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ABSTRACT
This paper proposes a data-driven approach for cross-media
retrieval by automatically learning its underlying semantic
vocabulary. Different from the existing semantic vocabular-
ies, which are manually pre-defined and annotated, we auto-
matically discover the vocabulary concepts and their anno-
tations from multimedia collections. To this end, we apply a
probabilistic topic model on the text available in the collec-
tion to extract its semantic structure. Moreover, we propose
a learning to rank framework, to effectively learn the concept
classifiers from the extracted annotations. We evaluate the
discovered semantic vocabulary for cross-media retrieval on
three datasets of image/text and video/text pairs. Our ex-
periments demonstrate that the discovered vocabulary does
not require any manual labeling to outperform three recent
alternatives for cross-media retrieval.

1. INTRODUCTION
We consider the problem of cross-media retrieval, where

for an image query we search for the relevant text or vice
versa. Initially, cross-media retrieval emphasized on simple
queries made of few keywords or tags [6, 14], but recently
they have addressed more complex retrieval problems like
searching for an image based on a long article [22, 27, 7, 2,
9], or automatically finding the best sentences as the caption
to describe a video [12].

The major challenge in cross-media retrieval is that the
query and the retrieval set instances belong to different do-
mains, so they are not directly comparable. In other words,
the images are represented by visual feature vectors which
have a different intrinsic dimensionality, meaning, and dis-
tribution than the textual feature vectors used for the sen-
tences. As a solution, many works aim to align the two
feature spaces so they become comparable. We discuss be-
low related work based on the level of alignment of feature
spaces used, as also illustrated in Figure 1.

Low-level Alignment Works based on low-level align-
ment aim to align the images and texts directly from the
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Figure 1: Level of alignments (gray) for cross-media
retrieval using visual (orange) and textual (blue)
features. This paper contributes to semantic align-
ment.

low-level feature spaces, i.e., the low-level visual descrip-
tors and the individual words. Cross-media hashing [25, 28],
canonical correlation analysis (CCA) [13] and its variants,
such as cross-modal factor analysis [17] and Kernel-CCA [2,
7], are the main techniques for learning the low-level align-
ments. In a nutshell, these techniques extract the highly
correlated features in the two feature spaces and use them to
make a correlated representation of images and text. While
encouraging results for cross-media retrieval using the low-
level alignments have been reported, they suffer from two
limitations. First, a low-level feature space is not the most
effective place to find correlations, as the semantic gap is
maximized. Second, the learned alignments are difficult to
interpret, making it hard for a user to explain why a certain
result was retrieved.

Mid-level Alignment Works based on mid-level align-
ment first extract mid-level features from each modality.
Then the alignment is learned between the two mid-level
feature spaces. Multi-modal topic models [6, 26] and multi-
modal autoencoders [9, 19, 24] are the two major trends for
learning the mid-level alignments

Blei and Jordan [6] were the first to extend the latent
Dirichlet allocation (LDA) to align text and images at the



topic level. Despite their effectiveness in aligning the dis-
crete visual features, such as the traditional bag-of-visual-
words, applying the multi-modal topic models on modern
visual features, such as Fisher vectors [23] or deep learned
visual features [20], is not straightforward. Since proba-
bilistic topic models rely on assumptions about the prior
distribution of features, which are not well known for state-
of-the-art visual descriptors, the multi-modal topic models
cannot benefit from them.

Recently, there has been a trend of developing multi-modal
autoencoders with deep architectures for learning the mid-
level alignments [9, 19, 24]. These works learn the mid-level
representation of images and texts by training autoencoders.
Then they align the learned representation by CCA [19] or
regression [24]. Recently, Feng et al. [9] propose to learn the
alignments jointly with the autoencoders. These techniques
are shown to be effective for learning the mid-level align-
ments from large training collections. However, when there
is not enough training data available, the deep autoencoders
might be overfitted due to their large number of parameters.
Moreover, similar to the low-level alignments, the mid-level
alignments are incapable of recounting why an image and
text are similar.

Semantic Alignment Instead of explicitly learning the
correspondences between the images and texts, either at low-
level or mid-level features, Rasiswasia et al. [22, 7] propose
to embed the images and texts into a mutual semantic space.
In the semantic space, each image or text is represented in
terms of the probabilities of being relevant to a pre-defined
vocabulary of semantic concepts. By representing the images
and texts as their concept probabilities, they have aligned
representations which are directly comparable.

The semantic representations are obtained by following
three consecutive steps: First, the vocabulary is defined by
specifying its concepts. The vocabulary concepts should be
diverse and comprehensive enough to provide a descriptive
representation of images and texts. As the second step, a
train set of image/text pairs are labeled as relevant or irrel-
evant to each vocabulary concept. Finally using the labeled
train data, a set of visual and textual concept classifiers are
trained to predict the vocabulary concepts on images and
texts. Each visual concept classifier is trained on the image
parts and the concept labels as a binary classifier i.e., binary
SVM or logistic regression. The textual concept classifiers
are trained in a similar way, but on the textual data of the
train set. After training the concept classifiers, each im-
age or text is embedded into the semantic space by simply
applying the visual and textual concept classifiers.

In [22, 7], Rasiswasia et al. rely on manual annotations
for learning the vocabulary concept classifiers. More specif-
ically, they manually specify the vocabulary concepts and
also manually annotate each image/text pair as positive or
negative with respect to each vocabulary concept. This re-
quires a substantial amount of annotation effort, which is
restrictive in creating descriptive vocabularies with a com-
prehensive set of concepts. Moreover, for each new dataset
a new vocabulary, which is relevant and descriptive to the
data at hand need to be defined manually. To overcome
these problems, we propose a data-driven approach to au-
tomatically discover the vocabulary concepts and their an-
notations from the textual data, which are available in the
dataset.
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Figure 2: The overall pipeline, which we follow for
cross-media retrieval. The“discovering semantic an-
notations” and “training semantic embeddings”, as
our main contributions, are detailed in Section 2.1
and Section 2.2

Semantic alignment is related to an attribute-based repre-
sentation, commonly used for image and video classification
from few training examples [8, 3, 11, 10]. In these works,
the images or videos are represented as the outputs of at-
tribute classifiers. However, the attribute classifier are ap-
plied with the purpose of enriching the image representations
by transferring the knowledge from the attributes’ training
source. This is different from the intention behind the se-
mantic alignment, where the concept classifiers are applied
to align the textual and visual instances.

Contributions We propose a data-driven approach to
cross-media retrieval using semantic alignment that auto-
matically discovers the vocabulary concepts and their anno-
tations from multimedia collections. Different from [22, 7],
we do not pre-define the vocabulary and we do not require
any human annotation effort to learn the concept classifiers.
Moreover, we propose a learning framework for training the
vocabulary concept classifiers from the discovered annota-
tions. We experimentally show that our discovered vocab-
ulary outperforms the state-of-the-art low-level, mid-level,
and semantic alignments in three datasets of image/text and
video/text pairs.

2. OUR PROPOSAL
The overall pipeline, which we follow for cross-media re-

trieval is shown in Figure 2. In the training phase, we learn
two sets of visual and textual embeddings to map each visual
or textual instance into a mutual semantic space. We learn
the embeddings from a training collection of multimedia in-
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Figure 3: Illustration of topics and topic portions.
(a) Three examples of topics extracted from a text
collection. (b) Topic portions estimated by LDA for
a multimedia instance. Figure inspired from [5].

stances including images or videos and their corresponding
textual descriptions. Wikipedia articles, which are made of
textual articles and their illustrative images, and captioned
videos, which are made of videos and their textual captions,
are examples of the multimedia instances used in this paper.

As the first step for learning the embeddings, we auto-
matically specify the vocabulary concepts by discovering a
set of concepts, which can effectively describe the training
collection. Moreover, we automatically annotate each multi-
media instance in the train set as relevant or irrelevant with
respect to the vocabulary concepts. Our method for auto-
matically discovering the semantic annotations is detailed
in Section 2.1. After extracting the semantic annotations
we use them for training visual and textual embeddings, as
detailed in Section 2.2.

In the retrieval phase (Figure 2-b), we use the learned vi-
sual and textual embeddings to embed the query and the
test set instances into the semantic space. Then the cross-
media retrieval is cast into a single media retrieval problem,
where the traditional similarity measurements, such as co-
sine similarity, are applicable for the retrieval.

2.1 Discovering Semantic Annotations
Instead of manually specifying the vocabulary concepts

and their annotations we propose to automatically discover
them by applying a probabilistic topic model.

Probabilistic topic models are statistical models for dis-
covering the hidden semantic structure in a collection of
text [4]. They automatically discover sets of interrelated
terms, as topics, based on co-occurrences of terms in the
collection. Figure 3-a illustrates three examples topics ex-
tracted from a collection of text.

In addition to discovering the topics, probabilistic topic
models also extract topic portions for each textual instance
in the collection. For each text, the topic portions determine
the relevance of the text to each topic, as a probability value
between 0 and 1. In the example in Figure 3-b, the text
includes the terms from all three topics but with different
portions. The more terms from a topic occur in a text, the
higher the topic portion value assigned to the topic.

We observe that topics and topic portions are suitable
to serve as the vocabulary concepts and their annotations.
The topics provide a comprehensive summary of the col-
lection, so a vocabulary composed of topics has a high de-
scriptiveness. Moreover, as experimentally validated in Sec-
tion 4.1, combining the interrelated concepts into a more
abstract concept, as performed by topic modeling, generally
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Figure 4: Strategies for extracting concept labels
from estimated topic portions.

improves learning the concept classifiers. More specifically,
the abstract concepts, such as “animal”, are in general more
accurately predicted in images/videos than the specific con-
cepts, such as “goat”, “elephant”, and “tiger”, partly due
to the amount of train data available per concept. Hence,
a vocabulary composed of discovered topics serves as good
concepts for the semantic representation.

To summarize, we apply the latent Dirichlet allocation
(LDA) [4], as a widely used probabilistic topic model, on
the textual instances in the train set. The number of top-
ics is a parameter which is determined by cross-validation,
as is detailed in Section 4.1. Then the discovered topics
are considered as the vocabulary concepts. Moreover, the
discovered topic portions are considered as the concept an-
notations and are used for training the visual and textual
embeddings.

2.2 Training Semantic Embeddings
The semantic embeddings are defined as projections from

visual or textual feature spaces into a mutual semantic space,
by predicting the relevance of each instance to the vocabu-
lary concepts. We train the visual and textual embeddings
in a similar way. Hence, we first explain our learning algo-
rithm for the visual embedding. Then we explain how the
proposed algorithm can be applied for training the textual
embedding.

Training Visual Embedding. We denote the visual
embedding by ΦW (x) : RDv → Rk as the projection of each
visual instance x ∈ RDv into its k-dimensional representa-
tion in the semantic space. The visual embedding is defined
as:

ΦW (x) = W>x,

where W ∈ RDv×k is the visual prediction matrix stacking
the weight vectors corresponding to each vocabulary concept
classifier denoted as wc ∈ RDv .

Each vocabulary concept classifier wc is trained on its
train set Dc = {(xi, yi), i = 1 . . . N}, where xi ∈ RDv de-
notes the visual instances in the train set. For example, in
a train set of Wikipedia articles, xi refer to the visual fea-
tures extracted from the article’s image. Moreover, yi is the
concept label denoting the relevance of the visual instance
xi to the concept c.

As proposed in Section 2.1, instead of manually annotat-
ing the concept labels, we automatically extract them from
the topic portions estimated by LDA. More specifically, for
each visual instance xi we use the estimated topic portion of
its corresponding text to extract the concept label yi. How-
ever, the topic portions are estimated as continuous prob-



ability values between 0 and 1, so using them as labels for
training the classifiers is not trivial. We consider three pos-
sible strategies for defining the concept labels based on the
topic portions and discuss their applicability as follows:

• Topic portion values as labels, where the topic portion
values are directly used as the concept labels (Figure 4-
a). In this case, the concept labels are continuous, so the
concept classifier is trained as a regressor. In other words,
the wc is trained to predict the exact value of the topic
portions from the visual instances.

• Binarized topic portion values as labels, where the topic
portion values are first quantized into binary labels, based
on a threshold parameter. More specifically, the binary
label is equal to 1, if the topic portion is higher than the
threshold, otherwise the binary label is set to -1 (Figure 4-
b). Then, the concept classifier wc can be trained as a
binary classifier using the binarized labels.

• Topic portion ranks as labels, where the visual instances
are ordered based on their topic portion values and their
rank is considered as the label, (Figure 4-c). In this case,
the concept classifier is trained as a ranking function. In
other words, the wc is trained to rank the visual instances
by predicting their relative concept relevancies.

Neither continuous values nor binarized labels are appro-
priate for training the concept classifiers from the estimated
topic portions. Predicting the continuous label values from
the images is difficult and ineffective, as we will show in the
experiments. Although predicting binary labels is in general
more simple than predicting continuous labels, a substantial
amount of information in the topic portions can be lost by
the binarization. Hence, we speculate that defining the topic
portion ranks as labels and learning the concept classifiers
as a learning to rank problem is the most effective solution
for training the concept classifiers from the automatically
discovered topic portions.

More formally, we first define each concept label yi ∈ Dc

by measuring its topic portion rank as follows:

yi =

N∑
j=1

1(θci < θcj), (1)

where 1(.) is the indicator function. Moreover, θci is the
estimated topic portion value for instance i for topic c. Af-
ter determining the labels, the concept classifier wc can be
learned by any learning to rank method. In this paper, we
follow the rankSVM formulation [15], which learns the rank-
ing function by minimizing the following objective function:

λ

2
‖wc‖2 +

1

N

N∑
i=1

N∑
j=1,yi<yj

max(0, 1−w>c (xj − xi)), (2)

where λ is the regularizer penalty parameter. By minimizing
this objective we learn to predict a higher value for the jth

visual instance than the ith visual instance, if its label has
a higher rank. We minimize the Eq. (2) for each concept
c independently using stochastic gradient descent [1], note
that the ranking of the documents will be different for each
topic.

Training Textual Embedding. While we could have
used the LDA model directly as the textual embedding, we

A man attempts to do an ollie but
twists his ankle when he lands.

Woman makes peanut butter
sandwich with chips in the kitchen.

Figure 5: Two examples of the videos and their cap-
tions from the Captioned Videos dataset [21].

propose to yield a textual embedding which is more aligned
with the visual embedding. The textual embedding are
trained in a similar fashion as the visual embeddings, how-
ever instead of using the visual features the concept classi-
fiers are now trained on the textual features.

For each vocabulary concept c, the train setDc = {(xi, yi),
i = 1 . . . N} is defined, where xi ∈ RDt denotes the textual
instances in the train set. For example, in a train set of
Wikipedia articles, xi refer to the textual features extracted
from the article’s text. Moreover, yi are the concept labels,
which are defined as the topic portion ranks as determined
by Eq. (1). Note, that for each concept c the labels yi are
identical for both the visual embedding and the textual em-
bedding, yielding a desired alignment between the two em-
beddings. Based on the train set Dc, the textual classifier of
the concept wc ∈ RDt is trained by minimizing the objective
function of Eq. (2).

3. EXPERIMENTAL SETUP

3.1 Datasets
We use three multimedia datasets in our experiments, as

summarized in Table 1. The first two datasets are made
of image/text pairs, while the third set includes video/text
pairs.

1. Wikipedia [22]. This dataset is provided by Rasiswa-
sia et al. [22] and includes 2,866 Wikipedia articles from 10
categories. Each article is made of few paragraphs in text
explaining the article, as well as an illustrative image. We
adopt the protocol in [9] and use 2,173 articles as train set,
231 articles as validation set, and the remaining 462 articles
as test set.

2. Wikipedia++. We expand the Wikipedia dataset [22]
by collecting more articles from more categories. Our dataset,
which we name as Wikipedia++, is collected by exactly fol-
lowing the same procedure as used for creating the Wikipedia
dataset [22]. More specifically, we collected the articles from
the Wikipedia “featured articles”. Each featured article is
categorized by Wikipedia into one of 30 categories. Exclud-
ing scarce categories, with less than 50 articles, we end up
with the 20 article categories listed in Table 1. We split
each article into sections, based on its section headings, and
assign each image in the article to the section in which it
was placed. This leads to a set of short and focused articles,
containing a single image. Then the dataset is pruned by
excluding the sections without any image. The final corpus
contains 12,617 articles. We randomly split the articles into
three partitions: 50% of the articles as train set, 25% as
validation set, and 25% as test set. We make our collected



Table 1: Statistics of the Wikipedia++ and the
Captioned Videos datasets used in our experiments.
The statistics of the Wikipedia dataset are available
in [22]. Our created Wikipedia++ dataset is pub-
licly available at http://www.mediamill.nl.

Wikipedia++ Captioned Videos [21]

Category Size Category Size

Animal 1,454 Attempting board trick 160

Art & architecture & archaeology 695 Feeding animal 161

Biology 477 Landing fish 119

Business & economics & finance 234 Wedding ceremony 123

Culture & society 326 Working wood working project 141

Education 271 Birthday party 343

Engineering & technology 231 Changing vehicle tire 221

Geography & places 1,758 Flash mob gathering 303

History 793 Getting vehicle unstuck 211

Literature & theatre 453 Grooming animal 218

Media 566 Making sandwich 255

Meteorology 345 Parade 322

Music 400 Parkour 213

Physics & astronomy 573 Repairing appliance 196

Religion & mysticism & mythology 212 Working sewing project 196

Royalty & nobility & heraldry 583 Attempting bike trick 130

Sport & recreation 700 Cleaning appliance 130

Transport 638 Dog show 130

Video gaming 401 Giving directions location 130

Warfare 1,507 Marriage proposal 129

Renovating home 130

Rock climbing 130

Town hall meeting 130

Winning race without vehicle 130

Working metal crafts project 130

Total 12,617 4,481

Wikipedia++, which is four times larger than the Wikipedia
dataset [22], publicly available.

3. Captioned Videos [21]. This dataset is part of
the TRECVID Multimedia Event Detection corpus [21]. It
consists of user-generated videos accompanied with human
provided textual captions. The dataset contains videos de-
picting 25 complex events, including life events, instructional
events, and sport events. The textual caption of each video
summarizes what happens in the content, as shown in Fig-
ure 5. We use the videos, which are assigned to one of the 25
event categories. It leads to 4,481 videos and their captions,
where 50% of them are used as train set, 25% as validation
set and the remaining 25% as test set.

3.2 Evaluation Protocol
We perform our cross-media retrieval experiments by ex-

actly following [22, 9]. The multimedia instances in the train
set and validation set are used for learning the visual and
textual embeddings. The test set instances are used to per-
form two cross-media retrieval experiments: i) Visual Query
experiments, where each image or video in the test set is con-
sidered as a query, for which we rank the textual instances
in the test set by measuring their similarities. ii) Textual
Query experiments, where each textual instance in the test
set is considered as a query, for which we rank the images
or videos in the test set by measuring their similarities. The
similarities are measured by first projecting the instances
into the semantic space, by the trained visual and textual
embeddings, then we use the normalized correlation as the
similarity metric [22].

The retrieval performance is evaluated using the mean
average precision (mAP) metric, as in [22, 9]. More specif-
ically, for each query and its R top retrieved instances, the
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Figure 7: Eight examples of the topics extracted
from the Wikipedia++ dataset. Each topic is rep-
resented by its five most relevant terms in the same
color. The topics in (a) and (b) are more specific
than the predefined concepts “sport & recreating”
and “warfare”, respectively.

AP is measured as:

1

M

R∑
r=1

p(r).rel(r),

where M is the total number of relevant instances in the
retrieved set, p(r) is the precision at r, and rel(r) is a binary
value determining the relevance of the rth ranked instance.
If the retrieved instance and the query has the same category
label the rel(.) is one, otherwise it is zero. Finally, mAP is
obtained by averaging the measured AP values over all the
queries. Similar to [9] we report the mAP@50 (R = 50) in
all the experiments.

3.3 Implementation Details
Features. We use the deep learned visual descriptors [20]

as image features. Each image is fed into a pre-trained con-
volutional neural network and the output of the second fully
connected layer is considered as a 4,096 dimensional feature
vector. The convolutional neural network has an AlexNet ar-
chitecture [16]. It is pre-trained on all the 15,293 categories
in ImageNet dataset, for which there are at least 50 posi-
tive examples available. The video features are obtained
by first extracting the video frames by uniformly sampling
the frames every two seconds. Then each video frame is
represented by deep learning features, which are extracted
in the same way as the image features. Afterward, each
video is represented by the average pooling of its frames as
a 4,096 dimensional feature vector. As the text features we
use the term histograms. More specifically, a dictionary of
3,000 high-frequency terms are extracted per dataset. Then
each textual instance is represented as the histogram of its
terms with respect to the dictionary [9].

Learning parameters. We learn all the vocabulary con-
cept classifiers by the stochastic gradient descent solver [1].
The learning rate parameter η, the regularization penalty
parameter λ, and the number of epochs are empirically set
to 0.01, 0.001, and 100, respectively.

Topic model parameters. We extract the topics by
MALLET implementation of LDA [18]. The Dirichlet prior
parameters α and β are empirically set to 1 and 0.1. More-
over, the optimal number of topics for each dataset is ob-
tained by cross-validation over 5, 10, 20, 50, 100, 500, and
1000 topics.

3.4 Experiments
1. Discovering Semantic Vocabulary. We evaluate

the effectiveness of our automatically discovered concept la-
bels, as proposed in Section 2.1, for training semantic vocab-

http://www.mediamill.nl
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Figure 6: Effect of increasing the number of vocabulary concepts by extracting more topics from text.
Extracting more topics generally improves the vocabulary by making it more descriptive. However, extracting
too many topics is prone to overfitting, which degrades the effectiveness of the trained vocabulary .

ularies. We compare two concept vocabularies: First, our
proposed discovered vocabulary, which is trained on the
automatically extracted concept labels, as detailed in Sec-
tion 2. Second, the pre-defined vocabulary baseline [7],
which is trained on manually provided concept labels. In
this baseline, each category in the train set is considered as
a vocabulary concept, and the concept labels come from the
category labels, which are manually provided per instance.
Please note that our proposed discovered vocabulary does
not need any manual category labels in the train set, so we
ignore all of them when training the discovered vocabulary.
Each vocabulary is evaluated by its cross-media retrieval ac-
curacy.

2. Training Semantic Embeddings. We evaluate
our proposed strategy for training the semantic embeddings
from the discovered vocabulary labels, as detailed in Sec-
tion 2.2, by comparing three concept vocabularies: First,
our proposed vocabulary of concept rankers, where the
concept classifiers are trained as rankers on the topic por-
tion ranks as labels. The rankers are trained based on the
rankSVM formulation [15]. Second, a baseline vocabulary
of concept binary classifiers, where the concept classi-
fiers are trained as binary classifiers on the binarized topic
portion as labels. The binary classifiers are trained based
on the binary SVM formulation. Third, a baseline vocabu-
lary of concept regressors, where the concept classifiers are
trained as regressors on the topic portion values as labels.
The regressors are trained based on the ridge regression for-
mulation. To be consistent, we use the stochastic gradient
descent solver for training all the rankers, binary classifiers,
and regressors with the same parameter settings as detailed
in Section 3.3.

3. Comparison to Others Alignments. We investi-
gate the effectiveness of our discovered vocabulary for cross-
media retrieval by comparing it with three state-of-the-art
baselines: i) CCA [22], as a low-level alignment, which uses
CCA to align the two modalities. ii) Correspondence
AE [9], as a recent mid-level alignment, which uses cor-
respondence autoencoders with deep architectures to align
the textual and visual features. iii) pre-defined vocabu-
lary [7], as a semantic alignment, which uses a pre-defined
vocabulary of concept classifiers to embed the textual and
visual instances in the mutual semantic space. For the CCA
and pre-defined vocabulary baselines, we run the author’s
implementation on our features. For the correspondence AE
baseline the numbers are exactly reported from [9].

Table 2: Experiment 1. Evaluating the discovered
vocabulary. The discovered vocabulary is more ef-
fective and does not require manual supervision dur-
ing training of concept classifiers.

Visual Query Textual Query

Dataset Pre-defined [7] Discovered Pre-defined [7] Discovered

Wikipedia 0.431 0.450 0.491 0.516

Wikipedia++ 0.377 0.418 0.493 0.511

Captioned Videos 0.528 0.642 0.627 0.732

4. RESULTS

4.1 Discovering Semantic Vocabulary
The results are shown in Table 2. The proposed discovered

vocabulary outperforms the pre-defined vocabulary consis-
tently for both cross-media retrieval tasks on all the three
datasets. It demonstrates that the vocabulary concept la-
bels can be effectively extracted from the textual instances
in the train set without any manual supervision.

We provide two reasons to explain the better performance
of the discovered vocabularies over the predefined vocabu-
laries: First, many of the manually defined vocabulary con-
cepts are very general, i.e., the concepts“warfare”and“sport
& recreation” in the Wikipedia++. These general concepts
have a large diversity in their training examples, which un-
dermines the accuracy of their concept classifiers. In con-
trast, the discovered vocabulary defines the vocabulary con-
cepts by topic modeling, so is able to define more specific
concepts by extracting an appropriate number of topics. Fig-
ure 7 shows some examples of the specific concepts, which
are discovered by topic modeling.

As the seconds reason, the pre-defined vocabularies in-
clude a limited number of concepts, which are not enough
to effectively represent all of the instances. More specifi-
cally, for the Wikipedia, Wikipedia++, and Captioned Videos
datasets, the pre-defined vocabulary includes 10, 20, and
25 concepts as pre-defined in the dataset. In contrast, our
discovered vocabulary is able to discover higher number of
vocabulary concepts by extracting more topics from the tex-
tual instances. We further investigate the impact of increas-
ing the number of vocabulary concepts by extracting more
topics in Figure 6. It demonstrates that extracting more
topics generally leads to more comprehensive and descrip-
tive concept vocabulary, which is more effective for cross-
media retrieval. However, after a certain vocabulary size,
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Figure 8: Top three retrievals for a caption query (left) and a video query (right) in the Captioned Videos
dataset. The semantic representations are shown in the gray box. The common concepts between the query
and the retrieved instances, as highlighted by colors, explain why the query and the retrieved instances are
similar. Each highlighted concept is represented by its three most relevant terms in the bottom.

Table 3: Experiment 2. Evaluation of the three strategies for training vocabulary classifiers from the discov-
ered concept labels. The most effective vocabulary is obtained by training ranking functions on topic portion
ranks as labels.

Visual Query Textual Query

Dataset Concept Binary Classifiers Concept Regressors Concept Rankers Concept Binary Classifiers Concept Regressors Concept Rankers

Wikipedia 0.416 0.412 0.450 0.497 0.487 0.516

Wikipedia++ 0.342 0.401 0.418 0.406 0.495 0.511

Captioned Videos 0.453 0.594 0.642 0.522 0.706 0.732

extracting more topics has a negative effect on the vocab-
ulary. We explain it by the fact that when we extract too
many topics from a small collection of texts, the extracted
topics might be overfitted to the random co-occurrences of
terms. It is also observable in Figure 6, where there is a
relation between the dataset size and the optimal number of
topics. The optimal number of topics for Wikipedia++, as
the largest dataset in our experiments, is 100 that is higher
than for the other two datasets.

As the conclusion, the results demonstrate that by dis-
covering the concept labels from the textual instances, we
not only alleviate the manual labeling but also train a more
effective vocabulary of concepts for cross-media retrieval.

4.2 Training Semantic Embeddings
The results are shown in Table 3. The vocabulary of

concept rankers consistently outperforms the vocabularies
of concept binary classifiers and concepts regressors for the
both cross-media retrieval tasks on all the three datasets. It
demonstrates that defining the concept labels as the topic
portion ranks and training ranking functions on them is the
most effective strategy for learning from the automatically
discovered concept labels.

The lowest performing vocabulary is obtained with the
concept binary classifiers, which are trained as binary SVMs
on the binarized topic portions as labels. We explain it
by the fact that lots of information in the topic portions
are lost by binarization. More specifically, all the instances
above the binarization threshold are equally considered as
positive examples without consideration of their relevancy

degrees encoded in topic portions. The low performance of
the concept binary classifiers implies the importance of the
relevancy degrees for training the vocabulary.

The concept regressors vocabulary performs better than
the binary classifiers vocabulary, but it is still outperformed
by the vocabulary of concept rankers. As an explanation, we
speculate that the concept regressors does not binarize the
topic portions, so are not suffered by the information lost as
in the binary classifiers. However, predicting the exact value
of the topic portions from the visual features, as targeted by
the concept regressors, is generally very hard. Hence the
trained concept regressors might be inaccurate. This draw-
back is relaxed by the concept rankers by predicting the
relative orders between the topic portions instead of their
exact values. As a conclusion, training the concept rankers
is the most effective strategy, compared to the alternatives,
for training concept classifiers from the automatically dis-
covered labels.

4.3 Comparison to Other Alignments
The results are shown in Table 4. Our discovered vocab-

ulary consistently outperforms the state-of-the-art alterna-
tives for the both cross-media retrieval tasks on all the three
datasets. It demonstrates the effectiveness of our proposed
vocabulary for cross-media retrieval.

Furthermore, the results demonstrate that the both pre-
defined and discovered vocabularies substantially outper-
form the CCA and correspondence autoencoders baselines.
We explain the relatively low performance of the correspon-
dence autoencoders by the fact that this baseline uses a deep



Table 4: Experiment 3. Comparison of our discovered vocabulary with three state-of-the-art alignments. The
discovered vocabulary consistently outperforms the alternatives.

Visual Query Textual Query

Dataset CCA [22] Correspondence AE [9] Pre-defined [7] Discovered CCA [22] Correspondence AE [9] Pre-defined [7] Discovered

Wikipedia 0.348 0.335 0.431 0.450 0.359 0.368 0.491 0.516

Wikipedia++ 0.352 N.A. 0.377 0.418 0.412 N.A. 0.493 0.511

Captioned Videos 0.475 N.A. 0.528 0.642 0.545 N.A. 0.627 0.732

architecture, which generally requires large amount of train-
ing data to be effectively learnt. However, the largest train
set in our experiments includes 6K examples, which seems
to be not large enough. Moreover, the low performance of
CCA baseline, as a low-level alignment, validates that learn-
ing the correspondences between the two modalities directly
from the low-level features is not effective, since the semantic
gap is maximized.

Besides their higher retrieval accuracies, the semantic vo-
cabularies provide interpretable representation of instances,
which make it possible to explain why two visual and textual
instances are similar, as shown in Figure 8. In summary, the
discovered vocabulary is not only effective for cross-media
retrieval, but also recounts why the instances are retrieved.

5. CONCLUSION
We propose a data-driven approach for cross-media re-

trieval by automatically learning its underlying semantic
vocabulary, rather than specifying and annotating the vo-
cabulary as commonly done. We demonstrate that the tex-
tual instances in cross-media collections are a rich source
of semantics, which can be utilized to (weakly) supervise
the concept classifier training. More specifically, we demon-
strate that probabilistic topic models are effective tools to
extract the underlying semantic structures from a collection
of text. Moreover, we experimentally show that learning
to rank is an effective strategy for learning the classifiers
from the text-driven annotations. Our experiments show
that the discovered vocabulary outperform the state-of-the-
art alternatives for cross-media retrieval. These conclusions
may generalize for any other problem, where the textual de-
scriptions are served as labels for concept classifier training.
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