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ABSTRACT

The state-of-the-art in example-based multimedia event detection
(MED) rests on heterogeneous classifiers whose scores are typically
combined in a late-fusion scheme. Recent studies on this topic have
failed to reach a clear consensus as to whether machine learning
techniques can outperform rule-based fusion schemes with varying
amount of training data. In this paper, we present two parametric
approaches to late fusion: a normalization scheme for arithmetic
mean fusion (logistic averaging) and a fusion scheme based on lo-
gistic regression, and compare them to widely used rule-based fusion
schemes. We also describe how logistic regression can be used to
calibrate the fused detection scores to predict an optimal threshold
given a detection prior and costs on errors. We discuss the advan-
tages and shortcomings of each approach when the amount of pos-
itives available for training varies from 10 positives (10Ex) to 100
positives (100Ex). Experiments were run using video data from the
NIST TRECVID MED 2013 evaluation and results were reported in
terms of a ranking metric: the mean average precision (mAP) and
R0, a cost-based metric introduced in TRECVID MED 2013.

Index Terms— multimedia event detection, late fusion, score
calibration, score normalization, system fusion

1. INTRODUCTION

As the quantity of online user-submitted multimedia content grows,
indexing and reliably searching for specific content becomes
increasingly challenging. Moreover, the data is very heterogeneous
and often of poor audio or visual quality, which challenges the
accuracy of current event detection technologies. The track of mul-
timedia event detection conducted under the TRECVID evaluations
by NIST aims to solve the problem of detecting specific events
like “changing a tire” or “grooming an animal” in a heterogeneous
corpus of user-submitted video clips. Accurately detecting such
precise events requires input from various analysis channels (image
and motion analysis, audio concepts, speech content, character
recognition, etc.) that we will refer to as MED modalities. The best-
performing approaches to solving this task use various modalities
and combine their detection scores in a late-fusion scheme. It is to
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be noted that while some researchers have successfully developed
early-fusion schemes [1, 2] to combine different modalities together
and learn joint classifiers, not all modalities can be combined in
this way and these systems still rely heavily on late-fusion as a final
combination stage [2].

Approaches to late-fusion mainly fall into two categories:
rule-based or statistical model based. Simple rule-based fusions
(like arithmetic mean or geometric mean) which first normalize
the scores to a comparable range and then treats each modality
identically are popular for their inherent robustness to over-fitting
[3, 4, 5]. Other rule-based techniques (like weighted averaging)
use different weights for different modalities. Here, the weights
are found using grid-search [6, 7], are set to a measure of the
performance of each modality [3], or to a measure of confidence of
the score [8]. Machine learning alternatives like logistic regression
[5, 9], ridge regression [7], linear support vector machine (SVM) [9]
and explicit optimization of an evaluation metric [9] have also been
explored. While the above studies often compare multiple fusion
techniques to one another, their conclusions can vary widely. For
instance, [9, 6] claim gains from logistic regression fusion compared
to arithmetic mean or grid-based search techniques while other
studies found the opposite conclusion on a similar task [3, 4, 5].
Given the diversity of the modalities to fuse across research teams,
and the fact that their scores show very different distributions (Gaus-
sian, exponential, bimodal, etc.), we believe that such conflictive
conclusions could be explained by differences in the modalities’
score distributions, differences in the type of features used in
learning-based techniques, and differences in the way missing val-
ues are handled. Unfortunately, these details are often overlooked
in the above studies, making it difficult to draw definite conclusions.

The challenge of handling missing values in late fusion is very
common in detection tasks, especially in MED where modalities’
scores can go missing for various reasons: no audio was available,
no speech was detected, no motion was detected in the video, etc.
Traditional ways of dealing with missing features in late-fusion
include inferring the missing scores from the mean of scores from
other videos or setting the missing score to be the minimum score.
Ideally, one would like to not make any assumption about the
missing score’s value but rather learn its value for various events
and modalities. Such an approach has been successfully applied to
other detection tasks such as speaker identification [10] or spoken
term detection [11] by using a logistic regression framework with
binary side-information.

While MED performance is usually measured in terms of
mean average precision (mAP), we also considered the R0 metric



introduced in TRECVID MED 2013. R0 can be interpreted as a risk
based on costs of misses and false alarms that the system should
minimize by picking the right threshold. The main challenge when
optimizing such a metric is to properly calibrate the scores such that
a good threshold can be chosen. Also, a fusion strategy that gave
the best mAP might not be optimal in terms of R0, since the two
metrics target different use cases. Prior work in speaker detection
[12] has found logistic regression to be a very efficient approach to
both calibration and fusion over a wide range of operating points.

In this paper, we will introduce a late-fusion framework based
on logistic regression, that handles missing features as binary side-
information. We also introduce a novel discriminative normalization
scheme for arithmetic mean called logistic averaging that is robust to
limited number of training examples. Finally, we present a strategy
to calibrate the final scores and pick optimal thresholds for R0 and
report MED results for both the mAP and R0 metrics.

2. DESCRIPTION OF MODALITIES
In this section, we describe the scope of our individual modalities
and how they were trained. A more in depth description of each
modality can be found in [13]

Low-level visual features We extracted low-level visual
features for two frames per second from each video. We followed
the bag-of-codes approach, which considers spatial sampling of
points of interest, visual description of those points, and encoding
of the descriptors into visual codes. We used a mixture of SIFT,
TSIFT, and C-SIFT descriptors [14]. We computed the descriptors
around points obtained from dense sampling and reduced them to
80 dimensions with principal component analysis. We encoded
the color descriptors using Fisher vectors with a Gaussian Mixture
Model codebook of 256 elements [15].

Semantic visual features We detected semantic concepts
for each frame using low-level visual features and following the
approach in [16]. We trained 1,346 concept detectors based on
linear SVMs. Each frame is then represented by the concatenated
detector scores from all these concepts.

Visual event classifiers We included three visual event clas-
sifiers based on low-level and semantic features. To arrive at a
video-level representation for the low-level visual event classifier,
we relied on simple frame averaging. For the two video event
classifiers based on semantic features, we aggregated the concept
vectors per frame into a video-level representation. One approach
used averaging and normalization, while the other method used
semantic encoding. On top of both concept representations, we used
an SVM with �

2 kernel.

Low-level motion features The two low-level motion features
were based on Dense Trajectories (DTs) [17] and MoSIFT [18].
We computed DT raw features with a step size of 10 pixels and
MoSIFT raw features with default parameters. The raw features
were encoded using first- and second-order Fisher Vector descriptors
with a two-level spatial pyramid [19]. Descriptors were aggregated
across each video. We generated four event classifiers: two with
DT features using first- and second-order Fisher Vector descriptors,
and two with MoSIFT features using first- and second-order Fisher
Vector descriptors. A Gaussian-kernel SVM was used for classifica-
tion, and the outputs from the same low-level feature were averaged.

Motion event classifiers Two event classifiers were generated
based on action concept detectors. There were 96 action concepts
annotated on the MED11 Event Kit provided by Sarnoff/UCF,

and 101 action concepts from UCF 101 [20]. The action concept
detectors were applied to small segments of videos and encoded by
Hidden Markov Model Fisher Vector descriptors [21]. SVM with
Gaussian kernel was used to train two event classifiers, one for each
set of action concepts.

Low-level audio content For our audio features, we extracted
mel-frequency cepstral coefficients (MFCCs) over a 10-ms window.
MFCCs describe the spectral shape of audio. The first and second
derivatives of the MFCCs were also computed. The MFCC
features were difference-coded with Fisher vectors using a 1024-
element Gaussian Mixture Model and classified using a linear SVM.

Spoken content We ran an English ASR model trained on
conversational telephone data and adapted to meeting data. We
performed supervised acoustic model adaptation using in-domain
annotated TRECVID data and unsupervised adaptation using the
first-pass recognition output. We also performed supervised and un-
supervised language model adaptation. The lattice-based approach
described in [22] was used to build the MED classifier, and the final
score was the distance to the hyperplane of a L1-regularized linear
SVM model, mapped to [0, 1] by using a logistic function.

Written content SRI’s English video OCR software detected
and recognized text appearing in the TRECVID MED 2013 video
imagery. This software recognizes both overlay text, such as cap-
tions that appear on broadcast news programs, and in-scene text on
signs or vehicles [23]. For each event, we generated event profiles
from the event descriptions by using term frequency-inverse docu-
ment frequency (TF-IDF) weightings to rank the relevance of non-
stop-words. The event detection score for each video was the cosine
similarity between the word vector for the video and the word vector
for the event profile.

3. LATE FUSION

In this section, we present approaches to late fusion that were used
in our experiments. The scores x

i

from each of the N modalities are
detection probabilities and therefore lie in [0, 1]. The goal of late-
fusion is estimating the probability of the label y of a given video
given the score vector x = [x0, x1, ..., xN�1].

3.1. Baseline fusions

We describe a few simple, widely used baseline fusion methods.

Arithmetic mean This method combines scores from various
modalities by taking the arithmetic mean of the scores for each trial.
We considered two ways of dealing with missing scores. In the AM-
zero technique, a missing score is supposed to have a zero value.
In the AM-mean technique, a missing score is supposed to have the
mean value of the non-missing scores from other modalities. The
latter technique is equivalent to computing the average over the non-
missing scores only.

Geometric mean This method, referred to as GM, computes the
fused score for a given trial as the geometric mean of all non-missing
and non-zero scores for that trial.

Weighted averaging In this technique, the final score is
computed as a weighted sum of the scores for each modal-
ity. The weights are chosen by optimizing the mAP metric
through an exhaustive grid-search with weights taking values in
{0.001, 0.01, 0.03, 0.1, 0.3, 0.6, 1}. The weights are trained on the
cross-validation scores on the training data, and applied to the test
data. We study two different setups with varying number of trained



parameters: in WM-dep the weights are event-dependent and in WM-
indep the weights are optimized for all 20 events at once.

3.2. Logistic regression fusion
Logistic regression is a common approach for converting a M -
dimensional vector of scores into a single value, the likelihood ra-
tio, which can be used to make binary decisions. The LR model
assumes that the posterior of a certain clip being a positive has the
form P (y = +1|x) = �(↵xT + �) where �(x) = 1/(1 + e

�x)
is the logistic function. The parameters ↵ = [↵0, ...,↵M�1] and
� are learned by maximizing the L2-regularized likelihood of the
model on labeled training data by using the “Trusted Region New-
ton Method” [24] as implemented in the scikit-learn library [25].
The regularization parameter was tuned using cross-validation.

We propose to apply logistic regression to MED late fusion, a
technique we refer to as LR, as follows. For each trial, we create
a feature vector by concatenating the logit of scores of all of the
N modalities, where the logit function is defined by logit(x) =
log(x/(1 � x)). The logit expands the dynamic range of the ex-
ponentially distributed probabilistic scores. The resulting scores are
close to normally distributed for both positives and negatives and
behave better for logistic regression. Missing scores are set to zero,
and a feature is added for each modality as a binary indicator vari-
able I

miss

accounting for the possibility of missing scores for some
trials. Initially introduced in [11] for late fusion of keyword spotting
systems, this approach is equivalent to learning a bias for the missing
score value of each modality. Once parameters are trained, the final
posterior is given by:

P (y = +1|x) = �(
N�1X

i=0

(↵2ixi

+ ↵2i+1Imiss

(x
i

)) + �)

Additionally, we propose to automatically perform feature se-
lection and discard some modalities during training by looking at
the trained weights ↵2i. If the weight corresponding to a certain
modality is found to be negative, the logistic regression is retrained
with that modality removed. This approach is based on the intuition
that a negative weight indicates an anti-correlation between the score
of some modality and the label of a video clip, which is the sign of a
poorly performing modality. By discarding that modality, we reduce
the noise in the data as well as the dimension of the feature vector
and obtain better generalization properties. This approach will be
referred to as LR+fs. We also considered the LR-min and LR-min+fs
systems where a missing score is set to the minimum score of that
modality on the training data. These two systems will provide a com-
parison point against the proposed missing-values handling scheme.

3.3. Logistic averaging
The logistic averaging technique, or LA, is a novel technique that
non-linearly normalizes the scores of various modalities before per-
forming arithmetic mean fusion.

As in the case of logistic regression, we apply the logit function
to the posterior scores of our modalities to map them from [0, 1] to
[� inf,+ inf]. We apply Z-normalization by computing the means
and variances of the cross-validated logit-scores for each event on
the training data. The same normalization is applied to the videos
in the test set. Then we map those scores back to [0, 1] using the
sigmoid function �

↵,�

defined as �

↵,�

= 1/(1 + e

�(↵x+�)). The
parameters ↵ and � are chosen to optimize the mAP on the cross-
validated training scores using a grid search. If X

i

denotes the Z-
normalized logit-score from each modality, then the fused score is
given by:

P (y = +1|x) = 1
N

N�1X

i=0

�

↵,�

(X
i

)

As mentioned in previous work on late fusion of biometric sys-
tems [26], Z-normalization performs best when the input distribu-
tions are Gaussian distributed. By applying the logit to our initial
scores, which are exponentially distributed, we obtain near-Gaussian
distributed scores. The role of ↵ and � is to enable some non-
linearity in the arithmetic mean fusion by tuning a sigmoid that mod-
ifies the modalities’ score distributions. Because the logit-scores
are normalized around 0 with variance 1, a small ↵ would lead to
a nearly linear mapping, while a large ↵ introduces a sharp cutoff at
��, below which the scores are set to 0, and above which the scores
are set to 1.

Though this approach does not train different weights for each
modality and can therefore seem sub-optimal compared to weighted
averaging or logistic regression, it is less prone to over-fitting as it
does not rely on labeled positives to estimate the mean and variances.
It does require some positives to tune ↵ and � but as these parameters
are fixed for all events, their estimation is quite robust.

4. CALIBRATION AND THRESHOLD SELECTION

Besides maximizing average precision, a second challenge of the
MED 2013 TRECVID evaluation [27] is to select, for each event,
the detection threshold t that maximizes the R0 metric defined as:
R0(t) = Rec(t) � K

V

Rank(t) where K = 12.5, V is the total
number of clips in the test set, Rec(t) is the recall at threshold t and
Rank(t) is the number of clips whose score is larger than t. It can
be shown that R0(t) can be rewritten as:

R0(t) = C1

�
C2 � [(K⇡

test

+ )�1 � 1]N
miss

(t)�N

fa

(t)
�

where C1 and C2 are constants, N
miss

(t) and N

fa

(t) are the re-
spective number of misses and false alarms at threshold t, and ⇡

test

+

is the ratio of positives in the test set. The threshold that maximizes
this quantity also minimizes the risk given by:

Risk(t) = C

miss

·N
miss

(t) + C

fa

·N
fa

(t)

where C

fa

= 1 and C

miss

= (K⇡

test

+ )�1 � 1. Bayesian decision
theory indicates that in order to minimize this risk the system should
decide that the clip with scores x is a positive if and only if

p(y = +1 | x) · C
miss

> P (y = �1 | x) · C
fa

which defines a threshold on the log-likelihood ratio (LLR):

LLR = log

✓
p(x | y = +1)
p(x | y = �1)

◆
> log

✓
C

fa

C

miss

◆
� logit(⇡test

+ )

This formulation comes in handy when using logistic regression
to fuse or calibrate scores. Indeed, it can be shown that with a poste-
rior of the form P (y = +1|x) = �(↵xT + �), the following holds
for the LLR:

LLR+ logit(⇡train

+ ) = ↵x

T + �

where ⇡

train

+ is the ratio of positives in the training set. Assuming
that the scores S = ↵x

T + � at the output of the logistic regression
are well calibrated, the threshold t0 that maximizes R0 is therefore:

t0 = log

✓
C

fa

C

miss

◆
� logit(⇡test

+ ) + logit(⇡train

+ )

= logit(K⇡

test

+ )� logit(⇡test

+ ) + logit(⇡train

+ )

It is worth noting that while ⇡

train

+ is known from the training
data labels, ⇡test

+ might not be known and the difference between the
assumed and the actual ⇡test

+ may result in a sub-optimal threshold.



5. EXPERIMENTAL RESULTS

In this section, we first describe the data used for our experiments
and then present results on system fusion using two separate metrics.

5.1. Data

We evaluated the performance of late fusion according to the NIST
TRECVID 2013 MED evaluation plan [27]. We used the 20 pre-
specified events as our detection targets. We ran experiments in
two conditions with varying numbers of positives: 100Ex with 100
positive clips per event and 10Ex with 10 positive clips. An extra
set of 4992 video clips labeled as negatives is used to supplement
the positives for each event. To maximize the use of this limited
amount of training data, we generated scores on the training data for
each modality using 10-fold cross-validation. These cross-validation
scores were used to train all of the normalization and fusion param-
eters, as well as to choose thresholds. The MED performance is
reported on MEDTEST, a set of 23,468 video clips labeled as nega-
tives plus 1,489 video clips labeled as positives, for an average of 75
labeled positives per event.

5.2. Results and discussion

For logistic regression and weighted averaging, we reduced the num-
ber of trained parameters by merging together similar modalities us-
ing arithmetic mean in the posterior domain prior to learning the fu-
sion. Specifically, we fused together all three visual modalities and
all four motion-based modalities to create two aggregate modalities.
For 10Ex for logistic regression, we even averaged those two modal-
ities into a single modality.

Columns 2 and 5 of Table 1 present the mean Average Precision
(mAP) of individual sub-systems and of several fusion schemes on
the test set. In both training conditions, the logistic regression and
logistic averaging techniques significantly outperform the baseline
fusion techniques. These gains can be explained by the greater flexi-
bility of parametric approaches such as LR, LA and WM. Yet, the two
proposed approaches do not suffer the over-fitting problems of WM,
either because the number of trained parameters is small (LA) or be-
cause of regularization (LR). When 100 examples are available for
training, the best technique is LR+fs with a mAP of 0.434. This re-
sults demonstrate the efficiency of using binary indicators to handle
missing values since LR-min+fs obtained a mAP of 0.422 only. Also,
while logistic regression proves more efficient than LA for 100Ex,
this trend disappears in the 10Ex condition where both LA and LR-
min+fs perform best. We believe that this result is directly related
to the design of LA as a fusion technique not requiring many pos-
itives for training and tuned to optimize mAP. In contrast, logistic
regression learns event-dependent weights that enable it to perform
well over a wide range of operating points. The feature-selection
component of logistic regression was found useful and provided a
significant mAP increase in both conditions. Modalities were dis-
carded for 7 events for 10Ex and 16 events for 100Ex.

We also compared the performance of the different fusion strate-
gies in terms of the R0 metric. We considered two different strate-
gies to pick the threshold: (1) using the threshold t

tr

that optimizes
R0(t) on the training data, and (2) using the threshold t0 computed
as in the theoretical analysis developed in Section 4. The latter tech-
nique assumes that the fused scores are calibrated likelihood ratios.
Because this is only the case for the LR fusion, we first calibrate
the output of the other fusion strategies for each event by using a
pass of logistic regression with a 2-dimensional feature vector. The
two dimensions are set to the logit of the fused score in the posterior

domain and a binary indicator that is set to 1 if the score is miss-
ing. The logistic regression parameters are estimated using the fused
cross-validation scores on the training set. The ↵ and � parameters
of the logistic averaging approach were adjusted to maximize R0(t0)
on the training data.

Results in terms of R0, the mean of R0 over all 20 events, are
shown in Table 1. With this metric, logistic regression consistently
outperforms the other fusion approaches, for both conditions. Lo-
gistic averaging remains competitive but no longer outperforms LR-
min+fs in the 10Ex condition. An advantage of logistic regression
fusion over other techniques for maximizing R0 is that it uses a fea-
ture vector with at least N dimensions, and therefore more finely ap-
proximates the LLR. The resulting scores are better calibrated than
the scores obtained through a pass of logistic regression following
late-fusion. Also, we should point out that the t0 threshold obtained
through Bayesian decision theory consistently outperforms the more
ad-hoc technique of picking t

tr

using the training data. This is be-
cause the Bayesian formulation enables computing the theoretically
optimal threshold given the event detection priors on the test data.

Table 1: Performance of various score fusion techniques on the test
set. Results are reported in both conditions in terms of mAP and R0.
The best system for each metric is reported in bold.

System 100Ex 10Ex
mAP R0(ttr) R0(t0) mAP R0(ttr) R0(t0)

AM-zero 0.405 0.514 0.524 0.222 0.263 0.278
AM-mean 0.402 0.506 0.526 0.214 0.244 0.272

GM 0.356 0.483 0.487 0.206 0.148 0.038
WM-dep 0.404 0.511 0.532 0.197 0.259 0.297

WM-indep 0.414 0.503 0.522 0.213 0.288 0.298
LA 0.425 0.521 0.531 0.244 0.287 0.304

LR-min 0.421 0.519 0.538 0.235 0.260 0.309
LR-min+fs 0.422 0.522 0.541 0.244 0.288 0.314

LR 0.428 0.532 0.537 0.230 0.262 0.312
LR+fs 0.434 0.533 0.546 0.238 0.295 0.312

6. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate the efficiency of parametric ap-
proaches to late fusion in a multimedia event detection system, even
in situations with limited training data. The proposed logistic re-
gression approach to score fusion handles missing scores and au-
tomatically performs feature selection to discard poorly performing
modalities. A second technique, proposed under the name of lo-
gistic averaging, can be seen as a pre-processing approach to the
arithmetic mean method by performing Z-normalization in the logit
domain before mapping scores back to posteriors in a way that max-
imizes a given metric. The logistic regression approach significantly
outperformed baseline techniques in terms of both the mAP and the
R0 metric. Logistic averaging was very competitive for optimiz-
ing mAP with limited training data, but didn’t perform as well on
the R0 metric. These findings are comparable to results for other
detection tasks such as speaker identification or keyword spotting
where logistic regression has consistently been found to be a robust
tool to combine systems and provide a calibrated output that can be
used to make binary decisions over a wide range of operating points.
Avenues for future work include applying the fusion techniques in-
troduced in this paper to the problem of query-based event detection,
where the event detection models are built from an event description
rather than learnt using positive examples.
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