
What do 15,000 object categories tell us about classifying and localizing actions?

Mihir Jain† Jan C. van Gemert† Cees G. M. Snoek†?

†University of Amsterdam ?Qualcomm Research Netherlands

Abstract

This paper contributes to automatic classification and
localization of human actions in video. Whereas motion is
the key ingredient in modern approaches, we assess the ben-
efits of having objects in the video representation. Rather
than considering a handful of carefully selected and local-
ized objects, we conduct an empirical study on the bene-
fit of encoding 15,000 object categories for action using 6
datasets totaling more than 200 hours of video and cover-
ing 180 action classes. Our key contributions are i) the first
in-depth study of encoding objects for actions, ii) we show
that objects matter for actions, and are often semantically
relevant as well. iii) We establish that actions have object
preferences. Rather than using all objects, selection is ad-
vantageous for action recognition. iv) We reveal that object-
action relations are generic, which allows to transferring
these relationships from the one domain to the other. And,
v) objects, when combined with motion, improve the state-
of-the-art for both action classification and localization.

1. Introduction
This paper contributes to automatically classifying and

localizing human actions like phoning, horse-riding, and
sumo wrestling in video content. Different from the lead-
ing techniques in these two challenging problems, e.g.
[32, 33, 51] and [15, 22, 44], which all emphasize on en-
coding motion for action, we study the benefits of having
objects in the video representation. For action classification
the relationship between objects and actions has been con-
sidered earlier [10, 11, 46], but only for a handful of care-
fully selected and localized objects. By contrast, we are
the first to encode the presence of thousands of object cat-
egories for action classification and localization in a large,
diverse, and comprehensive evaluation.

Fueled by large-scale image collections such as Ima-
geNet [6], containing more than 14M labeled images of 22K
objects, an extensive evaluation of objects in action is feasi-
ble. Moreover, inspired by the renaissance of convolutional
neural networks, classifiers for objects are now more effi-
cient to train, faster to apply and better in accuracy than ever
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Figure 1. In this paper we ask ourselves the question: ”What do
15,000 object categories tell us about classifying and localizing
actions?” and conduct an empirical study on the benefit of encod-
ing object categories for action. We show that: objects matter for
actions, actions have object preference, object-action relations are
generic, and adding object encodings improves the state-of-the-art
in action classification and localization.

before [3, 20, 59]. These deep nets learn the invariant repre-
sentation and object classification result simultaneously by
back-propagating information, through stacked convolution
and pooling layers, with the aid of a large number of labeled
examples. In this paper, we train 15,000 object classifiers
with a deep convolutional neural network [20] and use their
pooled responses as a video representation for action classi-
fication and localization. Figure 1 demonstrates the interest
of encoding objects for actions.

Being the first to consider such a large set of object cat-
egory responses for action classification and localization,
we conduct an empirical study on the benefit of encoding
objects for action. Our study is inspired by the example
set by Deng et al. [5] for image categorization. Our key
contributions are i) the first in-depth study of encoding ob-
jects for actions, ii) we show that objects matter for actions,
and are often semantically relevant as well, especially when



the actions interact with objects. What is more, the object
representation is complimentary to modern motion encod-
ings. iii) We establish that actions have object preferences.
Rather than using all objects, selection is advantageous.
Surprisingly, adding a video representation consisting of
just 75 selected object categories to a motion encoding leads
to an absolute improvement of 9.8% on the validation set
of the THUMOS challenge 2014 [18]. iv) We reveal that
object-action relations are generic, which allows the trans-
fer of these (learned) relationships from the one dataset to
the other. In fact, when tested on HMDB51 [21], the object-
action relations learned on UCF101 [41] are stronger pre-
dictors than the ones learned on HMDB51 itself. And v)
objects improve the state-of-the-art on five datasets for ac-
tion classification and localization. Before detailing our em-
pirical study and findings, we start with a review of related
work on video representations for action classification and
localization.

2. Related work
Advancements in action classification have resulted in a

mature repertoire of elegant and reliable techniques yielding
good accuracy. Such techniques include sampling at inter-
est points [7, 23], densely [40, 54] or along dense trajecto-
ries [9, 17, 28, 50]. Such samples are represented by power-
ful local descriptors [4, 19, 24] which are robust to modest
appearance and motion changes. Invariance to camera mo-
tion is either directly modeled from the video [14, 45, 51] or
built into the local MBH descriptor [4, 50]. After aggregat-
ing local descriptors in a global video representation such
as versions of VLAD [14, 32] or Fisher [30, 33, 51] they
are input to a classifier such as SVM. The success of these
techniques are due to their excellent performance as well
as their practical simplicity which facilitates easy adoption
by others. We follow the action classification tradition and
study how it can profit from inclusion of object categories.

Though most of the emphasis in the action literature has
been on classification, progress has also been made in ac-
tion localization [2, 15, 22, 29, 44]. In addition to the class,
localization requires specifying the location of the action in
the video. Instead of localizing cuboids [2], recently action
location is more precisely defined as a sequence of bound-
ing boxes [15, 22]. To handle the huge search space that
comes with such precise localization, methods to efficiently
sample action proposals [15, 29] are combined with the mo-
tion encodings used in action classification. In this paper,
we study whether object categories can also play a role in
action localization.

Actions have been shown to correlate with their object
and scene surroundings. The type of scene puts a prior on
the possible actions [27, 49, 56] and vice-versa, an action
may disambiguate similar looking objects [10, 42]. The
most important object to detect is arguably the person per-

forming the action. The pose of the person allows mod-
eling human-object interactions [13, 35, 57]. In addition
to the person detector, the number of detected objects has
steadily increased from 2 objects [11], 4 objects [46] to 27
objects [58]. We follow these methods to exploit object-
action relations, although we only detect the presence of an
object, not its location. This allows us to scale up the num-
ber of objects with several orders of magnitude to a set of
15,000 object categories.

As an alternative to object categories, attributes for ac-
tion classification have traditionally focused on the motion
or on the action. A video can be embedded in a representa-
tion of holistic actions [36, 38], or, attributes are defined on
atomic parts of the action [53]. Such attributes allow zero
shot recognition [26], or modeling semantic relations over
time [25, 43]. Instead of action attributes, we consider ob-
ject categories in addition to the powerful motion features as
common in action classification. By using object categories
we do not intend to replace the action, rather, we study how
objects can augment the action representation.

3. Empirical study
3.1. Object responses

We compute the likelihood of the presence of object cate-
gories in each frame of the considered videos. We use an in-
house implementation of a Krizhevsky style cuda-convnet
with dropout [20]. The convolution network has eight lay-
ers with weights and is trained using error back propagation.
In our set of objects to learn, we include all ImageNet ob-
ject categories that have more than 100 examples available,
leading to 15k objects in total. At test time we obtain the
likelihood of the presence of each category in a provided
video frame. The N (∼15k) dimensional vector of object
attribute scores (S(i); i = 1...N ) is computed for each
frame and to obtain the video representation these vectors
are simply averaged across the frames: ψx = 1

F

∑
Sxf

,
where F is the number of frames in video x, Sxf

is the ob-
ject vector representation per frame f .

3.2. Motion

We capture motion information by several local descrip-
tors (HOG, HOF and MBH) computed along the improved
trajectories [51]. Improved trajectories is one of the recently
proposed approaches that takes into account camera mo-
tion compensation, which is shown to be critical in action
recognition [14, 51]. To encode the local descriptors, we
use Fisher vectors. We first apply PCA on these local de-
scriptors and reduce the dimensionality by a factor of two.
Then 256,000 descriptors are selected at random from the
training set to estimate GMM with K (=256) Gaussians.
Each video is then represented by 2DK dimensional Fisher
vector, where D is the dimension of descriptors after PCA.
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Figure 2. Action examples from the UCF101 [41], THUMOS14 [18], Hollywood2 [27], HMDB51 [21], UCF Sports [37] and KTH [39]
datasets that we consider in our empirical study to reveal what 15,000 object categories tell us about classifying and localizing actions.

Finally, we apply power and `2 normalization to the Fisher
vector as suggested in [34].

3.3. Datasets and evaluation criteria

Below we present the databases used in this paper. Some
example frames and action classes from these datasets are
shown in Figure 2.

UCF101. The UCF101 dataset [41] is a large action recog-
nition dataset containing 13,320 videos and includes 101
action classes. It has large variations (camera motion, ap-
pearance, scale, etc) and exhibits a lot of diversity in terms
of actions. It also contains many action classes that involve
objects. We perform evaluation on three train/test splits and
report the mean average accuracy over all classes.

THUMOS14. THUMOS14 [18] is the largest action
dataset proposed to date in terms of number of classes,
length and number of videos. It includes UCF101 as its
train set and also has a background, validation and test sets.
The validation and test set contain 1010 and 1584 tempo-
rally untrimmed long videos respectively. When testing on
validation set, UCF101 is used for training. And for test set
both UCF101 and validation set are used for training. Mean
average precision (mAP) is the measure for evaluation.

Hollywood2. The Hollywood2 [27] dataset contains 1,707
video clips from 69 movies representing 12 action classes.
The dataset is divided into a train set and test set of 823 and
884 samples respectively. Following the standard evalua-
tion protocol of this benchmark, we use mAP as the evalu-
ation measure.

HMDB51. The HMDB51 [21] dataset contains 6,766 video
clips extracted from various sources, ranging from movies
to YouTube. It consists of 51 action classes, each having at
least 101 samples. We follow the evaluation protocol of [21]
and use three train/test splits. The average classification ac-
curacy is computed over all classes. We use the original set,
which is not stabilized for camera motion.

UCF Sports. This dataset consists of sports broadcasts with
realistic actions captured in dynamic and cluttered environ-
ments [37]. It has 10 classes and 150 videos (103 for train

and 47 for testing). We use it in this work for action local-
ization experiments as it has groundtruth for action location
as a sequence of bounding-boxes. The area under the ROC
curve (AUC) is the standard evaluation measure used, and
we follow this convention.

KTH. This dataset consists of 6 action classes [39]. Each
action is performed several times by 25 subjects. The back-
ground is homogeneous and static in most sequences and
no objects are involved. We use it here to gauge the im-
pact of objects in such an artificial scenario. The average
classification accuracy is used for evaluation measure.

3.4. Classification

For the classification, we use a linear SVM. When com-
bining different descriptors, we simply add the kernel matri-
ces, as done in [46]. The multi-class classification problem
that we consider is addressed by applying a one-against-rest
approach.

4. Objects matter for actions

Qualitative experiment: We first perform a qualitative ex-
periment that visualizes the contribution per object category
on the action classes of UCF101. To compute the contribu-
tion, we first `1 normalize theψx vectors for all the videos in
the UCF101 training set to make them comparable. Then, to
compute the contribution per object for the jth action class,
cj , we sum the normalized response vectors for the videos
belonging to cj , i.e., βj =

∑
x∈cj

ψx∑
i ψx(i)

. The response

of the ith object category for the jth action class is then
simply βj(i) and can be used to visualize the proportional
contribution per object. We show qualitative results for four
action classes in Figure 3.

In many cases the object responses seem semantically
related to the action classes. For playing cello, the objects
cellist and cello are obviously characteristic and indeed they
result in a high response as well. The same holds for the
response of keyboard and keypad for typing. In case an
action involves very small objects the relationship is more
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Figure 3. Qualitative experiment visualizing the contribution per object category on four action classes of UCF101. For playing cello and
typing, the prominent object categories in terms of response are also semantically relevant. For body weight squats and lunges the dominant
objects are not essential for the actions, but do appear frequently in their background context. Depending on whether actions share the
same background, these objects may or may not lead to a discriminative representation for actions.

difficult to capture with the current implementation of ob-
ject classifiers, we observe this for juggling balls (data not
shown). Naturally the co-occurrence between actions and
objects can also capture objects that are not necessarily part
of the action, for body weight squats and lunges, for exam-
ple, we find objects like barbell and weight that commonly
appear in the gym.

To get further insight into the object and action inter-
dependence, a heat-map between action classes of UCF101
and the set of most responsive object categories are shown
in Figure 4. For clarity we only show 34 action classes (ev-
ery third class) and the union of the most responsive object
for each action class. For each action class, we find that
the object categories that have highest responses are seman-
tically related to the action class. Trampoline jumping has
high response from trampoline, Rafting has objects raft and
kayak with high responses. Thus, the object responses seem
to make sense for the action classes from a semantic point
of view. Next, we will assess if they also contribute to the
visual recognition.

Quantitative classification experiment: To assess the
quantitative value of objects for action we perform an action
classification experiment on the UCF101 and THUMOS14
validation datasets, which both have a large variety of ac-
tion classes. On purpose, we also include the KTH dataset,
which is a dataset with six action classes that are devoid of
objects. We compare action classification using a represen-
tation of object responses with one using motion, as detailed
in Section 3. For KTH we encode motion with HOF only,
because the number is close to 100% already. We summa-
rize the results in Table 1.

A representation using object responses performs rea-
sonably on UCF101 and THUMOS14, but 78.7% on KTH
is rather poor on this relatively simple dataset. The results
confirm that objects allow for action classification, but only
if the actions interact with objects. As expected, a repre-
sentation based on motion is better on all three datasets.

Method UCF101 THUMOS14 val KTH
Objects 65.6% 49.7% 78.7%
Motion 84.2% 56.9% 94.9%

Objects + Motion 88.1% 66.8% 95.4%
Table 1. Quantitative action classification experiment comparing
objects, motion and their combination. For the realistic actions of
UCF101 and THUMOS14 val, objects added to motion, lead to a
considerable improvement in the performance. The gain in case
of KTH is minimal as it does not involve objects. When objects
are combined with motion it always improves performance further.
We conclude that objects matter for actions.

However, when objects are combined with motion it always
improves performance further, even on KTH. For UCF101
the absolute improvement over motion only is 3.9% and for
THUMOS14 is as much as 9.9%. This is a considerable
increase and demonstrates that objects matter for actions.

Quantitative localization experiment: Another interest-
ing aspect is to see where the informative object responses
are located with respect to the action. Are the object re-
sponses from the area encompassing the action more dis-
criminative than those in the background? Or the ones from
everywhere in the video, together are more discriminative?
This is an important aspect because if the responses in the
proximity of actions are informative, then the objects can
also play a role in action localization. We conduct an exper-
iment on the UCF Sports dataset, which comes with local-
ization groundtruth. In absence of object location ground-
truth, we compute the 15,000 object responses for the full
video, inside and outside the groundtruth tube. Action clas-
sification is done using these three representations and the
average precisions are reported in Table 2.

We obtain the best results when the objects are encoded
inside the groundtruth tube, leading to an mAP of 74.4%,
where encoding the entire video scores 60.7% and outside
the groundtruth 53.5%. Except for lifting, all action classes
improve. Note that there is no motion encoding used here.
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Figure 4. Qualitative experiment visualizing the heat-map between the 31 most responsive objects (y-axis) and 34 action classes (x-axis)
of the UCF101 dataset (every3rd action class is chosen for clarity). The high responses for semantically related action-object pairs is
apparent. Note the high responses for the objects trampoline, raft, blackboard, kayak and their associated actions.

Although it can depend on the action class and the videos, in
general the results suggest that object responses close to and
involved in the actions matter most. We show the advantage
of using objects for action localization in Section 7.2.

5. Actions have object preference
For a given video dataset of n action classes, we might

not need all N object categories to obtain an optimal repre-
sentation. Only the categories relevant to the action classes,
ideally corresponding to those leading to a discriminative
representation, are required. So the objective is to find
a subset of m object categories from the N object cate-
gories, such that the discriminative power of the represen-
tation is maximized for a given set of action classes. We
refer to these objects as preferred objects. To each action
class j we assign a set of the top R most responsive ob-
ject categories, topR(cj) = R- arg maxi ψx(i). The union
of these sets of object categories, for j = 1..n, gives us a
set of preferred objects for the given set of action classes,
Γ(R) =

⋃
j topR(cj). While the absence of an object cate-

gory in an action class is also informative, it would be less

Classes Video Outside tube Inside tube
Diving 100.0% 100.0% 100.0%
Kicking 66.7% 16.7% 66.7%
Lifting 100.0% 100.0% 50.0%
Riding-horse 100.0% 100.0% 100.0%
Running 50.0% 50.0% 75.0%
Skateboarding 0 0 25.0%
Swinging 66.7% 16.7% 100.0%
Swinging-bar 0 75.0% 75.0%
Swinging-golf 66.7% 33.3% 66.7%
Walking 57.1% 42.9% 86.7%
Mean 60.7% 53.5% 74.4%

Table 2. Average precisions for action classes of UCF Sports
dataset using object responses from: the whole video, only the
background of the action, and only in the vicinity of the action. Ev-
idently, object responses in the vicinity of the action matter most.

discriminating as it may be absent for many other action
classes as well.

We evaluate the impact of object preference on action
classification by varying the value of R in light of a rep-
resentation consisting of (a) objects only and (b) objects
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Figure 5. Accuracies of (1) objects only and (2) objects+motion, as a function of R for THUMOS14 and UCF101. On x-axis number of
selected objects are shown for a different values of R from 0 to 15,000. Preference plots reveal that only a few hundred most responsive
categories are needed to achieve the maximum gain. Avoidance plots keep on improving till the last and the most preferred category is
added, again showing that actions have object preference.

with motion on both the THUMOS14 and UCF101 datasets.
The accuracies are computed for different values ofR (one-
against-rest SVMs are re-trained for each value of R), i.e.
starting with no objects, then progressively adding the most
responsive object categories for the given dataset, till all the
object categories are used. We refer to this plot as the one
with object preference. We also do the reverse, i.e. start with
no objects, then the least responsive objects and progres-
sively add more responsive ones until the most responsive
object is also added at the end. This plot is referred to as the
one with object avoidance. We present results in Figure 5.

The results on both THUMOS14 and UCF101 show that
some objects are more important than others for action clas-
sification. When comparing object preference (green line)
with object avoidance (red line) we observe that adding the
most preferred objects first, results in a better mAP and
mean accuracy than adding the least preferred object. More
importantly, the accuracies for the object avoidance plots
keep on increasing till the last and most preferred object is
added. Again, the combination of objects and motion re-
sults in a big increase in performance. Interestingly, when
just one most preferred object category per action class is
added to the motion encoding it results in a big jump (pink
line). On THUMOS14 this leads to an improvement of
9.8% with an object encoding of only 75 dimensions, where
on UCF101 the results improve from 84.2% to 88.0%. For
UCF101 the pink plot peaks at around R=6 and then sta-
bilizes. In case of THUMOS14 it dips a bit as the videos
are not temporally constrained and extra object categories
can cause confusion because of the objects from the parts
of the videos not containing actions of interest. The selec-
tion is therefore more important for THUMOS14 and hence
the larger gain. For both datasets, plots consistently peak
at around R=6 or 11 and then stabilize, so from here on

for all the datasets we use R=11 as the optimal choice of R
(R?). We further note that usingR? results in higher perfor-
mance than using all objects for both THUMOS14 (68.8%
vs 66.8%) and UCF101 (88.5% vs 88.1%). These results
show that actions have object preference.

6. Object-action relations are generic

We achieved a significant boost in the numbers with just
a few object categories selected for a given set of actions.
Now, we evaluate if this knowledge of characteristic ob-
jects learned from one dataset can be transferred to another
dataset. For this we conduct experiments on HMDB51 and
UCF101 as they have 12 action classes in common. We
learn the preferred set of objects from the training sets of
HMDB51 and another preferred set from UCF101 (using
the same simple procedure as before). Then we use these
sets for the object representation of videos in the test set of
HMDB51. We compare the impact of the representations
for these two transfers in Table 3.

We first consider the motion baseline for the 12 action
categories on HMDB51 which scores a mean classification
accuracy of 83.6%. It obtains the best overall result for dive,
as this action in HMDB51 includes bungee jumping, base
jumping, cliff diving etc, there is no representative object
only the act of jumping is common. For all other actions,
adding objects in the video representation, as learned from
training data, is better. Including only the top object per ac-
tion, as learned from the HMDB51 train set, increases the
mean accuracy to 85.2%, while adding the best set of ob-
jects increases the mean accuracy to 87.5% and obtains the
best overall results for climb pullup, punch, shoot ball and
shoot bow. The most prominent objects for these classes
are: climber, barbell, sparring, volleyball, and archery.



HMDB51 HMDB51 UCF101
Classes Motion + Objects

R=1 R? R=1 R?

Brush hair 96.7% 95.6% 96.7% 96.7% 98.9%
Climb 87.8% 92.2% 92.2% 90.0% 92.2%
Dive 87.8% 81.1% 84.4% 84.4% 85.6%
Golf 98.9% 98.9% 98.9% 98.9% 98.9%
Handstand 90.0% 85.6% 90.0% 90.0% 88.9%
Pullup 91.1% 86.7% 92.2% 88.9% 92.2%
Punch 85.6% 87.8% 88.9% 84.4% 87.8%
Pushup 72.2% 77.8% 88.9% 90.0% 88.9%
Ride bike 76.7% 95.6% 91.1% 95.6% 93.3%
Shoot ball 86.7% 91.1% 93.3% 87.8% 92.2%
Shoot bow 92.2% 92.2% 94.4% 93.3% 94.4%
Throw 37.8% 37.8% 36.7% 36.7% 43.3%
Mean 83.6% 85.2% 87.5% 86.4% 88.1%

Table 3. The characteristic object categories learned from the
training sets of HMDB51 or UCF101 transfer to the test set of
HMDB51, and always improve over the motion-only baseline. In-
terestingly, learning the characteristic objects on UCF101 results
in the biggest gain in mean accuracy. We conclude that object-
action relations are generic.

Interestingly, learning the characteristic set of objects on
UCF101, leads to even better mean accuracy on HMDB51.
Including only the most preferred object per action results
in an accuracy of 86.4%, whereas including the best set of
objects obtains 88.1%, a considerable improvement over us-
ing motion only. The improvement for pushup is significant
with the most preferred objects only. The key object here is
benchpress, which has same type of posture as in pushups.
For ride bike, both the sets lead to large improvement. The
key object here from both the sets is safety bicycle. The
better performance with UCF101 is probably because of a
richer learning set due to a larger number of videos in it.
The ability to learn a discriminative set of objects from ac-
tion classes that transfers to unknown videos with the same
action classes opens up future possibilities for action recog-
nition such as zero-shot classification. For the moment we
conclude that object-action relations are generic.

7. Objects improve the state-of-the-art
In this section, we conduct experiments for action classi-

fication and action localization, and compare with state-of-
the-art methods for both these tasks.

7.1. Action classification

For action classification, we experiment on four datasets,
namely UCF101, THUMOS14 validation/test, Hollywood2
and HMDB51. The bottom half of Table 4 lists the numbers
for objects, just motion, objects and motion (for all objects,
R = 1 and R∗). For UCF101, just by adding one top object
category for each action class improves the average accu-
racy from 84.2% to 88.0%. The same tactic leads to an
improvement of 9.8% on THUMOS14 validation and 5.3%

on THUMOS14 test set with just a 75 (=Γ(1)) dimensional
representation. Corresponding improvements for HMDB51
and Hollywood2 are 3.1% and 2.0% respectively. It is also
interesting to see the action classification performance with
just objects is competitive on UCF101 and THUMOS14
datasets as they involve more actions based on objects.

In the top half of Table 4, we compare our results with the
best methods in the literature on these four datasets. Three
of the best performers on UCF101 [1, 32, 55] propose im-
proved encoding methods. Another one is the approach of
Wang et al. [51] with spatial pyramid. When objects are
combined with the motion representation we achieve the
best average accuracy. The most competitive method is
the recent work of Peng et al. [32] that uses higher order
VLAD and learns codebooks in a supervised manner, which
does better than Fisher vectors. On the recent THUMOS14
dataset, we report for the top 3 performing approaches in the
competition (i.e. with best mAPs on test set). In the column
for the validation set we include [47] as they have the same
train/test setting. Our approach achieves the state-of-the-
art mAPs of 71.6% and 68.8% on test and validation sets
respectively. Due to object selection this is slightly better
than our winning approach at THUMOS14 [16].

Robust motion descriptors along the dense trajectories
with higher order encodings have also done well [14, 30, 32,
51] on the Hollywood2 and HMDB51 datasets. Our motion
baseline is similar to these methods and by adding objects
we achieve considerable improvements on both the datasets.
The most recent methods of Peng et al. [33], Hoai et al. [12]
and concurrent work of Fernando et al. [8], have further
raised the bar. Temporal ordering in video as motion or as
evolution of appearance are exploited in [8, 12] for action
classification. We expect these methods to improve further
by adding our object representation. In [33], Fisher vec-
tors are combined with stacked Fisher vectors (2-layers of
Fisher vectors). The authors provided us with their stacked
Fisher vectors for HMDB51, which on combining with our
Fisher vectors achieves an average accuracy of 69.9%. Af-
ter adding our object representation we obtain 71.3%. Ob-
jects combined with any of the above representation boosts
the performance and leads to state-of-the-art action classifi-
cation results on the UCF101, THUMOS14 (validation and
test) and HMDB51 datasets.

7.2. Action localization

The objective of action localization is to detect when and
where an action of interest occurs. We follow the conven-
tion in the literature to localize an action as a sequence of
bounding boxes [15, 22, 44]. We conduct this experiment
on UCF Sports. We obtained the tubelet action proposals
using independent motion evidence from Jain et al. [15].
As motion representation, we use the motion boundary his-
togram as local descriptor and aggregate as bag of features.



UCF101 THUMOS14 val THUMOS14 test Hollywood2 HMDB51
Soomro et al. [41] 43.9% Varol et al. [47] 62.3% Varol et al. [47] 63.2% Zhu et al. [60] 61.4% Zhu et al. [60] 54.0%

Cai et al. [1] 83.5% Jain et al. [16] 66.8% Oneata et al. [31] 67.2% Vig et al. [48] 61.9% Oneata et al. [30] 54.8%
Wu et al. [55] 84.2% Jain et al. [16] 71.0% Jain et al. [14] 62.5% Wang et al. [51] 57.2%

Wang et al. [52] 85.9% Oneata et al. [30] 63.3% Peng et al. [32] 59.8%
Peng et al. [32] 87.7% Wang et al. [51] 64.3% Hoai et al. [12] 60.8%

Hoai et al. [12] 73.6% Fernando et al. [8] 63.7%
Fernando et al. [8] 73.7% Peng et al. [33] 66.8%

Objects 65.6% 49.7% 44.7% 38.4% 38.9%
Motion 84.2% 56.9% 63.1% 64.6% 57.9%

Objects + Motion 88.1% 66.8% 70.8% 66.2% 61.1%
Objects (R=1) + Motion 88.0% 66.7% 68.4% 66.6% 61.0%

Objects (R?) + Motion 88.5% 68.8% 71.6% 66.4% 61.4%
Objects + Peng et al. [33] – – – – 71.3%

Table 4. Comparison of our approach using objects and motion with the state-of-the-art on the UCF101, THUMOS14 validation and
test set, Hollywood2 and HMDB51 datasets. Adding object categories in the video representation improves the state-of-the-art in action
classification for these datasets.

Overlap threshold
0.1 0.2 0.3 0.4 0.5 0.6

Objects 55.5 55.0 48.2 38.1 30.3 19.7
Motion 51.6 49.2 44.2 30.9 20.6 14.0
Objects + Motion 56.1 54.1 51.2 42.1 34.3 27.3
Motion (+2x2) 57.4 56.6 51.8 41.8 31.0 23.3
Objects + Motion (+2x2) 58.1 57.8 52.2 42.2 33.7 24.0

Table 5. Impact of encoding tubelet proposals from [15] using ob-
ject category responses, motion and a spatial 2x2 grid for action
localization on UCF Sports.

The codebook size is set to k = 500 and we report with and
without a spatial grid of 2× 2. We extract 15,000 object re-
sponses from each bounding box of the tubelet and average
them. Power normalization is followed by l2 normalization
on the averaged vector for the final tubelet representation.
Linear SVM is used for the classification. The top five de-
tections are considered for each video after non-maximum
suppression.

The area under the ROC (AUC) is reported in Table 5.
Objects alone attains excellent AUCs, even greater than mo-
tion without spatial grid, up to 10% absolute improvement
for an overlap threshold of 0.5. When object and motion are
combined the results improve further, and adding the spatial
grid improves the AUC even more. We compare the results
of this best representation with the state-of-the-art methods
in Figure 6. Our numbers are better than the current best ap-
proach of Jain et al. [15], while we use only a small subset
of their tubelet proposals. We obtain an absolute improve-
ment of 6%-7% for difficult thresholds of above 0.3 overlap
with the groundtruth action sequence of bounding boxes.
We conclude that objects improve the state-of-the-art in ac-
tion localization.

8. Conclusions
In this paper we ask ourselves the question: “What do

15,000 object categories tell us about classifying and local-
izing actions?” and conduct an empirical study on the bene-
fit of encoding 15,000 object categories for actions. Our ex-
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Figure 6. Comparison of our approach, using tubelet proposals
from [15] encoded with objects and motion, with Lan et al. [22],
Tian et al. [44] and Jain et al. [15] on the UCF Sports dataset. The
Area under the ROC curve is shown for overlap thresholds from
0.1 to 0.6. Objects improve the state-of-the-art in action localiza-
tion.

periments show that objects matter for actions, and are often
semantically relevant as well, especially when the actions
interact with objects. What is more, the object represen-
tation is complementary to modern motion encodings. We
establish that actions have object preferences. Rather than
using all objects, selection is advantageous both in terms
of the compact video representation as well as in terms of
its discriminative action classification ability. The learned
object-action relationships are generic, and transfer from
one dataset to another. When our object representations
are combined with modern motion encodings and spatio-
temporal action proposals it leads to a new state-of-the-art
on five datasets for action classification and localization.

We believe that learning generic object-action relation-
ships opens up new directions. For example, selecting the
relevant subset of objects to include in the action representa-
tion or the possibility for zero-shot action recognition. An-
other appealing next step is to localize objects and encode
their locations for classifying and localizing actions.
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