
Datenbank Spektrum manuscript No.
(will be inserted by the editor)

Genome sequence analysis with MonetDB
A case study on Ebola virus diversity

Robin Cijvat · Stefan Manegold · Martin Kersten · Gunnar W. Klau ·
Alexander Schönhuth · Tobias Marschall · Ying Zhang

Received: date / Accepted: date

Abstract Next-generation sequencing (NGS) technol-

ogy has led the life sciences into the big data era. To-

day, sequencing genomes takes little time and cost, but

yields terabytes of data to be stored and analyzed. Biol-

ogists are often exposed to excessively time consuming

and error-prone data management and analysis hur-

dles. In this paper, we propose a database manage-

ment system (DBMS) based approach to accelerate and

substantially simplify genome sequence analysis. We

have extended MonetDB, an open-source column-based

DBMS, with a BAM module, which enables easy, flex-

ible, and rapid management and analysis of sequence

alignment data stored as Sequence Alignment/Map

(SAM/BAM) files. We describe the main features of

MonetDB/BAM using a case study on Ebola virus

genomes.

1 Introduction

Next-generation sequencing (NGS) technology has con-

fronted the life sciences with a “DNA data deluge” [14].

Thanks to its massively parallel approach, NGS allows

Robin Cijvat, Martin Kersten, Ying Zhang
MonetDB Solutions, Amsterdam, The Netherlands
E-mail: first.last@monetdbsolutions.com

Stefan Manegold, Martin Kersten, Gunnar W. Klau, Alexan-
der Schönhuth, Ying Zhang
Centrum Wiskunde & Informatica, Amsterdam, The Nether-
lands
E-mail: first.last@cwi.nl

Tobias Marschall
Saarland University & Max Planck Institute for Informatics,
Saarbrücken, Germany
E-mail: marschal@mpi-inf.mpg.de
This work was done when the author worked at the Life Sci-
ences group of Centrum Wiskunde & Informatica.

for generating vast volumes of sequencing data, which,

in comparison to conventional ‘first-generation’ sequenc-

ing methods, happens at drastically reduced costs and

processing times. Consequently, biologists now need to

invest in the design of data storage, management, and

analysis solutions. Ever more often, improvements in

this area are no longer an option, but a pressing issue.

As per common NGS-based “re-sequencing” work

flows, short DNA fragments are sequenced and sub-

sequently aligned to a reference genome, which aims

at determining the differences between the sequenced

genome and the reference genome. Thereby, the result-

ing alignment data files, most often stored in the Se-

quence Alignment/Map (SAM) format or its binary

counterpart BAM [8] format, quickly reach the terabyte

mark. Complementary software libraries, e.g., SAM-

tools [8], provide basic functionality, such as predicates-

based data extraction. For more complex data explo-

ration, scientists usually resort to writing customized

software programs.

However, the traditional file based approach has sev-

eral drawbacks. First, it requires users to manually man-

age file repositories. This quickly becomes a tedious

process as file-based analysis tools generate files as out-

put, that in turn are used as input to other file-based

tools, and so on. Second, existing file-based tools usu-

ally only work properly with data that fits in main

memory. Thus, researchers are often left with the non-

trivial tasks of partitioning data into optimally fitting

pieces and constructing final results from partial re-

sults. Moreover, having to repeatedly reload such large

files is undesirable. Third, software development and

maintenance are extremely time-consuming and error-

prone tasks. They require highly specific knowledge of

programming languages and applications. Finally, per-

formance is paramount for big data analysis. Therefore,



2 Robin Cijvat et al.

scientists have been increasingly enforced to become

“hard-core” programmers, to exploit the full compu-

tational power of modern hardware, such as multi core

CPUs, GPUs, and FPGAs.

Although Hadoop systems have recently gained much

interest in big data processing, they are no ideal can-

didates to solve the aforementioned problems. Hadoop

systems are primarily designed for document-based data

processing [3]. They can be extremely fast in executing

simple queries on large number of documents, e.g., dis-

tributed grep. But Hadoop systems quickly suffer from

serious performance degradation, when they are used

to process more complex analytical queries that often

involve aggregations and joins [10].

The problems mentioned above have been ex-

tensively tackled by database management systems

(DBMS), which are designed and built to store, man-

age, and analyze large-scale data. By using a DBMS for

genome data analysis, one can significantly reduce the

data-to-knowledge time. A major advantage of using a

declarative language such as SQL is that the users only

need to state what they want to analyze, but not how

exactly to analyze. The DBMS takes care of efficient

execution of the queries, e.g. choosing the best algo-

rithms, optimizing memory usage, facilitating parallel

execution where possible, and making use of the afore-

mentioned modern hardware, while hiding the hetero-

geneity of underlying hardware and software systems.

In this way, scientists can reap the fruits of more than

50 years of work of the database community on opti-

mizing query processing, so as to spend more time on

their primary research topics.

However, so far DBMSs have not been widely

adopted in the life sciences for algorithmically difficult

problems like sequence alignment, variant calling, and

statistical processing of variant call data. This is be-

cause so far DBMSs do not yet cater to the require-

ments of data analysis in modern life sciences. There

is a general lack of DBMS functionality and operations

to directly query genomic data already stored in files.

For example, the current common practice for getting

SAM/BAM data into a DBMS is to first convert it into

CSV files, then load them into a DBMS. This conversion

step does not only incur a high data-to-query time, but

also substantially increases storage requirements, espe-

cially if the original data are compressed. Moreover,

it is extremely difficult to keep duplicate data consis-

tent, when there are updates. Finally, although genomic

data are encoded in strings, a standard DBMS data

type, they have particular semantics. Without dedi-

cated functions, it is not trivial to express even the most

basic operations on genomic data using SQL.

Fig. 1 Sequential storage schema

1.1 MonetDB/BAM

Our first step towards a solution for big data analy-

sis in life sciences is to get rid of the discrepancies be-

tween modern life science data analysis requirements

and current DBMS functionalities. Therefore, we have

extended the open-source column-based database sys-

tem MonetDB1with a BAM module2, which allows in-

database processing of SAM/BAM files. The software

is available as of the Oct2014 release of MonetDB.

MonetDB is primarily designed for data warehouse

applications, such as data mining and Business Intel-

ligence [9]. These applications are identified by their

use of large data sets, which are mostly queried to

provide business intelligence or decision support. Simi-

lar applications also appear frequently in the big data

area of e-science, where observations are collected into a

warehouse for subsequent scientific analysis. This makes

MonetDB a good candidate to provide a data manage-

ment solution for such applications.

The main features of MonetDB/BAM include:

1. SQL loading functions to load individual SAM or

BAM files, or a repository of them into a predeter-

mined database schema.

2. SQL export functions that allow saving query re-

sults as SAM formatted files.

3. SQL functions for common operations on sequence

alignment data, e.g., computing reverse complements

of DNA strings and the actual lengths of aligned se-

quences.

4. Automatic reconstruction of primary and secondary

read pairs, which accelerates analyses on paired-end

read alignments.

5. Hierarchical clustering of loaded SAM and BAM

files, which enables simple and efficient analyses on

groups of SAM and BAM files.

6. R-support to perform in-database analyses on SAM

and BAM files.

1 https://www.monetdb.org/
2 https://www.monetdb.org/bam/

https://www.monetdb.org/
https://www.monetdb.org/bam/


Genome sequence analysis with MonetDB 3

Fig. 2 Pairwise storage schema

The loader of MonetDB/BAM loads SAM and BAM

files into different relational storage schemas. Currently,

users can choose from either the sequential (Figure 1)

or the pairwise storage schema (Figure 2).

Sequential storage schema The sequential storage

schema is a straightforward mapping of aligned reads

in BAM files to columns in a database table. In the

sequential schema, aligned reads of one BAM file are

stored in two tables alignments i and alignment extra i,

where i is the internal ID of the BAM file. Each tuple in

alignments i contains all main fields of one aligned read,

i.e., qname, flag, rname, mapq, cigar, rnext, pnext, pos, seq

and qual. The EXTRA field of the aligned reads are parsed

and stored in alignment extra i as <tag,type,value> tu-

ples. The virtual offset is used to link the tuples in

these tables. In SAM files, this virtual offset is the

aligned read number, while in BAM files it is an actual

offset into the BAM file that can be used to retrieve a

specific aligned read.

Pairwise storage schema The sequential schema is

suboptimal for sequence analyses that operate on align-

ment pairs, because the expensive alignment pairs re-

construction has to be done repeatedly for every such

analysis. Therefore, MonetDB/BAM comes with the

option to load files into a pairwise storage schema, that

explicitly stores primary and secondary alignment pairs.

To reconstruct the read pairs, MonetDB/BAM uses the

information that is readily available in several fields of

the aligned reads, i.e. flag, rnext and pnext. All align-

ments that are not part of any alignment pair are stored

in a separate table. In the pairwise schema, the table

storing the extra information from the alignments is

exactly the same as before. Its foreign key relation can

now however not be connected to a physical table since

the alignments are scattered across multiple physical

tables. The pairwise schema can be extremely useful in

use cases, such as calculating alignment ratios or statis-

tics on the gaps in between aligned read pairs.

1.2 Earlier work

This paper is based on the work presented in [2]. That

work focused mainly on preliminary analyses steps on

SAM and BAM files, i.e., calculating aggregates, his-

tograms, and subsets of SAM and BAM files, which

may not necessarily lead to another file format such as

the Variant Calling Format (VCF). We have run many

experiments on a file repository of BAM files ranging

from 22 MB to 100 GB. To make a comparison with file-

based methods, several analyses were implemented both

in C with the SAMtools API, and in SQL that could

be run on MonetDB. The experiments were run on a

machine with 32 Intelr Xeonr E5-2650 0 @ 2.00GHz

processors and 256 GB DIMM DDR3 1600 MHz (0.6

ns) RAM. Results of the experiments show that even

though there is the overhead of loading the files into

the DBMS, many queries run significantly faster in-

side MonetDB/BAM than using the file-based methods.

This is especially true if only a small portion of the data

is needed by the computation. In general, the more com-

plex a query is, the more beneficial it is to do the com-

putation inside MonetDB/BAM. Moreover, the exper-

iments show trends that indicate that MonetDB/BAM

scales better than using the file-based methods. Experi-



4 Robin Cijvat et al.

ments also show that the storage requirements for using

MonetDB/BAM lie in the same order of magnitude as

using the uncompressed SAM format.

1.3 Related work

Several prototypes exist that also use DBMSs for

genome data analysis. For instance, Röhm and Blake-

ley [12] propose a hybrid data management approach,

which relies on file streaming features of SQL Server

2008 to process gene sequence data stored as binary

large objects (BLOBs). When faced with large data

files however, loading data on-the-fly will suffer from

the same performance problems as the file-based ap-

proaches. Moreover, this work does not consider addi-

tional DBMS functionality to facilitate genomic data

analysis.

Schapranow and Plattner [13] describe an in-

memory DBMS platform, HIG, in which existing appli-

cations are incorporated for genome analysis. But HIG

does not integrate the analysis functionality into the

DBMS.

The work of Dorok et al. [4] is closest related to our

work. It uses a column oriented main memory DBMS to

perform in-database variant calling using simple SQL.

It proposes both a DBMS schema to store genome

alignment data and an integrated user-defined function

genotype (in MonetDB) to enable variant calling using

simple SQL. However, this work mainly focuses on sup-

porting variant calling, and does not mention how the

raw data is ingested by the DBMS. Moreover, it pro-

poses a base-oriented DBMS schema that, in contrast

to our read-oriented schema, hampers analyses on read

data. For example, extracting the actual sequence data

of a subset of aligned reads would require the recon-

struction of all these reads from the individual bases.

Since this is a fairly common task for scientists who are

used to working with e.g. SAMtools, this might give

quite a performance overhead for their analyses. With

MonetDB/BAM, we try to target more general genome

data analysis tasks by providing easy-to-use loading

functionality, combined with multiple SAM/BAM spe-

cific SQL functions, that provide means for efficient

read-oriented analyses. Many examples of read based

analyses can be found in [2].

1.4 This paper

In this paper, we demonstrate how MonetDB/BAM can

be used to facilitate genome sequence alignment data

analysis, by conducting a case study on a current and

highly relevant topic: studying the genetic diversity of

the Ebola virus.

2 Ebola virus diversity: a case study

Viruses populate their hosts as swarms of related, but

genetically different, mutant strains, each defined by its

own, characteristic genomic sequence. Analyzing such

“mutant clouds”, often called viral quasi species, is of

clinical importance, as it explains virulence, pathogen-

esis, and resistance to treatment. Exploring the com-

position of sequences and their relative frequencies, the

genetic diversity of a quasi species, based on NGS is a

current, central issue in virology [1, 15].

We demonstrate how MonetDB/BAM can be used

to explore the genetic diversity of Ebola infections. Al-

though it has recently been established that Ebola is a

highly diverse and rapidly mutating virus [5], conclusive

insights are yet to be made. Our example exploration

is done on a small file repository. For different experi-

ments on larger file repositories, our earlier work can be

consulted ([2]). We use BAM files containing sequence

fragments from viral quasi species of the actual (2014)

Ebola outbreak in Sierra Leone [5].

2.1 Preparing and loading data

First, we retrieved 32 files containing Ebola virus genome

sequences (SRP045416) from [5]. Together they contain

6,786,308 reads and take 390 MB on hard disk. Then,

we used the Burrows-Wheeler Aligner [7] to align the

reads with the Zaire reference string (NC 002549.1) [16].

In this way, we were able to align 15.6% of the reads in

a file to the reference string on average. The results are

stored in 32 BAM files containing an entry for every

read (so also the unmapped reads are stored), with a

total size of 500 MB.

All BAM files are loaded into a MonetDB database

with the SQL query Q1 as shown in Figure 3. The

first argument is the path to the repository of BAM

files. The second argument chooses the storage schema:

0 for sequential (Figure 1), 1 for pairwise (Figure 2).

For this use case we use the sequential schema. For all

queries in this work, we have defined a special MERGE

TABLE alignment all, containing alignment i tables of all

loaded BAM files.

2.2 Multi-file analyses

A major advantage of using MonetDB/BAM is that

it is simple to conduct analyses on multiple files at



Genome sequence analysis with MonetDB 5

1 CALL bam loader repos(‘/path/to/ebola-bam-repo’, 0) (Q1)

1 CREATE MERGE TABLE alignments_all (
2 virtual_offset BIGINT PRIMARY KEY,
3 qname STRING,
4 flag SMALLINT,
5 rname STRING,
6 pos INT,
7 mapq SMALLINT,
8 cigar STRING,
9 rnext STRING,
10 pnext INT,
11 tlen INT,
12 seq STRING,
13 qual STRING
14 ); (Q2)

1 ALTER TABLE alignments_all ADD TABLE alignments_1;
2 ALTER TABLE alignments_all ADD TABLE alignments_2;
... (Q3)

1 SELECT s.value AS refpos,
2 seq_char(s.value, al.seq, al.pos, al.cigar) AS seq_char,
3 COUNT(*) AS cnt
4 FROM generate_series(0, 18960) as s
5 JOIN (SELECT pos, seq, cigar FROM alignments_all WHERE pos > 0) AS al
6 ON s.value BETWEEN al.pos AND al.pos + seq_length(al.cigar)
7 GROUP BY refpos, seq_char ORDER BY refpos, seq_char (Q4)

1 SELECT refpos, SUM(cnt) AS cnt FROM positional WHERE seq_char IS NOT NULL
2 GROUP BY refpos ORDER BY cnt LIMIT k (Q5)

1 SELECT refpos - refpos 1000 AS grp_start,
2 refpos - refpos 1000 + 1000 AS grp_end, AVG(cnt) AS average
3 FROM coverage GROUP BY grp_start, grp_end ORDER BY average DESC LIMIT k (Q6)

1 SELECT refpos, coverage.cnt AS coverage, diversity.cnt AS diversity,
2 CAST(diversity.cnt AS FLOAT) / coverage.cnt * 100 AS diversity_perc
3 FROM coverage JOIN (
4 SELECT refpos, SUM(cnt) AS cnt FROM base
5 WHERE seq_char IS NOT NULL AND seq_char <> SUBSTRING(ref, refpos, 1)
6 GROUP BY refpos
7 ) diversity USING (refpos)
8 ORDER BY diversity_perc DESC, coverage DESC, diversity DESC (Q7)

Fig. 3 Use case queries

once. MonetDB comes with a built-in Merge Table tech-

nique, which allows defining virtual tables that com-

bine data from as many sub tables (which contain e.g.,

SAM/BAM files) as desired. One can not only create

merge tables over regular tables, but also add merge

tables to other merge tables. The latter effectively en-

ables creating hierarchical groups of sequence align-

ments. Since a merge table has the same signature as

its partition tables (e.g., the alignments i tables), SQL

queries for certain analyses only have to be designed

once, since they can then be applied to single files,

groups of files, or even groups of groups of files. Mean-

while, the MonetDB merge table optimizer ensures ef-

ficient processing of the data that are divided over the

different tables.

For the use cases in this paper, we created a merge

table alignments all (Q2), which we populate with data

of all BAM files we have loaded into the database (Q3).

In this way, whenever we add a file to the database, we

simply add the new alignments i table to alignments all.

Then, by re-running the queries on alignments all, new

aligned reads are automatically included in the analysis.

2.3 Use case 1: computing positional data

Query Q4 in Figure 3 shows how to compute the

count of all characters that occur on all positions

in MonetDB/BAM. The MonetDB-specific function

generate series generates a one-column table with a

row for every integer number in the range. We use this

in Line 4 to create a table with an entry for every po-

sition in the reference genome (NC 002549.1), with a

length of 18960 [16]. Line 5 selects the position, the

sequence, and the CIGAR string for all aligned reads.

We join the series table with the aligned reads (lines

4–6). A result tuple is produced if the sequence of the

read overlaps with a position in the series table (line



6 Robin Cijvat et al.

Table 1 Result Q4

refpos seq char cnt

... ... ...

46 A 1

46 C 1

47 A 8

... ... ...

Table 2 Result Q5

refpos cnt

6239 9340

6240 9337

6245 9196

1571 9191

... ...

Table 3 Result Q6

grp start grp end average

1000 2000 7053.6699999999992

3000 4000 6694.4919999999984

6000 7000 6681.6100000000024

4000 5000 6150.8489999999983

... ... ...

6). The join results are grouped and ordered on the ref-

erence positions of the reads and the characters that

are found on these positions (line 7). Values of these

characters are extracted in the SELECT clause (line 2).

Finally, from the grouped result, we select the refer-

ence positions, the characters on these positions, and

their occurrence counters (lines 1–3). Applying Q4 on

the Ebola alignment data produces results as shown in

Table 1, which reveals that, e.g., on position 46, there

is one aligned read with an A and one with a C.

2.4 Use case 2: computing coverage and diversity

Assume that the results of Q4 are stored in a table

positional, query Q5 in Figure 3 shows how to create a

top-k of positions that have the highest coverage, i.e.,

the highest number of aligned reads that overlap with

these positions. The results of Q5 in Table 2 show that

the reference position 6239 has the highest number of

overlapping aligned reads, i.e., 9340.

Assuming the result of Q5 is stored in a view coverage,

a next step is to calculate a top-k of regions with the

highest average coverage, as Q6 in Figure 3. The re-

sults of Q6 are in Table 3, which shows that the region

1000–2000 has the highest average coverage.

Diversity is another interesting analysis we can do

with the results of Q4 and Q5, i.e., computing the per-

centage of aligned reads that differ from the reference

genome on each position. Query Q7 in Figure 3 pro-

duces a list of positions with their coverage and diver-

Table 4 Result Q7

refpos coverage diversity diversity perc

721 1471 1471 100

7029 1469 1469 100

5639 1131 1127 99.6463307

... ... ... ...

sity, with decreasing diversity percentages. In Q7, we

have loaded the reference genome string

(NC 002549.1) [16] in the SQL variable ref. The func-

tion

SUBSTRING returns a single character at the given refpos.

Q7 first computes similar intermediate data as in Q5

(lines 4–6), except filtering out the positions with match-

ing characters with the reference genome (line 5). Then,

we join the coverage table with the just computed di-

versity information on the reference position (lines 3–

7). This gives us for every position: i) the total num-

ber of overlapping aligned reads, and ii) the number

of overlapping aligned reads that differ from the refer-

ence genome. Finally, we select the reference position,

the count of both the coverage and the diversity sub

results, and calculate the diversity percentage for all

reference positions as the number of differing aligned

reads divided by the total number of aligned reads for

these positions (lines 1,2). The results of Q7 are in Ta-

ble 4, which e.g. shows that all aligned reads at refer-

ence positions 721 and 7029 differ from the reference

genome.

2.5 Query performance

We run all five queries on a moderate laptop (i7 Quad

Core CPU, 4GB RAM, SSD disk). Figure 4 shows the

query execution times on different data sizes. The x-

axis denotes both the number of files and the file size

for each data set. All results are averages of 10 runs. The

execution times show a linear behaviour with growing

data size. Loading (Q1) and computing positional data

(Q4) are the most time consuming tasks. Q1 spends

most time on decompressing the BAM files and passing

values. The execution times of Q4 include the time to

store its results in the positional table, which serves as

a pre processing step for the remaining queries. 3 Once

data are loaded and pre processed, the further analysis

queries (Q5 – Q7) are done in milliseconds, and the

execution times are hardly affected by growing number

of files and data sizes.

3 For this use case, we do not benefit from the read oriented
storage that MonetDB/BAM uses. However, [2] shows many
use cases for which it does.



Genome sequence analysis with MonetDB 7

Fig. 4 Execution times of all queries Q1, Q4, Q5, Q6, and
Q7

Note that the files used for these experiments are

rather small, compared to e.g. BAM files containing

data of human genomes. For analyses of MonetDB/BAM

on larger file repositories, see [2].

3 Future work

As mentioned earlier, the current state of

MonetDB/BAM is a first step towards facilitat-

ing exploration of vast amounts of genetic data.

Many plans exist to further advance the state of

MonetDB/BAM and plenty of open issues call for

consideration. For instance, the performance and scala-

bility of MonetDB/BAM must be extensively evaluated

and improved. We should stress the system with both

BAM files of larger genomes, such as human or plant

genomes, and terabytes scale file repositories. Also, we

should compare the performance of our approach with

existing analysis tools, such as BEDTools [11].

Besides optimizing MonetDB/BAM for large file

repositories, we need to reduce the data-to-query

time to enable users to immediately start explor-

ing their files, without long loading times. Therefore,

just-in-time loading techniques have been applied to

MonetDB/BAM, that conform to the framework de-

scribed in [6]. These techniques, together with exper-

imental results, are presented in [2]. This also greatly

reduces the storage overhead of using MonetDB/BAM.

Moreover, a bigger part of genetic analyses pipeline

should be natively supported by MonetDB/BAM. For

example, supporting a base-oriented database schema

as described by Dorok et al. [4], and building in sup-

port for loading reference and/or index files, enables

users to run in-database variant calling algorithms. Fur-

thermore, implementing in-database support for VCF

files eliminates yet another part of the genetic analyses

pipeline that is normally file-based. However, it would

also be interesting to investigate the possibilities of do-

ing the alignment itself in the database. We would need

to address which parts of the alignment process could

be translated into native database operators and which

operations should be delegated to third party software.

The usage of the third party software should then be

seamlessly integrated into MonetDB.

Finally, work flow support is a must for scientific

exploration. MonetDB already provides various client

connections (e.g., JDBC, ODBC), a REST interface,

and seamless integration with the R software suite for

statistical computing1. There is also ongoing work on

integration with Python by mapping internal database

columns to NumPy arrays. Therefore, MonetDB can be

easily integrated into existing work flow systems, such

as Taverna [17]. Moreover, there is ongoing work on a

MonetDB-supported interface to SAMtools, which we

refer to as “DAMtools”; a command line tool that im-

plements a similar interface to SAMtools, but instead

runs on top of MonetDB/BAM. With DAMtools, re-

placing parts of genetic pipelines that use SAMtools

becomes effortless.

4 Conclusion

In this paper, we showed how to use MonetDB/BAM

to facilitate exploration of the genetic diversity of the

Ebola virus. Our study shows clearly how powerful

MonetDB/BAM can be for this use case. First of all,

we demonstrate how MonetDB Merge Tables can be

used to group loaded data together, resulting in ways

to apply single SQL query to one file, a group of files, or

even hierarchical groups of files. Furthermore, we show

that conceivable analyses on genome sequence align-

ment data can be easily expressed as SQL queries, pro-

vided the added functionality of MonetDB/BAM.

References

1. Beerenwinkel, N., et al.: Challenges and opportunities in
estimating viral genetic diversity from next-generation
sequencing data. Frontiers in Microbiology (2012)

2. Cijvat, R.: Bridging the gap between big genome data
analysis and database management systems. Master’s
thesis, CWI and Utrecht University (2014)

3. Dean, J., Ghemawat, S.: MapReduce: Simplified Data
Processing on Large Clusters. In: OSDI (2004)

4. Dorok, S., et al.: Toward Efficient Variant Calling Inside
Main-Memory Database Systems. In: DEXA Workshops,
pp. 41–45 (2014)



8 Robin Cijvat et al.

5. Gire, S.K., et al.: Genomic surveillance elucidates Ebola
virus origin and transmission during the 2014 outbreak.
Science 345(6202), 1369–1372 (2014)

6. Kargın, Y., Kersten, M.L., Manegold, S., Pirk, H.: The
DBMS – your big data sommelier. In: Proceedings of
IEEE International Conference on Data Engineering 2015
(ICDE 31) (2015)

7. Li, H., Durbin, R.: Fast and accurate short read align-
ment with burrows-wheeler transform. Bioinformatics
25, 1754–60 (2009)

8. Li, H., et al.: The Sequence Alignment/Map format and
SAMtools. Bioinformatics 25 (2009)

9. Manegold, S., et al.: Database Architecture Evolution:
Mammals Flourished long before Dinosaurs became Ex-
tinct. PVLDB 2(2), 1648–1653 (2009)

10. Pavlo, A., et al.: A Comparison of Approaches to Large-
Scale Data Analysis. In: SIGMOD (2009)

11. Quinlan, A., Hall, I.: BEDTools: a flexible suite of utilities
for comparing genomic features. Bioinformatics 26(6),
841–842 (2010)

12. Röhm, U., Blakeley, J.A.: Data management for high-
throughput genomics. In: CIDR (2009)

13. Schapranow, M.P., Plattner, H.: HIG - An in-memory
database platform enabling real-time analyses of genome
data. In: BigData, pp. 691–696 (2013)

14. Schatz, M.C., Langmead, B.: The DNA data deluge.
IEEE Spectrum 50(7), 28–33 (2013)

15. Toepfer, A., et al.: Viral quasispecies assembly via max-
imal clique enumeration. PLoS Computational Biology
10(3), e1003,515 (2014)

16. Volchkov, V.E., et al.: Characterization of the L gene and
5’ trailer region of Ebola virus. The Journal of general
virology 80(Pt2), 355–62 (1999)

17. Wolstencroft, K., et al.: The Taverna workflow suite: de-
signing and executing workflows of Web Services on the
desktop, web or in the cloud. Nucleic Acids Research
41(Web Server issue), W557–W561 (2013)


	Introduction
	Ebola virus diversity: a case study
	Future work
	Conclusion

