matching pairs are extracted of which 200 are used for vali-
dation. Classification is performed by feature matching in a
1-NN classification scheme.

4.1. Geometric Robustness

First, we evaluate per-patch metric learning under geomet-
ric distortions. The performance of the proposed methods is
compared against the original SIFT and other methods.

The optimal parameter ranges are obtained on the vali-
dation set. Parameters are repetitively sampled (1500 times)
from various ranges to either generate and apply geometric
transformations in the full approach or to estimate the trans-
formation probabilities PT (i|j) in the direct approach. A
joint optimization of parameters on the validation set yields
a translation in [-2:2] and shearing in [-.1:.1] for the SIFT de-
scriptors. Scale and orientation do not affect the performance
as the positional difference between viewpoints does not yield
large scale and orientation variations.

The results in Table 1 show that the proposed full and di-
rect methods have a significant improvement of 6.57% and
6.22% over the SIFT performance respectively. The signif-
icance is validated by t-test a (p < 0.001). The substantial
performance increase is due to the fact that viewpoint varia-
tions degrade the SIFT performance for matching. Consider-
ing full-rotation invariance for SIFT leads to a dramatic per-
formance loss as the most discriminative information is ig-
nored and due to the visual complexity it is harder to estimate
a dominant gradient orientation.

Additionally, we evaluate raw pixels and tangent distance
(TD) [19] on this set. We obtain a classification rate of
16.54% and 23.47% respectively. As discussed in Section 2,
Simard et al. invoke prior information by generating small
global transformations. The performance improvement over
raw pixel values supports our idea of exploiting prior infor-
mation for steering the invariance. However, as expected,
the raw pixel matching performance is far beyond the SIFT
performance which makes TD less applicable when it is
necessary to use features except raw pixel values.

SIFT +Rot. Inv. Proposed full Proposed direct

54.85% 13.86% 61.42% 61.07%

Table 1. Matching performance on geometric distortions.
Left to right: original SIFT descriptor, full-rotation invariant
SIFT descriptor, proposed full(synthetic) and direct methods.
Note that full-rotation invariance is unstable whereas limited
range of invariance is stable.

4.2. Photometric Robustness

We evaluate the proposed full and direct metric methods for
photometric robustness. The full method operates by gener-
ating synthetic samples as explained in Photometric transfor-
mations. The results are shown in Table 2. The proposed
full method significantly outperforms the SIFT performance
(t-test with p < 0.001). Moreover, the direct method does not
rely on synthetic photometric data generation and it outper-
forms the SIFT as well. Thus, the direct approach, which is
developed for achieving robustness against geometric trans-
formations, is also applicable in the context of photometric
variations.

SIFT Proposed full Proposed direct

73.4% 77.86% 76.88%

Table 2. Matching performance on photometric distortions.
Note that both methods perform similar, where ”direct” is
much faster.

5. CONCLUSION

In this paper, we propose a generic patch-specific robust
metric learning method to improve matching performance of
local descriptors. We show that a full invariant representation
leads to a decrease in discriminative power of descriptors.
Therefore, we propose a per-patch metric learning method
that is invariant to only a range of variations. We propose
to learn a patch specific a Mahalanobis metric. Two ap-
proaches for learning the metric are presented: (i) full and
(ii) direct. The proposed approaches are validated on ALOI
dataset for two different image transformations, namely, geo-
metric and photometric. It has been shown that the proposed
approaches outperform the original SIFT descriptor matching
performance.
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