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Recognition of Genuine Smiles
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Abstract—Automatic distinction between genuine (spontaneous)
and posed expressions is important for visual analysis of social
signals. In this paper, we describe an informative set of features
for the analysis of face dynamics, and propose a completely
automatic system to distinguish between genuine and posed
enjoyment smiles. Our system incorporates facial landmarking
and tracking, through which features are extracted to describe the
dynamics of eyelid, cheek, and lip corner movements. By fusing
features over different regions, as well as over different temporal
phases of a smile, we obtain a very accurate smile classifier. We
systematically investigate age and gender effects, and establish
that age-specific classification significantly improves the results,
even when the age is automatically estimated. We evaluate our
system on the 400-subject UvA-NEMO database we have recently
collected, as well as on three other smile databases from the
literature. Through an extensive experimental evaluation, we show
that our system improves the state of the art in smile classification
and provides useful insights in smile psychophysics.

Index Terms—Affective computing, expression dynamics,
expression spontaneity, face analysis, genuine smile, human-com-
puter interaction, social signals.

I. INTRODUCTION

H UMAN facial expressions are indispensable elements
of non-verbal communication. Since faces can reveal

the mood or the emotional feeling of a person, automatic
understanding and interpretation of facial expressions provide
a natural way to interact with computers. Automatic analysis
and classification of emotional facial expressions have been an
active research topic since the Facial Action Coding system
(FACS) was proposed by Ekman [1]. Since the literature on
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automated facial expression recognition is extensive, we refer
the reader to two comprehensive surveys [2], [3].
In recent studies, analysis of spontaneous facial expressions

have gained more interest. For social interaction analysis, it is
necessary to distinguish genuine (spontaneous/felt) expressions
from the posed (deliberate) ones since they convey different
meanings. Spontaneous expressions can reveal states of atten-
tion, agreement and interest, as well as deceit. The foremost fa-
cial expression for spontaneity analysis is the smile as it is the
most frequently performed expression. A smile can signal en-
joyment, embarrassment, politeness, etc. [4]. It is also used to
mask other emotional expressions, since it is the easiest emo-
tional facial expression to pose voluntarily [5], [6].
Several characteristics of genuine and posed smiles, such

as symmetry, speed, and timing are analyzed in the literature
[7]–[9]. Their findings suggest that different facial regions
contribute differently to the classification of smiles. In this
paper, we combine region-specific movement dynamics (e.g.
duration, amplitude, speed and acceleration) to detect the gen-
uineness of enjoyment smiles. To this end, we propose a generic
set of features that can be applied to different facial regions.
We assess the discrimination power of regional dynamics,
and demonstrate that the eye region contains the most useful
information for distinguishing between spontaneous and posed
smiles automatically.
Our contributions are: 1) we report the most extensive set

of comparative results on automatic smile analysis, using the
largest spontaneous/posed enjoyment smile database in the lit-
erature, as well as several older databases; 2) we report an ac-
curate smile classification method, which outperforms the state-
of-the-art methods; 3) we provide new empirical findings on age
related differences in smile expression dynamics; 4) we provide
region-specific analysis of facial feature movements under var-
ious conditions; and 5) we systematically explore different fac-
tors influencing smile classification, including the contributions
of different facial regions and temporal phases, age and gender.
Since we compare our proposed method with three recent ap-
proaches from the literature, on four different databases, our re-
sults accurately depict the state of the art in smile analysis.
A preliminary version of this paper appeared as [10]. Apart

from increasing the level of detail throughout the paper, the
contributions over our earlier work can be listed as: 1) an on-
line analysis system is implemented and assessed; 2) weighted
SUM fusion is included in the analysis, improving the results;
3) gender effects are analyzed; 4) age effects are analyzed in de-
tail, additional experiments performed with automatic age esti-
mation; 5) a number of experiments are conducted to assess the
contribution of each feature, phase and region; 6) related work
and databases are expanded, new experimental results are re-
ported on the BBC, MMI, and SPOS databases; 7) facial fea-
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ture tracking is separately assessed; and 8) different classifiers
are assessed.
This paper is structured as follows. In Section II, related

work in smile and spontaneity analysis is given. Section III de-
scribes the proposed method for smile classification, followed
by Section IV that describes the UvA-NEMO Smile Data-
base and other spontaneous/posed smile databases. Then,
Section V presents our experimental results, separated into
subsections that analyze each factor in the smile classification
system separately. In Section VI, the findings of this study are
discussed. Section VII concludes the paper.

II. RELATED WORK

This section first summarizes the physiognomy of smiles, and
then reports related work on automatic smile analysis.

A. The Physiognomy of Smiles

The smile is the easiest emotional facial expression to pose
voluntarily [6]. Broadly, a smile can be identified as the upward
movement of the lip corners, which corresponds to Action Unit
12 (AU12) in the facial action coding system (FACS) [1]. In
terms of anatomy, the zygomatic major muscle contracts and
raises the corners of the lips during a smile [8]. In terms of dy-
namics, smiles are composed of three non-overlapping phases;
the onset (neutral to expressive), apex, and offset (expressive
to neutral), respectively. Ekman individually identified 18 dif-
ferent smiles (such as enjoyment, fear, miserable, embarrass-
ment, listener response smiles) by describing the specific visual
differences on the face and indicating the accompanying action
units, however temporal dynamics for each smile type were not
described [6].
Empirical research into the physiognomy of smiles started

with Guillaume Duchenne in the mid-nineteenth century.
Duchenne experimented on muscle activities during smiles,
and proposed that smiles resulting from felt joy not only utilize
the zygomaticus major muscle, but also the orbicularis oculi (a
circular muscle around the eyes). Duchenne claimed that the or-
bicularis oculi could not be controlled voluntarily during posed
smiles [11]. This kind of joy smiles are called Duchenne smiles
(D-smiles) in his honor. After more than a century, Ekman and
Friesen supported Duchenne’s observations for felt smiles of
positive emotions, with empirical findings [8]. In [12], a strong
correlation between D-smiles and felt enjoyment smiles were
found. However, the definition of D-smiles was updated as
the combined contraction of zygomaticus major and the outer
strands (pars lateralis) of orbicularis oculi, since fewer people
can voluntarily contract the outer strands of orbicularis oculi,
as compared to its inner strands [13].
Contraction of the orbicularis oculi, pars lateralis raises the

cheek, narrows the eye aperture, and forms wrinkles (crows-
feet) on the external side of the eyes. This activation corre-
sponds to Action Unit 6 (AU6) and is named as the Duchenne
marker (D-marker) in the literature. [14] indicates that most
people cannot voluntarily contract orbicularis oculi, pars lat-
eralis and the ones who can do it usually cannot activate this
muscle on both sides of their face simultaneously. However,
new empirical findings question the reliability of the D-marker

[15]–[17]. Recently, it has been shown that orbicularis oculi,
pars lateralis can be active or inactive under both spontaneous
and posed conditions with similar frequencies [18]. On the other
hand, untrained people consistently use the D-marker to recog-
nize genuine and posed enjoyment smiles [19].

B. Analysis of Smiles
Most of the previous studies regarded the D-marker as the

most reliable evidence for detection of felt enjoyment smiles
[8], [20]–[22]. But other cues are also considered in the litera-
ture. For instance, symmetry is potentially informative to dis-
tinguish genuine and posed enjoyment smiles [8]. In [7], it has
been claimed that genuine enjoyment smiles are more symmet-
rical than posed ones. Later studies reported no significant dif-
ference [23], [15].
In the last decade, dynamical properties of smiles (such as

duration, speed, and amplitude of smiles; movements of head
and eyes) [9], [24], [25] received attention as opposed to mor-
phological cues [26], [27] to discriminate between genuine and
posed smiles. In [28], Cohn et al. analyze correlations between
lip-corner displacements, head rotations, and eye motion during
spontaneous smiles. In another study, Cohn and Schmidt re-
port that spontaneous smiles have smaller onset amplitude of
lip corner movement, but a more stable relation between ampli-
tude and duration [9]. Other related findings show that the max-
imum speed of the smile onset is higher in posed samples [29].
Furthermore, the maximum speed of the smile onset is higher in
posed samples and posed eyebrow raises have higher maximum
speed and larger amplitude, but shorter duration than sponta-
neous ones [15].
From the perspective of computer vision, several temporal

methods are proposed for automatic classification of genuine
and posed facial expressions [9], [30], [24], [25], [31]. These
studies not only use the defined differences of genuine/posed
expressions, but also propose new cues for classification. In [9],
Cohn and Schmidt propose a system which distinguishes spon-
taneous and deliberate enjoyment smiles by a linear discrim-
inant classifier using duration, amplitude, and mea-
sures of smile onsets. They analyze the significance of the pro-
posed features and show that the amplitude of the lip corner
movement is a strong linear function of duration in spontaneous
smile, but not in deliberate ones.
In [30], Valstar et al. propose a method to automatically

discriminate between spontaneous and deliberate brow actions
using intensity, duration, trajectory, symmetry, and occurrence
order of the actions. In [24], a multimodal system is presented
to classify posed and genuine smiles. GentleSVM-Sigmoid
classifier is used with the fusion of shoulder, head and inner
facial movements.
Recently, Dibeklioğlu et al. have proposed a system which

uses eyelid movements to classify genuine and posed enjoyment
smiles, where distance-based and angular features are defined
in terms of changes in eye aperture [25]. Several classifiers are
compared and the reliability of eyelid movements are shown to
be superior to that of the eyebrows, cheek, and lip movements
for smile classification.
In [31], Pfister et al. propose a spatio-temporal method using

both natural and infrared face videos to discriminate between
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Fig. 1. (a) Used facial feature points with their indices and (b) the 3-D mesh
model.

spontaneous and posed facial expressions. By enabling the tem-
poral space and using the image sequence as a volume, they ex-
tend the Completed Local Binary Patterns (CLBP) texture de-
scriptor into the spatio-temporal CLBP-TOP features for this
task.
In conclusion, the most relevant facial cues for smile classi-

fication in the literature are: 1) the D-marker, 2) the symmetry,
and 3) the dynamics of smiles. Instead of analyzing these facial
cues separately, in this paper, the aim is to use a more generic
descriptor set which can be applied to different facial regions
to enhance the indicated facial cues with detailed dynamic fea-
tures. Additionally, we focus on the dynamical characteristics of
eyelid movements (such as duration, amplitude, speed, and ac-
celeration), instead of simple displacement analysis, motivated
by the findings of [9] and [25]. We report in Section V-I a com-
parison between the best performing methods in the literature.

III. METHOD

One of the contributions of this paper is an accurate smile
classification approach. In this section, details of the proposed
spontaneous/posed enjoyment smile classification system are
summarized. The flow of the system is as follows. Facial fidu-
cial points are located in the first frame, and tracked during the
rest of the smile video. These points are used to calculate dis-
placement signals of eyelids, cheeks, and lip corners. Onset,
apex, and offset phases of the smile are estimated using the nor-
malized displacement of the lip corners. Afterwards, descrip-
tive features for eyelid, cheek, and lip corner movements are
extracted from each phase. After a feature selection procedure,
the most informative features with minimum dependency are
used to train Support Vector Machine (SVM) classifiers.

A. Facial Feature Tracking

To analyze the facial dynamics, 11 facial feature points (eye
corners, center of upper eyelids, cheek centers, nose tip, lip cor-
ners) are tracked in the videos [see Fig. 1(a)]. Note that, the
cheek center is computed as the center location of the cheek
patch [see Fig. 1(b)]. These fiducial points are specifically se-
lected to describe the movements on the eye, cheek, and mouth
regions, which are related to the most relevant facial cues in the
literature for smile classification [13], [15]–[18]. Each point is
initialized in the first frame of the videos for precise tracking and

analysis. In our system, we use the piecewise Bézier volume de-
formation (PBVD) tracker, which is proposed by Tao andHuang
[32] [see Fig. 1(b)]. We have introduced improved methods for
its initialization, since it is fast and robust with accurate initial-
ization [33].
The PBVD tracker employs a model-based approach. A 3-D

mesh model of the face is constructed by warping the generic
model to fit the facial features in the first frame of the image se-
quence. The generic face model consists of 16 surface patches.
To form a continuous and smooth model, these patches are em-
bedded in Bézier volumes. If is a facial mesh point,
then the Bézier volume [34] is defined as

(1)

where points and variables control the
shape of the volume. denotes a Bernstein polynomial

(2)

The expressions of and are similar. When the
control points are moved, both the deformed volume and the dis-
placement of can be obtained using Equation (1). After fitting
the face model, facial feature points (as well as headmotion) can
be tracked in 3-D according to the movement and the deforma-
tions of the mesh. To measure 2-D motion, template matching
is used between frames at different resolutions. For more ro-
bust tracking, image templates of both the previous frame and
the first frame of the sequence are used for matching. The esti-
mated 2-D image motion is modeled as a projection of the 3-D
movement onto the image plane. Then, the 3-D movement is
calculated using projective motion of several points.

B. Feature Extraction
Three different face regions (eyes, cheeks, and mouth) are

used to extract descriptive features. First of all, tracked 3-D co-
ordinates of the facial feature points [see Fig. 1(a)] are used
to align the faces in each frame. We estimate the 3-D pose of
the face, and normalize the face with respect to roll, yaw, and
pitch rotations. Since three non-colinear points are enough to
construct a plane, we use three stable landmarks (eye centers and
nose tip) to define a plane . Eye centers are defined as middle
points between the inner and outer eye corners as
and . Angles between the positive normal vector
of and unit vectors on (horizontal), (vertical), and
(perpendicular) axes give the relative head pose as follows:

(3)

In Equation (3), and denote the vectors from point
to points and , respectively. and are the mag-
nitudes of and vectors. According to the face geometry,
Equation (3) can estimate the exact roll ( ) and yaw ( ) an-
gles of the face with respect to the camera. If we assume that
the face is approximately frontal in the first frame, then the ac-
tual pitch angles ( ) can be calculated by subtracting the initial
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Fig. 2. Segmentation of temporal phases using the amplitude signal of the lip
corners .

value. Once the pose of the head is estimated, tracked points
are normalized with respect to rotation, scale, and translation as
follows:

(4)

where is the aligned point and , , and denote the
3-D rotation matrices for the given angles. denotes the Eu-
clidean distance. On the normalized face, the middle point be-
tween eye centers is located at the origin and the interocular dis-
tance (distance between eye centers) is set to 100 pixels. Since
the normalized face is approximately frontal with respect to the
camera, we ignore the depth ( ) values of the normalized fea-
ture points , and denote them as .
After the normalization, the onset, apex, and offset phases

of the smile are detected using the approach proposed in [35],
by calculating the amplitude of the smile as the distance of the
right lip corner to the lip center during the smile. Differently,
we estimate the smile amplitude as the average amplitude of
right and left lip corners, normalized by the length of the lip.
Let be the value of the normalized amplitude signal of
the lip corners in the frame . It is computed by

(5)

where denotes the 2-D location of the point in frame . The
longest continuous increase in is defined as the onset phase.
Similarly, the offset phase is detected as the longest continuous
decrease in . The phase between the last frame of the onset
and the first frame of the offset defines the apex (see Fig. 2).
To extract features from the eyelids and the cheeks, additional

amplitude signals are computed. We estimate the (normalized)
eyelid aperture and cheek displacement by

(6)

(7)

where , and denotes the rel-
ative vertical location function, which equals to if is lo-
cated (vertically) below on the face, and 1 otherwise. ,

Fig. 3. Visualization of the amplitude signals, which are defined as the mean of
left/right amplitude signals on the face. For simplicity, visualizations are shown
on a single side of the face.

TABLE I
DEFINITIONS OF THE EXTRACTED FEATURES, AND THE RELATED FACIAL CUES
WITH THOSE. THE RELATED FACIAL CUES ARE GIVEN BY SUPERINDICES,
WHERE , , AND DENOTE DYNAMICS, D-MARKER, AND SYMMETRY,
RESPECTIVELY. THE RELATION WITH D-MARKER IS ONLY VALID FOR

EYELID FEATURES

, and are hereafter referred to as amplitude sig-
nals. Extraction of the amplitude signals are visualized in Fig. 3.
In addition to the amplitudes, speed , and accelera-
tion signals are computed.
In summary, description of the used features and the related

facial cues with those are given in Table I. Note that the defined
features are extracted separately from each phase of the smile.
As a result, we obtain three feature sets for each of the eye,
mouth and cheek regions. Each phase is further divided into
increasing ( ) and decreasing ( ) segments, for each feature set.
This allows a more detailed analysis of the feature dynamics.
In Table I, signals symbolized with superindex ( ) and ( )

denote the segments of the related signal with continuous in-
crease and continuous decrease, respectively. For example,
pools the increasing segments in (see Fig. 4). defines the
length (number of frames) of a given signal, and is the frame
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Fig. 4. Increasing and decreasing segments on an amplitude signal.

rate of the video. and define the amplitudes for the left
and right sides of the face, respectively. For each face region,
three 25-dimensional feature vectors are generated by concate-
nating these features.
In some cases, the features cannot be calculated. For example,

if we extract features from the amplitude signal of the lip corners
using the onset phase, then decreasing segments will be an

empty set ( ). For such exceptions, all the features
describing the related segments are set to zero.

C. Feature Selection and Classification

To classify genuine and posed smiles, individual SVM
classifiers are trained for different face regions. As described in
Section III-B, we extract three 25-dimensional feature vectors
for each face region. To deal with feature redundancy, we use
the Min-Redundancy Max-Relevance (mRMR) algorithm to
select the discriminative features [36]. mRMR is an incremental
method for minimizing the redundancy while selecting the
most relevant information. Let be the set of selected

features, then the feature can be selected from the
set as

(8)

where shows the mutual information function and indicates
the target class. and denote the entire feature set, and the se-
lected features, respectively. Equation (8) is used to determine
which feature is selected at each iteration of the algorithm. The
size of the selected feature set is determined based on the vali-
dation error.
During the training of our system, both individual feature vec-

tors for the onset, apex, offset phases, and a vector with their
fusion are generated. The most discriminative features on each
of the generated feature sets are selected using mRMR. Min-
imum classification error on a separate validation set is used
to determine the most informative facial region, and the most
discriminative features on the selected region. Similarly, to op-
timize the SVM configuration, linear, polynomial, and radial
basis function (RBF) kernels with different parameters (size of
RBF kernel, degree of polynomial kernel) are tested on the val-
idation set. The test partition of the dataset is not used for pa-
rameter optimization.

1[Online] Available: http://www.uva-nemo.org

IV. DATABASE

A. UvA-NEMO Smile Database

We have recently collected the UvA-NEMO Smile Data-
base1[10] to analyze the dynamics of spontaneous/posed
enjoyment smiles. Data collection was carried out as a part of
Science Live, the innovative research programme of Science
Center NEMO.2 This database is composed of videos (in
RGB color) recorded with a Panasonic HDC-HS700 3MOS
camcorder, placed on a monitor, at approximately 1.5 meters
away from the recorded subjects. Videos were recorded with
a resolution of pixels at a rate of 50 frames per
second under artificial D65 daylight illumination. Additionally,
a color chart is present on the background of the videos for
color normalization. Fig. 5 shows sample frames from the
UvA-NEMO Smile Database.
The database has 1240 smile videos (597 spontaneous, 643

posed) from 400 subjects (185 female, 215 male). The ages of
subjects vary from 8 to 76 years, and there are 149 young people
(235 spontaneous, 240 posed) and 251 adults (362 spontaneous,
403 posed). 43 subjects do not have spontaneous smiles and 32
subjects have no posed smile samples. (See Fig. 6 for age and
gender distributions).
For posed smiles, each subject was asked to pose an enjoy-

ment smile as realistically as possible, after being shown the
proper way in a sample video. To elicit genuine enjoyment
smiles, a set of short, funny video segments were shown to each
subject for approximately five minutes. While subjects were
watching the videos, their facial expressions were recorded.
During this session, we did not interact or communicate with
subjects. Duration of both posed and elicited (spontaneous)
smiles were segmented by two trained annotators. Segments
start/end with neutral or near-neutral expressions. To able to
have a balanced number of spontaneous and posed smiles,
maximum two posed and two spontaneous smiles were selected
by seeking consensus of the two annotators. If more than two
spontaneous/posed smiles were selected by the consensus
of annotators, smiles that start with more frontal pose were
included in the database.
The mean duration of the spontaneous and posed smile seg-

ments are 4.9 ( ) seconds, and 3.1 ( ) seconds,
respectively. Average interocular distance on the database is ap-
proximately 200 pixels (estimated by using the tracked land-
marks). 50 subjects wear eyeglasses.

B. Other Smile Databases

Facial expression databases in the literature rarely contain
spontaneous smiles. We have used several existing databases
(BBC, MMI, SPOS) to report results with the proposed method.
This section will give the details of publicly available databases
which have both spontaneous and posed smile/laughter content.
Table II shows a comparative overview of these databases.
BBC Smile Dataset3 was gathered from “Spot the fake smile”

test on the BBC website. The dataset has 10 spontaneous and

2[Online] Available: http://www.e-nemo.nl.
3[Online] Available: http://www.bbc.co.uk/science/humanbody/mind/sur-

veys/smiles/
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Fig. 5. Sample frames from the UvA-NEMO Smile Database showing neutral face (top), posed enjoyment smile (middle), and spontaneous enjoyment smile
(bottom).

Fig. 6. Age and gender distributions for the subjects (left) and for the smiles (right) in the UvA-NEMO Smile Database.

TABLE II
DETAILS OF SMILE/LAUGHTER CONTENT IN DIFFERENT DATABASES. NOTE
THAT THE POSED PART OF USTC-NVIE INCLUDES ONLY THE NEUTRAL

AND THE MOST EXPRESSIVE (APEX) IMAGES

10 posed smile videos, each from a different subject and each
starting and ending with a neutral face.
MAHNOB Laughter Database [37] contains audio, video

and thermal video recordings of 22 subjects while watching
funny videos. There are 563 spontaneous laughter episodes,
849 speech utterances, 51 posed laughs, 67 speech-laughter
episodes and 167 other vocalizations annotated in the database.
MMI Facial Expression Database [38] is not specifically

gathered for smile classification, but the annotated frontal
recordings include 74 posed smiles from 30 subjects, as well
as spontaneous smiles/laughters from 25 subjects. Spontaneous
content of the database has two subsets. The first subset in-
cludes 383 manually annotated/cut segments (from 16 subjects)
showing several affective displays. The second subset has 9

uncut recordings (including audio) containing 164 annotated
laughters from 9 subjects. For our experiments, 120 spon-
taneous smiles that start and end with a neutral face (of 15
subjects) are selected from the first subset.
SPOS Corpus [31] consists of natural color and infrared

videos of six basic facial expressions. Each expression for each
subject has spontaneous and posed recordings. The database
contains only the onset phases of expressions. There are 66
spontaneous and 14 posed smiles from seven subjects.
USTC-NVIE Database [39] consists of images and videos

of six basic facial expressions and neutral faces. Images are
recorded in both natural color and infrared, simultaneously,
under three different illumination conditions. NVIE database
has two parts: spontaneous part includes image sequences of
onset phases, where the posed part consists of only the neutral
and the most expressive (apex) images. The database has 302
spontaneous smiles (image sequences of onset phases) from
133 subjects, and 624 posed smiles (single apex images) from
104 subjects.

V. EXPERIMENTAL RESULTS

For a detailed evaluation of the proposed method, the UvA-
NEMO smile database is used in our experiments. Furthermore,
we provide results on the BBC, MMI and SPOS databases in
Section V-C to V-I. In the proposed method, SVM classifiers
are used to distinguish between genuine and posed enjoyment
smiles, but to validate the reliability of SVM, comparison of
different classifiers is also included in Section V-A.
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Fig. 7. Effect of using different models for classification with and without fea-
ture selection on the UvA-NEMO Smile Database. Upper (light-colored) part of
the bars show the accuracy increase by enabling feature selection where lower
parts denote the performance without feature selection.

We use a two level 10-fold cross-validation scheme: each
time a test fold is separated, a 9-fold cross-validation is used
to train the system, and parameters are optimized without using
the test partition. There is no subject overlap between folds. A
two level 7-fold cross-validation (leave one subject out) is used
for the SPOS database, since it has only seven subjects.
In our experiments, we have tested linear, polynomial and

RBF kernel SVMs with several parameters. The parameter set
with the minimum validation error is selected and used for the
related fold. In majority of the cases, the linear SVM was ob-
served to result in the minimum validation error. For instance,
during the training on all features of all regions, the linear SVM
is chosen for seven of 10 folds. For a detailed analysis of the
features and the system, tracking is initialized by manually an-
notated facial landmarks. The results with automatic initializa-
tion are also given in Sections V-H and V-I.

A. Assessment of Model and Feature Selection

To assess the robustness of different classification models, as
well as the reliability of feature selection, we compare Linear
Discriminant, Logistic Regression, k-Nearest Neighbor (k-NN),
Naïve Bayes, and SVM classifiers trained both on selected and
the whole set of features. The ideal number of nearest neigh-
bors for k-NN is selected empirically by observing the valida-
tion error. To train the classifiers, we use the concatenated fea-
tures of the onset, apex, and offset phases for each region, in
addition to testing each phase individually. The UvA-NEMO
Smile Database is used in this experiment.
As shown in Fig. 7, SVM outperforms the other methods on

all regions, with and without feature selection. The accuracy of
logistic regression and k-nearest neighbor follow that of SVM.
If the features of all regions on each phase are concatenated, this
combined feature does not improve the accuracy of classifica-
tion over using only eyelid features (shown as ‘All Regions’ in
Fig. 7). Even under these conditions, SVM still performs better
than other classifiers.
When we analyze the results in terms of enabling feature se-

lection, we observe that feature selection provides a 4.8% (rel-
ative) accuracy increase (on average), for different classifiers
on individual regions. This improvement can be explained by
discarding features which cause confusion. The highest relative
improvement is obtained by SVM with an accuracy increase of

TABLE III
CORRECT CLASSIFICATION RATES ON THE UVA-NEMO SMILE DATABASE

FOR DIFFERENT FACIAL REGIONS

5.3%. Since these results confirm the usefulness of feature se-
lection and SVM, they are used in the remainder of this section.

B. Assessment of Facial Regions and Temporal Phases

To evaluate the discriminative power of the eye, cheek, and
mouth regions and temporal phases for smile classification, we
use the features of onset, apex, and offset phases of all regions,
individually. Features of all phases are also concatenated and
tested for each region (shown as ‘All Phases’ in Table III). Ad-
ditionally, concatenation of features for all regions is evaluated
(shown as ‘All Regions’ in Table III). The UvA-NEMO Smile
Database is used in these experiments.
For temporal phase segmentation, we employ a modified ver-

sion of the approach proposed in [35], by using the change in
lip corner displacements (see Section III-B). Different methods
for temporal phase segmentation are proposed in a few other
studies [40]–[43]. In [40], rule-based reasoning is used to seg-
ment temporal phases of different AUs. Similar to our approach,
increase and decrease in lip corner displacements are used for
AU12 segmentation. [41] employs multiclass SVMs and hybrid
SVM-HMMs using distances between different landmark pairs
to detect AU phases. However, costly manual annotation of tem-
poral segments is required for training. [42] and [43] propose to
model change in facial appearance for temporal phase segmen-
tation. Yet, enabling appearance-based models introduces addi-
tional computational costs. In contrast to these approaches, we
only use dynamics of point displacements.
As shown in Table III, the highest accuracy for individual

phases is achieved by the onset features of lip corners (82.58%).
However, the discriminative power of the apex and offset phases
of lip corners do not reach those of the eyelids and cheeks.
The most reliable apex and offset features are obtained from
the eyelids, which provide the highest correct classification rate
(87.10%) when the features of all phases are concatenated. Lip
corners (83.63%) and cheeks (83.15%) follow the eyelids. The
combined eyelid features have the minimum validation error in
this experiment. When we analyze the results in terms of tem-
poral phases, it is concluded that the onset is the most informa-
tive phase for all regions. It is followed by the apex and offset
phases, respectively. The concatenation of all regional features
for all phases does not improve the accuracy beyond using the
combined eyelid features. This result shows that low-level fu-
sion of features is not effective for smile classification, and
mid-level or late fusionmay bemore promising.We assess these
next.
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TABLE IV
EFFECT OF DIFFERENT FUSION STRATEGIES ON THE CORRECT CLASSIFICATION
RATES. NOTE THAT ONLY THE ONSET FEATURES ARE USED IN MID-LEVEL
FUSION FOR THE SPOS DATABASE, SINCE IT DOES NOT INCLUDE APEX

AND OFFSET PHASES

C. Assessment of Fusion Strategies

To assess the performance of the different fusion techniques,
three different strategies (early, mid-level, and late fusion) are
defined and evaluated. Each fusion strategy enables feature se-
lection before classification. In early fusion, features of onset,
apex, and offset of all regions are fused into one low-abstrac-
tion vector and classified by a single classifier. Mid-level fusion
concatenates features of all phases for each region, separately.
Constructed feature vectors are individually classified by SVMs
and the classifier outputs are fused. In the late fusion scheme,
feature sets of onset, apex, and offset for all facial regions are
individually classified by SVMs and regional classifier outputs
are fused.
For the mid-level and late fusion strategies, classifier fusion

is employed using one of SUM, weighted SUM, PRODUCT
rule, or voting [44]. The SUM, weighted SUM, and PRODUCT
rules fuse the computed posterior probabilities for the target
classes. To estimate these posterior probabilities, sigmoids of
SVM output distances are used. Weights for the weighted SUM
rule are determined by the validation performance of the related
classifiers. For voting, binary classification outputs of each clas-
sifier are counted as single votes, and the majority of votes de-
termines the selected class.
As shown in Table IV, mid-level fusion provides the best per-

formance across all databases, followed by early and late fusion,
respectively. Elimination of redundant information by feature
selection after low-level feature abstraction on each region, sep-
arately, and following higher level of abstraction for classifica-
tion on different facial regions may explain the high accuracy
of mid-level fusion.

D. Online Analysis of Temporal Information

A smile video from onset to offset contains a lot of frames.
The systemwe have proposed gives a decision when the smile is
completed, i.e. at the end of the offset phase. However, it may be
necessary to give a decision while the smile is in progression. To
understand how partial information would fare, we implement
an online version of the proposedmethod.Mid-level fusion with
weighted SUM rule is used as the fusion approach. The main

Fig. 8. Accuracy of the online system. To show the accuracy change with the
usage of different amounts of smile duration, each phase is individually scaled
to the same length (one third of the smile) in the visualization. Note that only
the onset phase is used for SPOS database, since it does not include apex and
offset phases.

difference of the online system is the temporal phase segmenta-
tion, which ordinarily detects onset, apex, and the offset phases.
Given a smile segment, which starts from the onset (but may
be incomplete), the duration of the lip corner’s amplitude signal
is analyzed. The longest continuous increase is selected as the
onset phase. Afterwards, the system verifies whether the signal
decreases in any part of the given signal. If there is a decreasing
segment, then the longest continuous decrease is selected as the
offset. The duration between the onset and offset is used as apex.
In case of a stable duration after onset, it is selected as the apex
without using the offset information.
Since the order of the temporal phases during a facial expres-

sion is fixed, the online system starts classification in the onset
mode. When the apex is reached, it uses both onset and the apex
in classification. In the final stage, all three phases are used.
For these three modes, separate classifiers are trained. Since the
proposed dynamics use speed and acceleration information, at
least three frames are required in the latest phase to activate the
classifier.
The performance of the online system is given in Fig. 8. To

show the influence of using different portions of an evolving
smile, each phase is individually scaled to the same length (one
third of the smile) in the visualization. The results show that
the correct classification accuracy decreases 5.26%, 5.09%, and
2.5% (absolute) in the beginning of the apex phase for BBC,
MMI, and UvA-NEMO databases, respectively. The reason be-
hind this is the incorrect detections of the apex phase. Online
detection of the apex during the initial frames of the apex is a
challenging problem, since the decrease in the amplitude signal
after the onset phase may be easily confused with the offset.
Results for the UvA-NEMO Smile Database also show that

even the half of the onset duration provides a correct classifi-
cation rate of approximately 68%, where the accuracy reaches
84.52% and 86.13% at the end of onset and apex phases, re-
spectively. Correct classification rate is 89.84% with the use of
the entire smile duration. The onset is known to be the most in-
formative phase for smile classification. However, the apex and
offset increase the performance by 1.9% and 4.3% over the use
of the onset and onset apex, respectively. Results for other
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Fig. 9. Sample outputs of the online system during (a) onset, (b) apex, and (c) offset phases. Red (lower) and green (upper) bars with percentages show the
probability of being posed and spontaneous, respectively. Signal plots show the regional amplitudes, and the temporal segmentation (best viewed in color).

Fig. 10. Comparison of age-specific and generic methods for different regions
on the UvA-NEMOSmile Database. Bars show themean accuracy of the related
method, where square and circle markers indicate the classification rates for
young people and adults, respectively.

databases are also in line with these findings. Sample outputs of
the online system during the onset, apex, and offset frames are
shown in Fig. 9.

E. Effect of Age
The features on which we base our analysis may depend on

the age of the subjects. To this end, we analyze the effect of
age through two different experiments. In the first experiment,
we split the UvA-NEMO Smile Database into two partitions as
young people ( years), and adults ( years).
All training and evaluation is repeated separately for the two
partitions of the database. Since rapid craniofacial development
during childhood and adolescence slows down, and facial struc-
ture is stabilized around the age of 18 years [45], the boundary
age for data partitioning (young people and adults) is set as 18.
The true ages (ground-truth) of subjects are used for this sepa-
ration, and the resulting approach is hereafter referred to as the
age-specific method. In the second experiment, we analyze the
influence of including age information in the feature set using
different databases. For this purpose, age information is added
into each regional feature vector and the new feature set is eval-
uated using mid-level fusion with weighted SUM. Age infor-
mation is defined and tested in two different ways: 1) age of
subjects are used as they are; 2) age of subjects are grouped into
bins of 10 years (1–10, 11–20, , 71–80), and the resulting
group labels (1, 2, , 8) are included in the feature set.
Fig. 10 shows the classification accuracy of age-specific and

generic methods for different facial regions on the UvA-NEMO

TABLE V
EFFECT OF USING AGE INFORMATION ON CLASSIFICATION ACCURACY

Smile Database. Regional performances are given using the
fused (onset, apex, offset) features of the related region.
Mid-level fusion (weighted SUM) accuracies are also given in
Fig. 10. Results show that the age-specific method performs
better than the generic one when the eyelid or lip corner fea-
tures are used. However, when all regions are used, the generic
method reaches an accuracy of 89.84%, where the age-specific
method reaches 88.95%. This difference is not statistically
significant. When we analyze the regional results, it can be
derived that the eyelid features perform better on adults (for
both generic and age-specific methods) than cheeks and lip
corners. On young people, the age-specific and generic methods
with the eyelid features are approximately 5% and 4% less
accurate compared to adults, respectively. On the other hand,
the lip corner features using the age-specific method (86.53%),
and cheek features using the generic method (84.84%) provide
the highest regional accuracies for young people, respectively.
The results of the second experiment are given in Table V.

Our results show that the use of true age (ground-truth) in-
creases the accuracy of the proposed (generic) system by 1.55%
and 2.19% (absolute), where using group labels of real ages
provides an increase of 2.18% and 3.06% (absolute) for MMI
and UvA-NEMO databases, respectively. Age ground truth is
missing from BBC and SPOS, and the age specific system can
only be implemented for UvA-NEMO, as all the other sets have
only adults (visually confirmed). These account for the missing
cells in Table V.
We also test the performance of the system using automati-

cally estimated ages and age group labels (see the last two rows
of Table V). Although quite a few number of automatic age
estimation methods exist, we employ the method proposed by
Dibeklioğlu et al. [46] to take advantage of using videos (instead
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of static images) by enabling facial dynamics in the analysis.
[46] combines the facial appearance and expression dynamics,
and performs with a mean absolute error of 4.81( ) years
on the UvA-NEMO smile database. This method uses the pro-
posed features in this paper to describe facial expression dy-
namics and fuses them with Local Binary Patterns (LBP) de-
scriptors, extracted from the first frame of the onset. Since the
literature on automatic age estimation is extensive, we refer the
reader to [47] and to the more recent [48] for related approaches.
Depending on the estimation error, automatic estimation of

age does not improve the classification accuracy as much as
using the true age. However, the use of the estimated age group
labels in the feature set provides an accuracy increase of 1.27%
(absolute) on average. These results clearly show that enabling
age information in spontaneous/posed smile classification no-
ticeably increases the accuracy. We test this statistically (using
t-test analysis), and verify that the use of age groups instead
of using the exact ages performs better, and significantly (

) improves the accuracy over the sole use of dynamics.
The relation between aging and facial expressions is rarely

analyzed in the literature, although several approaches for age
estimation and facial expression recognition rely on similar fea-
tures and classification paradigms. Recently, Guo et al. have an-
alyzed the appearance differences of facial expressions for dif-
ferent age groups [49]. Their findings show that elderly people
display facial expressions in a more subtle way in comparison
to young people. Moreover, it is reported that aging can make
differences in facial expression appearance based on the wrin-
kles and reduction in facial muscle elasticity. Due to these dif-
ferences, they propose to detect facial expressions of different
age groups as independent classes, and suggest reducing facial
aging effects before the expression analysis. In [50] and [51],
significant effects of expressions on age estimation accuracy
have been shown in a quantitative manner. However, all these
methods focus on facial appearance. Our previous studies, on
the other hand, tackle the relations between temporal expres-
sion dynamics and aging, in automatic analysis of both age and
facial expressions [10], [46].

F. Effect of Gender
To evaluate the effect of gender on the proposed features,

we conduct two experiments similar to those reported in
Section V-E. In the first experiment, we implement gender-spe-
cific and generic methods. For the gender-specific method,
the UvA-NEMO Smile Database is split into two partitions as
males and females (using gender ground-truth). All training
and evaluation is repeated separately for the two partitions of
the database. In the second experiment, gender labels are added
into each regional feature vector and the new feature set is
evaluated using mid-level fusion with weighted SUM.
Fig. 11 shows the comparison of gender-specific and generic

methods on different regions. Both methods perform better on
males in comparison to females. Best regional performances on
both males and females are achieved by eyelid features. The
eyelid and lip corner features provide higher correct classifica-
tion rates for the generic method, but the gender-specificmethod
performs slightly better on cheek features. When all regions are
used, the generic method significantly ( , using t-test

Fig. 11. Comparison of gender-specific and generic methods for different re-
gions on the UvA-NEMO Smile Database. Bars show the mean accuracy of the
related method, where square and circle markers indicate the classification rates
for male and female subjects, respectively.

TABLE VI
EFFECT OF USING GENDER INFORMATION ON CLASSIFICATION ACCURACY

TABLE VII
INCLUDED FEATURES IN DIFFERENT GROUPS OF DYNAMICS. ( ) DENOTE

THAT THE RELATED FEATURE IS EXTRACTED FROM DECREASING OR
INCREASING SEGMENTS, INDIVIDUALLY

analysis) outperforms the gender-specific one with an absolute
accuracy increase of 2.58%.
In the second experiment, we analyze the effect of using

gender labels in the feature set. As given in Table VI,
gender-specific methods do not have a significant effect on the
performance, but decrease the classification accuracy by 2.92%
(absolute) on average in comparison to the generic method. On
the other hand, using the gender labels in the feature set in-
creases the accuracy by 3.34% (absolute) on average compared
to the gender-specific system.
There are few computational studies that assess the infor-

mativeness of gender information in facial expression analysis
[52], [27]. In [52], feature vectors obtained by Active Appear-
ance Models are given to SVM cascades for estimating facial
expressions and gender. Then, using the estimated gender la-
bels, it is shown that the gender-specific expression recognition
performs better than a generic approach. [27] shows that male
subjects have more discriminative geometric features (distances
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Fig. 12. Decrease in accuracy by discarding different feature groups. Negative values show relative increase in accuracy.

between different landmark pairs) than female subjects for dis-
tinguishing between spontaneous and posed expressions. Both
approaches use static images and do not consider gender-spe-
cific differences in temporal dynamics.

G. Feature Analysis
In this section we analyze the informativeness of the proposed

features, in order to providemore insight on the patterns of smile
dynamics. First of all, we systematically eliminate different fea-
ture sets from the analysis, and observe the effects. To this end,
we have grouped features by facial regions (lip corner, cheek,
eyelid), temporal phases (onset, apex, offset), and the type of
dynamics (speed, acceleration, amplitude, amplitude/duration,
and duration). The included features in different groups of dy-
namics are given in Table VII. To obtain feature sets with sim-
ilar size, we include symmetry and mean amplitude features in
the Amplitude/Duration group. This is done based on the use of
duration in the computation of symmetry and mean amplitude
values.
We run our system by leaving out each of these groups, one at

a time, and observe the effects on classification accuracy. Fea-
ture selection is disabled in this experiment for a direct com-
parison. Mid-level fusion with weighted SUM rule is used as
the fusion approach. For each condition, the relative decrease
in accuracy (with respect to using all features) is computed.
Analysis is repeated for age and gender subsets, as well as for
the whole database. For these experiments, we have combined
BBC, MMI, SPOS, and UvA-NEMO databases into one set.
Performing the same analysis on UvA-NEMO alone gives very
similar results.
As shown in Fig. 12, the highest accuracy decrease is ob-

served when the onset features are discarded from the anal-
ysis. In the temporal phase category, apex follows onset in im-
portance, and offset is the least informative phase. In terms of
regions, the eyelids give the most informative features on the
whole database (shown as All), followed by lip corner and cheek
features, respectively. However, the lip region is the most im-
portant one for young people, and discarding eyelid features
may even improve the accuracy. For adults, cheek features are
more effective than lip corners. When we evaluate dynamics
over the whole database, amplitude, duration and speed features
are the most effective features, respectively. On the other hand,
the duration group is the most important one for females. For
males and young people, discarding speed features causes the
largest accuracy decrease. It should not be surprising that age

and gender play a role in facial feature analysis. It is known that
these factors play a major role in the morphology and appear-
ance of the face.
As a next step, we use analysis of variance (ANOVA) to find

out the individual differences between spontaneous and posed
smiles, as well as the differences between subject groups. The
results show that the most significant differences ( ,

) between young people and adults are in the max-
imum speed and the maximum acceleration of both eye clo-
sure and lip corner movements during the onset phase of smiles.
When the most significant ( , ) feature dif-
ferences between males and females are analyzed, it is seen that
maximum andmean apertures of eyes are significantly larger for
females during onset, apex and offset phases. Such differences
can explain the deviation of the feature effects for different
gender and age subsets (also see Fig. 12 for classification).
10 highly significant feature differences ( ,
) between spontaneous and posed smiles with the largest ef-

fect sizes ( ) on the whole set, and the change in effect size for
these features on age and gender subsets are given in Table VIII.
Note that these features are among the most frequently selected
features by the mRMR algorithm. Our findings on the whole
database show that maximum/mean speed and acceleration of
eye closure and lip corner movements during smile onset are
higher for posed smiles. Both the increasing amplitude duration,
and the total duration of lip corner movements in smile apex are
longer for spontaneous smiles.
When we analyze the deviation of effect sizes for different

subsets, it is seen that eyelid features are less informative for
young people in comparison to adults. Since the speed and ac-
celeration of the eyelid movements are higher for posed smiles,
faster eyelid movements of young people can cause confusion
with posed smiles. On the other hand, slower lip corner move-
ments of adults can cause the decrease in the effect size based on
lower speed and acceleration of the lip movements during spon-
taneous smiles in comparison to posed ones. Between gender
groups, deviations in effect size of different features are much
less than those between age groups.

H. Effect of Tracking Initialization
In this paper, we use facial expression dynamics for smile

classification, which are extracted using the displacement of fa-
cial landmarks. To assess the effect of tracking initialization on
the accuracy, we use both manually and automatically annotated
facial landmarks to initialize facial tracking. For the automatic
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TABLE VIII
FEATURES WITH THE HIGHEST EFFECT SIZE ON THE WHOLE DATABASE AND THE CHANGE IN FOR DIFFERENT SUBSETS

TABLE IX
EFFECT OF MANUAL AND AUTOMATIC INITIALIZATION FOR

TRACKING ON THE UVA-NEMO SMILE DATABASE

detection of landmarks, we use the state-of-art facial landmark
detection system proposed by Dibeklioğlu [33]. This method
models Gabor wavelet features of a neighborhood of landmarks
using incremental mixtures of factor analyzers and enables a
shape prior to ensure the integrity of the landmark constellation.
It follows a coarse-to-fine strategy. Landmarks are initially de-
tected on a coarse level and then fine-tuned for higher resolution.
The mean localization error for the related landmarks [eye cor-
ners, center of upper eyelids, nose tip, lip corners, see Fig. 1(a)]
is 3.96% of the inter-ocular distance to the actual loca-
tion of the landmarks. Actual locations of these landmarks for
the first frames of each smile video in the UvA-NEMO Smile
Database have been manually annotated by us. XM2VTS [53]
and Bosphorus [54] databases have been used to train the land-
marker, while AR database [55] has been employed for valida-
tion. Linear correlation coefficients between the extracted am-
plitude signals with manual and automatic initializations range
between 0.93 and 1.00. To this end, the coefficients have been
computed for each smile in UvA-NEMO database.
As shown in Table IX, automatic initialization of the tracker

decreases the accuracy by 1.37%, 1.90%, and 0.97% (absolute)
for eyelid, cheek, and lip corner features, respectively. The de-
crease in classification performance is maximum for the cheek
region, because the cheek area has a smooth skin texture and
consequently the tracking strongly relies on the initialized sur-
rounding landmarks. Correct classification rate of using all re-
gions (mid-level fusion, voting) is 87.82% with automatic land-
marking, where manual initialization provides an accuracy of
89.84%.

TABLE X
EFFECT OF MANUAL AND AUTOMATIC INITIALIZATION FOR

TRACKING ON DIFFERENT DATABASES

Additionally, we evaluate the effect of automatic initializa-
tion of the tracker for different databases. As shown in Table X,
automatic initialization reduces the correct classification rates
by only 1.65% (absolute) on average. Therefore, since the de-
crease is not statistically significant ( , using t-test anal-
ysis), automatically initialized tracking is used in the remainder
of our experiments.

I. Comparison With Other Methods
We compare our method with the state-of-the-art smile clas-

sification systems proposed in the literature, namely, by Cohn
and Schmidt [9], Dibeklioğlu et al. [25], and Pfister et al. [31].
To this end, we evaluate them on the UvA-NEMO database
with the same experimental protocols, as well as on BBC, MMI
and SPOS databases. [9] employs a linear discriminant classi-
fier using duration, amplitude, and measures of smile
onsets. [25] models eyelid movements during smiles to classify
genuine and posed enjoyment smiles, where changes in eye
aperture are described by distance-based and angular features.
[31] models smile onsets using spatio-temporal CLBP-TOP
(Completed LBP from Three Orthogonal Planes) features.
Their method enables the use of infrared images in addition
to natural texture images. Since infrared images are absent
from UvA-NEMO, BBC, and MMI databases, results for this
method are given by using only natural texture images.
All the methods have been implemented by us, since they are

not publicly available. Only the CLBP-TOP feature extractor
used in [31], has been provided by Pfister et al. The original im-
plementation of the method proposed by Dibeklioğlu et al. [25]
is used in our experiments. For a fair comparison, all methods
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Fig. 13. Comparison of different methods on the BBC, MMI, SPOS, and UvA-NEMO databases. Bars show the mean accuracy of the related method, where
square and circle markers indicate the classification rates of spontaneous and posed smiles, respectively.

are tested by using the PBVD tracker [32] with automatic ini-
tialization [33]. The proposed methods with age information en-
abled, and using solely eyelid features are also included in the
comparison. To automatically estimate the required age infor-
mation, the method proposed by [46] is used. Accuracies for all
these methods are given in Fig. 13.
Results show that the proposed method outperforms the

state-of-the-art methods. For the UvA-NEMO database,
mid-level fusion with weighted SUM provides an accuracy
of 87.82%, which is 10.56% (absolute) higher than the per-
formance of the method proposed by Cohn and Schmidt [9].
Moreover, including labels of age groups in the feature set
significantly ( , using t-test analysis) improves the
accuracy of our method and the resulting method reaches an
accuracy of 90.56%. Using only the eyelid features decreases
the correct classification rate by only 2.09% (absolute) in
comparison to the mid-level fusion. This confirms the relia-
bility of eyelid movements and the discriminative power of
the proposed dynamical eyelid features to distinguish between
types of smiles.
Our system with eyelid features has an 85.73% accuracy, sig-

nificantly higher than that of [25] (71.05%), which uses only
eyelid movement features without any temporal segmentation.
This shows the importance of temporal segmentation. The ac-
curacy of [31] (73.06%) is less than the accuracy of our method
with only onset features, and shows that spatio-temporal fea-
tures are not as reliable as dynamics.
Since the method in [9] relies on solely the onset features

of lip corners, we have also tested our method with onset fea-
tures of lip corners. We have obtained an accuracy of 80.73%
compared to a 77.26% accuracy of [9]. We conclude that using
automatically selected features from a large pool of informa-
tive features serves better than enabling a few carefully selected
measures for this problem. Manually selected features may also
show less generalization power across different (database-spe-
cific) recording conditions.
It is important to note that the proposed method uses solely

onset features for the SPOS corpus, since it has only onset
phases of smiles. Except for the SPOS corpus, we have ob-
served that spontaneous smiles are generally classified better
than posed ones for all methods. One possible explanation
is that facial dynamics have more variance in posed smiles.
Subsequently, the class boundaries of spontaneous smiles are
more defined, and this leads to a higher accuracy.
When we analyze the change in the accuracy of our method

with respect to different databases, it is seen that using only

dynamics performs best on the BBC database. This is an ex-
pected result, since the variance of facial actions in both spon-
taneous and posed smiles of the BBC database is very limited.
On the other hand, the highest accuracies for

and Eyelid dynamics are achieved on the UvA-
NEMO database. This can be based on the age annotations and
the high frame rate (50 fps). Both the proposed methods and
the competitors perform worst on SPOS corpus. This finding
can be explained by the fact that the SPOS corpus only includes
the onset phases of the smiles. Besides, lower frame rate of the
recordings in SPOS (25 fps) can cause loss of some temporal
information that results in lower accuracy.

VI. DISCUSSION

In our experiments, the onset features of lip corners perform
best for individual phases. This result is consistent with the find-
ings of [9]. However, when onset, apex, and offset phases are
fused, the eyelid movements are more descriptive than those of
the cheeks and lip corners for enjoyment smile classification.
For the UvA-NEMO database, the best fusion scheme in-

creases the correct classification rate by only 2.09% (absolute)
with respect to the accuracy of eyelid features. This finding sup-
ports our motivation and confirms the discriminative power and
the reliability of eyelidmovements to classify enjoyment smiles.
However, it is important to note that temporal segmentation of
the smiles are performed by using lip corner movements, which
means that additional information from the movements of lip
corners is leveraged.
Using ANOVA, significant ( , ) fea-

ture differences (of selected features) between adults and young
people are obtained. For both spontaneous and posed smiles,
the maximum and mean apertures of eyes are larger for adults.
During the onset, both the amplitude of eye closure and closure
speed are higher for young people. During the offset, amplitude
and speed of eye opening are higher for young people. When we
analyze the significance levels of the most selected features for
smile classification, we conclude that the size of the eye aperture
is smaller during spontaneous smiles. However, many subjects
in the UvA-NEMO lower their eyelids also during posed smiles.
This result is consistent with the findings in [18], which indicate
that the D-marker can exist during both spontaneous and posed
enjoyment smiles.
Another important finding is that the speed and acceleration

of the eyelid movements are higher for posed smiles. As a result,
since faster eyelid movements of young people cause confusion
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with posed smiles, the classification accuracy with eyelid fea-
tures is higher for adults. Similarly, features extracted from the
cheek region perform better for adults, since cheek movements
of adults are slower and more stationary. The duration of spon-
taneous smiles are longer than posed ones, but the lip corner
movement for posed smiles is faster (also have higher acceler-
ation). This improves the accuracy of the classification with lip
corner features in favor of young people, since the lip corner
movements of young people are significantly faster than adults
during posed smiles.
Since eyelid and cheek features are reliable in adults as op-

posed to lip corners in young people, regional fusion in age-spe-
cific method decreases the accuracy compared to the perfor-
mance of the generic method. On the other hand, including la-
bels of estimated age groups in the feature set improves the ac-
curacy by 2.27% (absolute) on the UvA-NEMO Smile Database
in comparison to using only expression dynamics. To find out
the reason behind that, the most selected dynamic features are
analyzed using multivariate analysis of variance and significant
( , ) feature differences between different
ages are found. Our findings indicate that the dynamics of smile
onsets are more affected by age than other smile phases. During
the onset phase of smiles, themaximum speed and themaximum
acceleration of both eye closure and lip corner movements sig-
nificantly change among different ages. More detailed analysis
of age related smile dynamics is given by [46], which uses the
proposed features (facial dynamics) for age estimation.
Moreover, when analyzing the effect of gender on smile clas-

sification, the most significant ( , , using
ANOVA) feature differences (of selected features) between
males and females are obtained. Resulting findings show that
maximum and mean apertures of eyes are significantly larger
for females during apex, onset and offset phases. However,
the rest of the dynamics do not differ significantly between
genders. This may explain the accuracy decrease when the
gender information is used in the system. We have also looked
at gender-specific training, but did not obtain improved results.
Such classifier specification reduces the number of training
samples per classifier (effectively halving it for gender-specific
classifiers in a gender balanced training set), and the improve-
ments due to specification do not necessarily improve the final
results.
Lastly, there is no significant symmetry difference (in terms

of amplitude) between spontaneous and posed smiles as indi-
cated by [29], [15]. We have also failed to find significant ef-
fects of symmetry between young people and adults, or between
males and females.

VII. CONCLUSION
In this paper, we have provided an extensive discussion of

facial expression dynamics for spontaneous and posed smile
analysis. Based on a set of informative features extracted from
a closely tracked facial image, an accurate smile classifier has
been described.
Our results show that among facial regions, eyelid features

are more relevant (compared to cheek and lip corner features)
for smile analysis, but fusing all regions is useful. Similarly,
the smile onset is the most informative phase of the smile, but

adding apex and offset information is beneficial. For smile clas-
sification, our results suggest that mid-level fusion is more suit-
able compared to late (decision-level) fusion.
In this paper we have systematically evaluated how age in-

formation affects smile classification, and established that dif-
ferent face regions are differently affected by aging in terms of
dynamics. Eyelid features are significantly more informative in
adults, whereas cheek and lip corner features are more infor-
mative for young people. By designing age-specific classifiers,
we can thus improve smile classification, even if the age is es-
timated automatically.
We have evaluated the proposed system using the

UvA-NEMO Smile Database, which we have recently intro-
duced. With 1240 samples of 400 subjects, this is the largest
database in the literature for this task, and since the ages of sub-
jects vary from 8 to 76 years, it allows a thorough investigation
of age-related effects. Additionally, we have reported compar-
ative evaluations on three smile datasets from the literature.
Our proposed method is contrasted to three smile classification
approaches from the literature over these four databases, and
consistently outperforms them.
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