
Composite Concept Discovery

for Zero-Shot Video Event Detection

Amirhossein Habibian, Thomas Mensink, and Cees G. M. Snoek
ISLA, Informatics Institute, University of Amsterdam

Science Park 904, 1098 XH, Amsterdam, The Netherlands
{a.habibian, thomas.mensink, cgmsnoek}@uva.nl

ABSTRACT
We consider automated detection of events in video with-
out the use of any visual training examples. A common
approach is to represent videos as classification scores ob-
tained from a vocabulary of pre-trained concept classifiers.
Where others construct the vocabulary by training individ-
ual concept classifiers, we propose to train classifiers for
combination of concepts composed by Boolean logic oper-
ators. We call these concept combinations composite con-
cepts and contribute an algorithm that automatically dis-
covers them from existing video-level concept annotations.
We discover composite concepts by jointly optimizing the
accuracy of concept classifiers and their e↵ectiveness for de-
tecting events. We demonstrate that by combining concepts
into composite concepts, we can train more accurate clas-
sifiers for the concept vocabulary, which leads to improved
zero-shot event detection. Moreover, we demonstrate that
by using di↵erent logic operators, namely “AND”, “OR”, we
discover di↵erent types of composite concepts, which are
complementary for zero-shot event detection. We perform
a search for 20 events in 41K web videos from two test sets
of the challenging TRECVID Multimedia Event Detection
2013 corpus. The experiments demonstrate the superior per-
formance of the discovered composite concepts, compared to
present-day alternatives, for zero-shot event detection.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Video analysis

Keywords
Event recognition, Concept representation

1. INTRODUCTION
We address the problem of zero-shot event detection in

video, where the goal is to detect complex events without
the use of any visual training examples. Since there is no
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Figure 1: Video examples for training vocabulary
concept classifiers accompanied with their concept
annotations. Positive and negative labels are de-
noted by 1 and 0. Primitive and composite concept
annotations are shown in black and red colors. Com-
posite concepts annotations are inferred from their
primitive concepts.

visual example available to train event classifiers, the com-
mon approach in zero-shot detection literature relies on tex-
tual specification of events to extract the event models. For
this purpose, each event is modeled by specifying its rele-
vant and irrelevant semantic concepts, which are identified
from text. Afterward, test videos are ranked based on their
similarity to the event model. For this purpose, every test
video should be represented by its semantic features, such as
transcripts from automatic speech recognition (ASR) [14, 3],
text from video optical character recognition (VOCR) [14],
and scores from concept classifiers [22, 3]. Using ASR and
VOCR features leads to high precision in event detection,
as these sources generally result in reliable textual descrip-
tions. However, not all videos come with ASR and VOCR
features, leading to low recall in event detection. In contrast,
high recall is reported for zero-shot detection using concept
classifiers, but the low accuracy of concept classifiers leads
to poor precision in detecting events [3]. In this paper, we
consider zero-shot event detection using concept-classifiers.



In zero-shot event detection by concept classifiers, videos
are represented as the output of a vocabulary of concept
classifiers. The common approach is to train a one-against-
all classifier per concept in the vocabulary [22, 3, 13, 5].
Hence, the underlying assumption for these approaches is
that the concepts in the vocabulary, and their annotations,
are independent from each other. This strong assumption
may not always be valid. Consider for example the concept
classifiers “Bike” and “Motorcycle”, which are very likely to
have a considerable overlap in the visual context in which
they may appear. Consequently, we argue it is advantageous
to exploit the visual (and semantic) consistency of various
concept classifiers. Our intuition is that there are combi-
nations of concepts, for which training one joint-classifier
is more e↵ective than separately training concept classifiers.
Continuing the example, combining the positive annotations
for “Bike” and “Motorcycle” into a single concept classifier
may result in a more reliable classifier for zero-shot event de-
tection. In addition, some of the concept combinations may
be very descriptive and characteristic for an event, i.e., the
combination of “Bike” and “Ride” better characterizes the
event “attempting bike trick” than the “Bike” and “Ride”
concepts individually. In this paper, we consider the interre-
lation between concepts before training vocabulary concept
classifiers. Based on concept relations, we combine vocab-
ulary concepts for each event so as to optimize the event
detection accuracy.

Others have also investigated optimizing the vocabulary
concepts for event detection [3, 11, 15]. In [11], for exam-
ple, an iterative feature selection algorithm is proposed that
learns from examples to select a subset of pre-trained con-
cept classifiers that optimizes event detection accuracy. We
also aim for optimizing the vocabulary concepts per event,
but rather than selecting from rigid concept classifiers only,
we introduce a flexible composition of classifiers by adapt-
ing their underlying training data. This bears similarity to
recently introduced bi-concepts [8] and visual phrases [4] for
concept detection. In these works, the concept combination
is defined as the co-occurrence of annotations in training
data. Learning concept detectors from these co-occurred an-
notations results in more e↵ective and descriptive classifiers.
We observe that bi-concepts combine concept annotations
by logical “AND” relations. In this paper, we generalize this
combination logic by also considering other logical relation-
ships in particular logical “OR”, i.e., “Bike-OR-Motorcycle”.
We call these logical combinations composite concepts and
define them as the logical composition of primitive concepts,
see Figure 1.

The main challenge in constructing composite concepts
is to discover which primitive concepts should be combined
together. This problem has been studied by Rastegari et
al. [19], for discovering bi-concepts for image search. They
discover bi-concepts by searching for concept pairs whose
joint classifier is more accurate than individual concept clas-
sifiers. However, combining the concepts by only consider-
ing their classification accuracy might fail for event detec-
tion. For example, combining the concepts “Dog” and “Cat”
might lead to a more accurate concept classifier. However,
the“Dog”concept is individually more e↵ective for detecting
the event dog show and it loses its e↵ectiveness when com-
bined with other concepts. Di↵erent from the references, we
propose an algorithm that automatically discovers compos-

ite concepts by jointly considering the accuracy of concept
classifiers and their e↵ectiveness for detecting events.

The main contribution of this paper are: First, we pro-
pose the notion of composite concepts for constructing con-
cept vocabularies for zero-shot event detection. Second, we
propose an algorithm to automatically discover composite
concepts from a vocabulary of primitive concepts. Third,
our experiments on the challenging TRECVID Multimedia
Event Detection 2013 corpus demonstrates the e↵ectiveness
of composite concepts for zero-shot event detection.

2. RELATED WORK
Representing videos as scores from a vocabulary of con-

cept classifiers is shown to be promising for event detec-
tion [10, 13, 5, 7], especially when only few [12, 22] or no
visual example of the events [3, 9] are available. In the ref-
erences, the vocabulary concept classifiers are trained from
a set of images or videos, which are annotated with respect
to presence or absence of the concepts. The common ap-
proach is to train a separate classifier per concept. Di↵erent
from the references, we train concept classifiers from com-
binations of vocabulary concept annotations, as composite
concepts.

Optimizing the vocabulary concepts per event has recently
attracted research attention. In [3, 11], for example, the
vocabulary is optimized for each event by automatically se-
lecting a subset of concepts per event. In [15] the Word-
net ontology is used to measure the relevance between each
query and the available vocabulary concepts, in order to
select the most relevant concepts. Dalton et al. [3] select
the relevant concepts per event by considering concept de-
pendencies modeled by a Markov Random Field. Mazloom
et al. [11] rely on supervised feature selection to select the
most discriminative concepts per event. Our paper is dif-
ferent from these works in the following two ways. First,
sometimes two concepts are individually uninformative for
an event but their composition is informative and should be
kept in the vocabulary. Therefore, instead of excluding the
uninformative concepts from the vocabulary, we search for
a composition where the concepts are informative. Second,
in addition to considering the informativeness of concepts
for events, we also consider concept classification accuracy.
Therefore, we include the concepts in the vocabulary which
are not only informative for an event, but are also accurately
classified.

Rather than combining the concept classifiers in the vo-
cabulary a posteriori, one can also combine them a priori by
considering concept interrelationships during training con-
cept classifiers [19, 4, 8, 2, 23]. In [4, 8] the notion of
“bi-concepts” or “visual phrase” are introduced as the co-
occurrence of distinct concepts which correspond to a very
characteristic appearance that makes their detection, as one
concept, more e↵ective. Bi-concepts have been used for var-
ious purposes: sentiment analysis [2], where the sentiment
concept classifiers are trained as bi-concepts of adjective and
nouns, i.e., cute dog. Image search [8], where co-occurring
query concepts are trained together as bi-concepts. Object
recognition [4], where co-occurring objects are trained as
one bi-concept. Moreover, Rastegari et al. [19] proposes to
automatically discover bi-concepts from query concepts for
image search. They consider a combination of concepts as
a bi-concept only if it is more e↵ectively classified than its
individual concepts.
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Figure 2: Data flow diagram of our defined zero-
shot event detection pipeline. The notations are ex-
plained in Section 3.1.

Our paper is di↵erent from these works in the following
ways. First, bi-concepts can be considered as one type of all
possible concept compositions, where concepts are composed
by “AND” relations. Di↵erently, our proposed composite
concepts can be discovered from any type of concept rela-
tions, including “OR”, “AND”, “XOR” etc. Second, Raste-
gari et al. [19] discover bi-concepts only based on their clas-
sification accuracy and ignore their e↵ectiveness when clas-
sifying events. Di↵erently, we discover composite concepts
by jointly considering their classification accuracy and their
e↵ectiveness for recognizing events. As we will show in the
experiments, this criteria has a high impact on performance
of the composite concepts in event detection.

3. COMPOSITE CONCEPT DISCOVERY
We first formalize our zero-shot event detection settings.

Then we propose our algorithm for discovering composite-
concepts. Finally, we discuss about the computational costs
of the proposed algorithm.

3.1 Zero-Shot Event Detection
In zero-shot event detection the goal is to detect an event,

without using any visual examples of the event, see Figure 2
for an illustration. The detection problem is decomposed
into two parts, first, low-level video features are mapped
into an intermediate semantic representation, and second,
the semantic representation is mapped to an event. In this
work, we consider a set of concepts C = {c1, . . . , cl} as the
intermediate representation, and they cover a wide range
of concepts including objects, actions, and scene concepts,
such as the concepts recommended in [5].

To obtain the intermediate representation, we learn a map-
ping, Mc : x 7! a from a d-dimensional video feature x 2
Rd to an `-dimensional binary vector a 2 {0, 1}`, denoting
the presence/absence of the concepts in C. Mc is learnt from
a set of annotated videos, denoted as Ac = {(xi,ai)}Ii=1,
which we call the video-concept annotations. Using these
annotation the mapping is obtained by training a classifier
for each concept in C independently.

For the event detection, we learn a mapping, Me : a 7! e
from the intermediate representation a to the event label e 2
{0, 1}. In our work, Me is obtained from a train set of tex-
tual descriptions of events, denoted by Ae = {(aj , ej)}Jj=1,
which we coin the concept-event annotations. This can be
provided at category level or at instance level. For category
level descriptions, there is just a single concept annotation
per event. For instance level annotations, multiple concept-
event annotations are provided for the same event denoting

possibly a variety of concepts related to the event. We use
instance level concept-event annotations, since these are usu-
ally easier to obtain1. Using the annotation set Ae, mapping
Me is obtained by training an event classifier from concept
annotations as features.

Note that, the two mappings Mc and Me are learned
from a di↵erent train set, and that for training Me no vi-
sual example is used. The performance of such a zero-shot
detection framework, critically depends on the quality of the
chosen intermediate representation.

3.2 Algorithm
In this section we detail our algorithm to learn a set of

composite concepts for the zero-shot prediction of an event.
We propose to use composite concepts as intermediate repre-
sentation which are learned for a specific event e. Composite
concepts are derived from the set of primitive concepts C, as
a combination of two (or more) primitive concepts, with a
logical operator. For simplicity, we only describe the use of
the logical OR operator, but the described algorithm holds
for the other operators as well.

Finding the composite concepts is reducible to a set par-
titioning problem. The goal is to find a set of composite
concepts bC , which is a division of primitive concepts C, as
a union of non-overlapping and non-empty subsets. For a
set C of ` primitive concepts, the total number of possible
partitions is the Bell number B` =

P`�1
k=0

�
`�1
k

�
Bk. Find-

ing an optimal bC is an NP-hard problem, see e.g. [19], for
which we propose a greedy approximation.

The accuracy of the event detection accuracy depends on
two competing objectives, concept predictability and event
predictability. Concept predictability measures the accuracy
of the prediction of the concepts from the intermediate repre-
sentation. Event predictability measures the discriminative
power of the intermediate representation to detect an event.
Based on these two criteria, we find the set of composite
concepts bC for event e by maximizing:

Se( bC ) = �Pc( bC ) + (1��)Pe( bC ) (1)

where Pc and Pe measure the concept predictability and
event predictability, respectively, and will be described in
detail below. Moreover, � 2 [0, 1] is a parameter to bal-
ance between concept predictability and event predictability.
This parameter can be optimized by cross-validation. How-
ever, when visual examples of events are not available for
cross-validation, we pick � = 0.5 to equally weight concept
predictability and event predictability.

Our proposed greedy approximation is similar to hierar-
chical clustering. Starting from the set of primitive concepts
C1  C, in each iteration t we find two concepts n⇤ and m⇤

to be merged. The two concepts are selected based on the
expected improvement of Eq. 1:

(m⇤, n⇤) = argmax
m,n2Cts.t.m 6=n

�Se(Ct,m, n), (2)

where �Se(C,m, n) denotes the di↵erence between using Ct

and the set where m and n are used as composite concept.
We use n⇤ and m⇤ to define Ct+1, as:

Ct+1 = Ct � Cn⇤ � Cm⇤ +
�
Cn⇤ _ Cm⇤

�
. (3)

1Generalizing to category level annotations is straight for-
ward.



input : C, Ac and Ae

output: bC
C1  C
for t 1 to ` do

compute �Se for each pair m,n 2 C
(m⇤, n⇤) argmax�Se

if �Se(m
⇤, n⇤) > 0 then

Ct+1 = Ct � Cn⇤ � Cm⇤ +
�
Cn⇤ _ Cm⇤

�

else

return bC  Ct

end

end

Algorithm 1: Pseudo code for the proposed algorithm
to discover composite concepts for the event e. Notation
conventions are detailed in Section 3.2.

The clustering algorithm is terminated at iteration t0 when
�Se(Ct,m, n) < 0, The final set of composite concepts bC used

for this event is bC  Ct0 . The Pseudo code of our clustering
procedure is summarised in Algorithm 1.

3.2.1 Concept predictability

We measure the concept predictability of a set of concepts
C, by their classification performance on a part of the train
set. Therefore, we first learn the mapping Mc for each con-
cept c 2 C, using the annotation Ac. Then we evaluate
this mapping on a hold out partition of training data, using
the average precision measure, denoted as PAP(c). So, the
concept predictability is given by:

Pc(C) =
1
|C|

X

c2C

PAP(c). (4)

In contrast to [19], this notion of concept predictability relies
on the accuracy of the classifiers, rather than an estimation
based on a geometric intuition.

For the greedy algorithm, we are interested in relative
improvement of Ct when merging concepts m and n. Let
k = |Ct|, and Ct0 denote the set Ct minus cm and cn, then:

�Pc(Ct,m, n) =
1

k � 1

X

c2Ct0

PAP(c) +
1

k � 1
PAP(cm _ cn)

� 1
k

X

c2Ct0

PAP(c)� 1
k

�
PAP(cm) + PAP(cn)

�

⇡ PAP(cm_cn)� 1
2

�
PAP(cm) + PAP(cn)

�
,

(5)

for the approximation in the final step, we assume thatP
c2Ct0

PAP(c) has a value independent of the chosen m and

n. For each iteration of the clustering algorithm, we train
a classifier for each pair of concepts m and n, and compute
the value of �Pc(Ct,m, n) by using Eq. 5.

3.2.2 Event predictability

The event predictability is measured by the quality of the
mapping from the composite concepts to the event label, us-
ing the train set Ae. More precisely, given a set of composite
concepts Ct, we train an event classifier on the concept an-
notations aj as features, apply the composition given by Ct,
and using the labels ej as desired outcome. Then the trained

classifier is evaluated on a hold out partition of training data
using average precision. The event predictability is given by:

Pe(C) = PAP(e), (6)

where C denotes the composition which should be applied
on the concept annotations a.

For the greedy algorithm, we evaluate the relative im-
provement of merging concepts m and n of set Ct, by:

�Pe(Ct,m, n) = Pe(Ct,m, n)� Pe(Ct). (7)

3.3 Computational Efficiency
For a vocabulary of n primitive concepts our algorithm

needs to trainO(n2) concept classifiers to discover composite

concepts. In the first iteration n(n�1)
2 concept classifiers are

trained. By storing the accuracies of the concept classifiers
in the first iteration, we only have to train n�1 new concept
classifiers, in the second iteration, to compare the accuracy
of the new composite concept to the existing n�1 classifiers.
Similarly n � 2 concept classifiers are trained in the third
iteration and so on, which leads to an overall computational
complexity of O(n2) in training concept classifiers.

Even though we use an e�cient greedy approximation of
the original learning problem, the computational complexity
is still rather high. This is due to the high dimensional video
features used for training the concept classifiers, as required
by Eq. 5.

However, Eq. 5 shows that we are interested in the per-
formance di↵erences between concepts and composite con-
cepts, not in the maximum achievable performance of these
(composite) concepts. Visual classifiers, especially in a large-
scale setting with many examples or concepts, can be ef-
fectively obtained by using stochastic gradient descent [18].
Stochastic gradient descent is an optimization algorithm,
which is used to gradually train the classifiers by randomly
passing through the training data. For good performance a
high number of epochs are required, typically in the order of
100� 500, however, for the performance di↵erence we could
use the classifier obtained after just a few epochs, since this
is typically a good predictor of the expected performance.

Therefore, we use very early stopping (after 5 epochs) and
a large value of the learning rate parameter, to ensure rapid
learning from the given examples.

4. EXPERIMENTAL SETUP

4.1 Datasets
Video Data: We perform our experiments on the chal-

lenging TRECVID Multimedia Event Detection 2013 cor-
pus, containing in total 51K arbitrary videos collected from
the web. To the best of our knowledge this is the largest
publicly available video corpus in the literature for event
detection containing user-generated video with a large vari-
ation in quality, length and content. We perform our exper-
iments on three partitions of videos: Research, MED test,
and Kindred test including 10K, 27K, and 14K videos, re-
spectively. Apart from the Research partition, the two other
partitions come with ground truth annotation at video level
for 20 event categories, such as Marriage proposal, Attempt-
ing bike trick and Making sandwich. In all our experiments,
we followed the instruction provided by NIST [16]. We use
the MED test and Kindred test partitions to report event



detection results and use the Research partition to train vo-
cabulary concept classifiers.

Video-Concept Annotations: Although the TRECVID
Multimedia Event Detection 2013 corpus does not provide
video level concept annotations, it comes with a textual
summary for each video in the collection, describing what
is happening in each video. We use these descriptions to
automatically extract video-concept annotations by follow-
ing the approach proposed in [1]. This approach starts by
considering every frequent term in the text collection as a
vocabulary concept and terms presence/absence in video
descriptions as video-concept annotations. The obtained
video-concept annotations are noisy, so [1] proposes to prune
the extracted video-concept annotations by excluding some
noisy concepts. For this purpose, a classifier is trained and
evaluated per concept, then the concepts with low detection
accuracy are considered as noise and excluded from the vo-
cabulary. We executed this procedure on the textual descrip-
tions of the Research partition videos, which led to extract-
ing 138 concepts and their video-concept annotations. The
extracted concepts cover a wide range of semantics needed
to represent events including, objects, actions, scenes and
people related concepts. In our experiments, we rely on
these extracted annotations as video-concept annotations.
Our extracted video-concept annotations are available for
download at: http://www.mediamill.nl/datasets.

Concept-Event Annotations: Following the standard
practice in zero-shot detection, as discussed in Section 3.1,
we require concept-event annotations to map the semantic
video representation to an event. Similar to video-concept
annotations, we rely on textual descriptions of events to
extract concept-event annotations. For each event we use
10 textual descriptions from positive examples of the event,
provided in the TRECVIDMultimedia Event Detection 2013
corpus. Then each description is manually represented in
terms of the 138 vocabulary concepts.

4.2 Vocabulary Concept Classifiers
Using the Research partition videos and video-concept an-

notations we train a classifier per vocabulary concept. As
local descriptor we use MBH computed along the motion
trajectories [20]. Fisher encoding is used to aggregate them
followed by power normalization with ↵ = 0.2 as in [6]. This
representation is shown to be state-of-the-art for recogniz-
ing events using single modality [21]. Better event detection
accuracy is obtained by fusing multiple modalities [14] but
it is beyond the scope of this paper. We use linear SVM to
train the concept classifiers.

4.3 Experiments
1. Zero-Shot Event Detection: We evaluate the e↵ec-

tiveness of our composite concept vocabulary for zero-shot
event detection. We compare the discovered OR-composite
vocabulary with several baselines: i) primitive concepts vo-
cabulary, which includes 138 concept detectors separately
trained per primitive concept. ii) bi-concepts vocabulary,
which includes bi-concepts discovered as proposed in [19].
iii) selected concepts vocabulary, which includes a subset of
primitive concepts which are more informative per event [11].
Informative concepts are selected using mRMR [17] feature
selection from concept-event annotations per event. We se-
lect the same number of concepts as in the OR-composite
concepts vocabulary.
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Figure 4: Examples of the predictions made by
primitive and composite concept classifiers. Blue
and yellow rows denotes the ground-truth and con-
cept classifier predictions, respectively. The prim-
itive concept classifier predictions are incorrect,
while the composite concept classifier predictions
are correct.

2. OR-Composite vs AND-Composite: We investi-
gate the characteristics of AND-composite and OR-composite
concept vocabularies by evaluating their performance for
zero-shot event detection. Both the composite vocabularies
are discovered as discussed in Section 3.2, by using “AND”
and “OR” operators respectively to compose the concepts.
Moreover, we compare their performance with a fused vocab-
ulary containing both the discovered AND-composite and
OR-composite concepts.

5. RESULTS

5.1 Zero-Shot Event Detection
The results of this experiment are shown in Table 1. It

demonstrates that the OR-composite vocabulary outperforms
the primitive vocabulary with mAP of 5.97% vs 4.00% for
MED test set and mAP of 14.69% vs 10.47% for Kindred test
set. For some events the improvement is considerable, i.e., win-
ning race without vehicle and flash mob gathering, whose de-
tection accuracy is increased from 2.67% to 10.98% and from
18.41% to 31.86% respectively, on MED test set. By looking
into the OR-composite concepts discovered for these events,
we find some composite concepts whose classifiers are more
accurate than their underlying primitive concept classifiers,
as illustrated in Figure 4. Moreover, the quantitative com-
parison of concept classifier, as reported in Figure 3, demon-
strates that OR-composite concepts have higher classifica-
tion accuracies than their underlying primitive concepts.

We also compare OR-composites vocabulary with bi-concepts
vocabulary, which are discovered as proposed in [19]. Our
experiments demonstrate that the discovered bi-concepts have
poor performance in zero-shot event detection. For some
events, i.e., birthday party and flash mob gathering, bi-concepts
vocabulary are even outperformed by the primitive concepts
baseline. It is mainly because in [19], bi-concepts are discov-
ered only based on their predictability and without consid-
eration of their e↵ectiveness for detecting events. However,
for some concepts, although their composition leads to more
predictable bi-concept, the derived bi-concept is less e↵ec-
tive in detecting the event. For example in the birthday party
event, two concepts “dancing” and “indoor” are composed
as a bi-concept because detecting dancing in indoor scenes
is more accurate. However, this bi-concept is incapable of
detecting dancing in outdoor scenes, which leads to missing
several birthday party videos which are outdoors. It demon-



Table 1: Experiment 1: Comparing the e↵ectiveness of various concept vocabularies in zero-shot event
detection. Our proposed OR-composite concepts outperform present-day alternatives.

MED test Kindred test

Event Primitive Selection [11] Bi-Concepts [19] OR-Composite Primitive Selection [11] Bi-Concepts [19] OR-Composite

Birthday party 5.30 4.97 4.72 7.55 6.51 4.84 6.49 9.64
Changing vehicle tire 0.96 0.97 0.80 1.81 1.21 1.20 1.33 1.12
Flash mob gathering 18.41 22.98 8.95 31.86 15.80 13.67 11.59 22.52
Getting vehicle unstuck 3.55 3.40 3.08 5.54 1.51 1.54 2.55 2.2
Grooming animal 0.91 0.91 0.86 0.91 17.11 17.06 10.91 17.06
Making sandwich 7.39 7.74 7.39 7.92 64.20 62.62 64.20 66.85
Parade 19.81 21.90 19.32 22.36 5.90 7.37 5.96 6.26
Parkour 0.60 0.50 0.91 2.09 1.01 0.77 1.00 4.31
Repairing appliance 1.06 1.24 0.88 2.49 10.81 12.31 5.92 40.08
Working sewing project 1.34 1.41 1.36 1.45 24.61 29.95 30.87 27.32
Attempting bike trick 1.09 1.05 0.62 2.02 1.30 1.33 5.86 2.78
Cleaning appliance 0.47 0.46 0.47 0.63 10.21 7.63 10.15 23.87
Dog show 0.10 0.11 0.25 0.11 0.61 0.72 0.29 0.65
Giving directions location 0.79 0.75 0.52 2.49 0.30 0.23 0.23 0.45
Marriage proposal 0.13 0.12 0.23 0.15 0.91 0.78 0.30 1.48
Renovating home 0.55 0.62 0.64 2.28 4.20 6.72 4.92 6.72
Rock climbing 13.96 14.23 13.94 14.60 30.80 30.70 26.58 34.87
Town hall meeting 0.52 0.96 0.55 1.47 0.71 1.62 0.63 0.37
Winning race without vehicle 2.67 3.11 3.09 10.98 4.21 5.70 9.05 15.36
Working metal crafts project 0.41 0.41 0.49 0.59 7.41 7.37 9.64 9.94

mean 4.00 4.39 3.45 5.97 10.47 10.71 10.42 14.69

0 10 20 30 40 50 60
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Marriage proposal
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Concept Classification Accuracy (Average Precision in %)

Figure 3: Comparing accuracy of OR-composite concept classifiers and primitive concept classifiers. For
each event, the discovered OR-composite concepts are indicated by squares and their underlying primitive
concepts are indicated by dots. OR-composite concepts are more accurately classified than their primitive
concepts.

strates the importance of considering event predictability in
discovering the composite concepts.

Our work is also comparable to concept selection [11],
where the vocabulary is obtained by selecting a subset of
informative concepts per event. As Table 1 shows, OR-
composite vocabulary outperforms the concept selection vo-
cabulary with mAP of 5.97% vs 4.39% for MED test set
and 14.69% vs 10.71% for Kindred test set. For some events
the improvement is substantial i.e., winning race without ve-
hicle event, where OR-composites vocabulary outperforms
concept selection by 10.98% versus 2.67% in terms of AP.
Looking into the selected concepts for this event, we observe
that although the selected concepts are informative for the
event, their concept classifiers are inaccurate. More specif-
ically, the accuracy of the classifiers for “running”, “jump-
ing”, and “walking” concepts, which are among the 10 most
informative concept for this event, are 3%, 7%, and 1%, re-
spectively. It demonstrates the importance of considering
concept classifiers predictability in discovering the compos-
ite concepts.

In summary, we conclude that OR-composite concepts
outperform primitive concepts in zero-shot event detection.
We explain it based on the observation that OR-composite
concepts have more accurate concept classifiers compared to
primitive concepts. Moreover, by comparing OR-composite
concepts to bi-concepts and selected concepts, we demon-
strate the importance of jointly considering concept pre-
dictability and event predictability in constructing the con-
cept vocabularies.

5.2 OR-Composite vs AND-Composite
We report the results of this experiment in Table 2. It

demonstrates that the OR-composite vocabulary obtains a
higher event detection accuracy, 5.97% vs 4.97% for MED
test and 11.49% vs 14.69% for Kindred test sets. How-
ever, by comparing concept classifier accuracies for AND-
composite and OR-composite concepts, as shown in Fig-
ure 6, we observe that AND-composite concepts have more
accurate concept classifiers, which contradicts with their
lower event detection performance. More specifically, the



Table 2: Experiment 2: OR-composite vocabularies outperform AND-composite vocabularies and the best
result is obtained by fusing both compositions.

MED test Kindred test

Event AND-composite OR-composite Fusion AND-composite OR-composite Fusion

Birthday party 5.60 7.55 7.55 6.63 9.64 9.64
Changing vehicle tire 1.73 1.81 1.83 1.06 1.12 1.08
Flash mob gathering 26.33 31.86 37.26 17.79 22.52 28.15
Getting vehicle unstuck 3.55 5.54 5.54 1.45 2.20 2.20
Grooming animal 1.02 0.91 0.91 21.89 17.06 17.06
Making sandwich 7.64 7.92 7.92 62.35 66.85 66.85
Parade 23.05 22.36 22.36 5.83 6.26 6.26
Parkour 1.80 2.09 2.18 3.37 4.31 3.92
Repairing appliance 1.52 2.49 2.51 19.80 40.08 48.21
Working sewing project 1.34 1.45 1.45 24.58 27.32 27.32
Attempting bike trick 1.61 2.02 2.16 1.69 2.78 2.39
Cleaning appliance 0.58 0.63 0.80 11.29 23.87 28.54
Dog show 0.13 0.11 0.11 0.22 0.65 0.58
Giving directions location 0.93 2.49 2.49 0.33 0.45 0.45
Marriage proposal 0.13 0.15 0.15 0.55 1.48 1.48
Renovating home 0.60 2.28 2.28 5.83 6.72 6.72
Rock climbing 14.37 14.60 14.68 28.33 34.87 40.72
Town hall meeting 0.52 1.47 1.47 0.73 0.37 0.37
Winning race without vehicle 6.50 10.98 13.59 8.63 15.36 19.25
Working metal crafts project 0.41 0.59 0.59 7.37 9.94 9.94

mean 4.97 5.97 6.39 11.49 14.69 16.06

concept classification accuracy for AND-composite and OR-
composite concepts are 22.45% and 16.19%, respectively in
terms of mAP averaged over all concepts and all events. By
comparing the number of discovered composite concepts we
observe that there are more OR-composite concepts discov-
ered than AND-composite concepts. More specifically, OR-
composite vocabulary contains on average 40 OR-composite
concepts per event, while AND-composite vocabulary con-
tains on average 12 AND-composite items per event. We
explain the higher classification accuracy of AND-composite
concepts by the observation that they are more restricted
and have less visual diversity in their training examples than
OR-composites. For example, the AND-composite “bike-
AND-ride” depicts a restricted situation where somebody
is riding a bike. But the OR-composite “bike-OR-ride” in-
cludes positive examples from various riding actions, i.e., rid-
ing bike, horse, skateboard etc., as well as examples from
bike in various situations, i.e., riding, repairing, parking
etc. In contrast, AND-composite have much less positive
examples, which restricts discovering many AND-composite
concepts with enough training data to train the classifiers.
Moreover, our experiments show that fusing AND-composite
and OR-composite concepts in a fused vocabulary, leads
to 7.0% and 9.3% relative improvements in MED test and
Kindred test sets, respectively. It demonstrates that AND-
composite and OR-composite concepts contain complemen-
tary information about the events and should both be in-
cluded in the vocabulary. This hypothesis is validated by
looking into the concepts which contribute most to the event
detection, as shown in Figure 5. This figure shows that
some of the contributing concepts are from OR-composite
concepts while others are from AND-composites.

6. CONCLUSIONS
In this paper we propose the notion of composite concepts

for zero-shot event detection using concept classifiers. Com-
posite concepts are high order semantics obtained by com-
bining primitive concepts by logical connectors, like “AND”
and “OR”. We propose an algorithm to automatically dis-
cover composite concepts per event that jointly optimizes
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Surprise-OR-Party

Group-AND-Dance -AND-Shopping

Practice-OR-Gym

Living-AND-Room

Street-OR-Inside

Performance-OR-Music

Detected Videos Composite Concepts

Figure 5: Top three videos detected for flash mob

gathering event. For each video, we report the five
composite concepts which have contributed most to
the zero-shot detection of the event. It demon-
strates that both the AND-composite and OR-
composite concepts are contributing to event detec-
tion.

concept and event predictability. We demonstrate that our
discovered composite concepts result in more accurate con-
cept classifiers compared to their underlying primitive con-
cepts, which improves zero-shot event detection accuracy.
Moreover, by comparing AND-composite vs OR-composite
concepts we observe that AND-composite concepts gener-
ally have more accurate concept classifiers. However, AND-
composite concepts annotations are sparser than OR-composite
concepts, which restricts the number of discovered AND-
composite concepts. Moreover, we demonstrate that AND-
composite and OR-composite are complementary in repre-
senting events and their fusion leads to further improvement.



0 10 20 30 40 50 60
Working metal crafts project
Winning race without vehicle

Town hall meeting
Rock climbing

Renovating home
Marriage proposal

Giving directions location
Dog show

Cleaning appliance
Attempting bike trick

Working sewing project
Repairing appliance

Parkour
Parade

Making sandwich
Grooming animal

Getting vehicle unstuck
Flash mob gathering
Changing vehicle tire

Birthday party

Concept Classification Accuracy (Average Precision in %)

Figure 6: Comparing accuracy of AND-composite and OR-composite concept classifiers. For each event, the
discovered AND-composite and OR-composite concepts are indicated by green and black squares, respectively.
AND-composite concepts are more accurately classified than OR-composite concepts, but the number of
discovered AND-composite concepts are generally less than OR-composite concepts.

Finally, we argue that by training composite concept clas-
sifiers, we model the descriptive relationships between con-
cepts explicitly inside the concept classifiers, rather than
implicitly in the event classifier. We consider the approach
promising for practical use when insu�cient event training
examples are available to learn concept relationships.
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