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Representing videos using vocabularies composed of concept detectors appears promising for generic
event recognition. While many have recently shown the benefits of concept vocabularies for recognition,
studying the characteristics of a universal concept vocabulary suited for representing events is ignored. In
this paper, we study how to create an effective vocabulary for arbitrary-event recognition in web video.
We consider five research questions related to the number, the type, the specificity, the quality and the
normalization of the detectors in concept vocabularies. A rigorous experimental protocol using a pool of
1346 concept detectors trained on publicly available annotations, two large arbitrary web video datasets
and a common event recognition pipeline allow us to analyze the performance of various concept vocab-
ulary definitions. From the analysis we arrive at the recommendation that for effective event recognition
the concept vocabulary should (i) contain more than 200 concepts, (ii) be diverse by covering object,
action, scene, people, animal and attribute concepts, (iii) include both general and specific concepts, (iv)
increase the number of concepts rather than improve the quality of the individual detectors, and (v) con-
tain detectors that are appropriately normalized. We consider the recommendations for recognizing
video events by concept vocabularies the most important contribution of the paper, as they provide
guidelines for future work.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction as TRECVID [47], ImageNet [7] and several other venues [34,11].
We consider the problem of recognizing events in arbitrary web
video, such as the ones depicted in Fig. 1. Among the many chal-
lenges involved, resulting from the uncontrolled recording condi-
tion of web videos and the large variations in the visual
appearance of events, probably one of the most fundamental ques-
tions in event recognition is what defines an event in video? The
Oxford English dictionary defines an event as ‘‘anything that
happens’’. With such a broad definition it is not surprising that
the topic has been addressed in the computer vision and multime-
dia retrieval community by many researchers from diverse angles
[4,55,44,5,25,54,36].

In this paper, we study representations that contribute to defin-
ing events for automatic recognition. We are inspired by findings
from cognition, where research has repeatedly shown that humans
remember events by their actors, actions, objects, and locations
[46]. Studying event representation based on such high-level con-
cepts is now within reach because of the continued progress in
supervised concept detection [48] and the availability of labeled
training collections like the ones developed in benchmarks such
Different from concepts, which represent a single person, object,
scene or action in videos, events are commonly defined as a more
complex interaction of several persons, objects, and actions hap-
pening in a specific scene [31]. In this paper, we name the set of
available concept detectors as the vocabulary and we study how
to construct a vocabulary suited for effective recognition of events
in video.

The state-of-the-art in event recognition represents a video in
terms of low-level audiovisual features [16,38,50,35,15,19,37]. In
general, these methods first extract from the video various types
of static and/or dynamic features, e.g., color SIFT variations [53],
MFCC [15], and Dense Trajectories [38]. Second, the descriptors
are quantized and aggregated [38]. The robustness and efficiency
of various low-level features for recognizing events are evaluated
in [50,15,33]. Despite their good recognition performance, espe-
cially when combined together [35,15,38,33], low-level features
are incapable of providing an understanding of the semantic struc-
ture present in an event. Hence, it is not easy to derive how these
event definitions arrive at their recognition. Therefore, essentially
different representations are needed for events. We focus on
high-level representations for event recognition.

Inspired by previous work in object recognition [51,22], scene
recognition [22,40] and activity recognition [41], many have
explored high-level representations for recognition of events
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Fig. 1. Examples of web videos depicting events. From top to bottom: ‘‘making a sandwich’’, ‘‘marriage proposal’’, ‘‘swimming’’ and ‘‘soccer’’. Each event can be defined by its key
concepts including actor, place, action and the involved objects.
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[28,31,2,58,14,30,8,24]. All these works follow a general pipeline
consisting of three consecutive steps to arrive at a high-level video
representation. First, frame extraction, where the video is decoded
and a subset of frames is extracted. Second, concept detection,
where each extracted frame is represented by a vector of predic-
tions from vocabulary concept detectors. Finally, video pooling,
where the frame representations are averaged and aggregated into
the video level representation. The obtained high-level representa-
tion is not only semantically interpretable, but is also reported to
outperform the state-of-the-art low-level audiovisual features in
recognizing events [31,33]. Rather than training vocabulary con-
cept detectors and event detectors separately, recent work aims
for jointly learning the vocabulary concept and event detectors
[26,57,1,27]. In these works, the vocabulary concept detectors are
trained to optimize the event detection, without explicitly optimiz-
ing the individual concept detector accuracy. As a consequence, the
vocabulary concepts do not necessarily have a semantic interpreta-
tion needed to explain the video content. In this paper, we follow
[31,14,58,30] and train concept and event detectors separately.

Identifying a universal vocabulary of concepts suited for repre-
senting events is an important question that has been ignored in
the literature. To the best of our knowledge, all the previous work
on high-level representations for event recognition relies on an
arbitrary set of concepts as the vocabulary. By contrast, we focus
in this paper on characterizing the vocabulary which is most
effective for representing events. We investigate the concept
vocabulary from two perspectives: first by characterizing the com-
position, where we investigate what concepts should be included
in the vocabulary. Second by characterizing the concept detectors,
where we study how to create vocabulary concept detectors that
are most suited for representing events. Before detailing our
research questions, we discuss related work that we consider most
relevant to these two perspectives.

2. Related work

2.1. Characterizing concept vocabulary composition

Our study is inspired by the pioneering work of Hauptmann
et al. [9] who focus on construction of concept vocabularies for
broadcast news video retrieval. They examined how big the con-
cept vocabulary should be and what concepts should be part of
the vocabulary for effective shot retrieval. For this purpose, they
used a pool of concepts to create and evaluate vocabularies under
different circumstances. In their work, the presence and absence of
320 human-annotated concepts was used as the main source for
the investigations. To make the experiments more realistic they
insert noise into the human annotations to simulate the behavior
of automatic concept detectors. They concluded that 5000 detec-
tors with modest quality would be sufficient for general-purpose
broadcast news video retrieval. Regarding the important question
what concepts to include in the vocabulary, Hauptmann et al. [9]
conclude that frequent concepts contribute more to overall news
video retrieval performance than rare concepts, so they are pre-
ferred to be included in the vocabulary. However, it is not clear
whether their conclusion generalizes to event recognition on the
challenging domain of unconstrained web video.

In this paper, we start from the analysis by Hauptmann et al. [9]
and adopt their research questions for event recognition. Our work
is different with respect to the following five aspects. First, we
focus exclusively on events, whereas [9] considers news use cases
like Find shots of US Maps depicting the electoral vote distribution
(blue vs. red state) and Find shots of Refugee Camps with women
and children visible. Second, our domain of study is unconstrained
web video, rather than the highly structured broadcast television
domain. Third, we place special emphasis on the importance of
various concept types in representing events (e.g., objects, scenes,
actions, etc.), rather than considering all concepts equally impor-
tant. Fourth, we evaluate retrieval accuracy on video-level rather
than shot-level. Finally, in our analysis we do not rely on human
concept annotations directly, but instead we use real detector pre-
dictions with varying levels of accuracy per concept. Using the real
detectors to represent videos leads to surprising new findings, as
we will show in the experiments.

2.2. Characterizing vocabulary concept detectors

Automatic detection of concepts in videos is a well studied topic
in computer vision and multimedia for which many algorithms
have been proposed [49,52,10,17]. These include descriptors, e.g.,
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SIFT variations [53] and STIP [20], descriptor quantization strate-
gies, e.g., Bag-of-Words, VLAD [13] and Fisher vector coding [42],
the use of spatial pyramids [21] and various types of kernels to
train classifiers, e.g., RBF, v2 and Histogram Intersection [29,59].
Choosing among these options provides us with a wide range of
concept detectors with varying accuracies and computational
costs. In this paper, we investigate how to create vocabulary con-
cept detectors that are most suited for representing events by con-
sidering detectors of varying accuracy.

The state-of-the-art in video concept detection employs an SVM
classifier to train detectors. SVM predictions are real-valued num-
bers that could be positive or negative. To perform the subsequent
processing steps on the prediction scores, they should be normal-
ized. The general SVM normalization approach in the literature
[31,58,14] is to fit a sigmoid function on top of the prediction
scores to estimate the posterior probabilities of concept presence
[39,23]. The sigmoid function parameters are estimated from a
held out partition of the concept detectors training data. In case
the training and test data distributions differ, a common scenario
when using pre-trained concept detectors for event recognition
in arbitrary video, the detector reliability suffers [56]. Hence, the
normalization should be executed with care. In this paper, we
examine the influence of normalizing the predictions of vocabulary
concept detectors on video event recognition accuracy. For this
purpose, we consider several existing score normalizations [12].

We consider supervised normalization, which relies on labeled
training data to fit the normalization function, e.g., Sigmoid nor-
malization, and unsupervised normalization that does not require
any labeled training data. To circumvent supervision, some unsu-
pervised normalizations make assumptions about the distribution
of scores. Z-score normalization, for example, assumes the scores
have a Gaussian distribution, so the scores are normalized by shift-
ing and scaling by their mean and standard deviation [12]. Others
do not make any assumption about the distribution of scores. For
example the recent W-score normalization, which models the tails
of score distributions by the Extreme Value Theory [43] from sta-
tistics and then uses the models to estimate the concept presence
probabilities. We assess the influence of normalizing detectors in a
concept vocabulary for event recognition.
2.3. Research questions

Our study on the effectiveness of concept vocabularies for video
event recognition, is directed by five research questions. The first
three questions investigate the ideal concept vocabulary composi-
tion, while the last two questions consider the creation of the
vocabulary concept detectors. A preliminary version of this study
has been published in [8]. Here we put more emphasis on charac-
terizing the vocabulary concept detectors. Our five research ques-
tions are:

RQ1 How many concepts to include in the vocabulary?
RQ2 What concept types to include in the vocabulary?
RQ3 Which concepts to include in the vocabulary?
RQ4 How accurate should the concept detectors be?
RQ5 How to normalize the concept detectors?

As humans remember events by the high level concepts they
contain, viz., actors, actions, objects, and locations [46], studying
the characteristics of the concepts that humans use to describe
events could be inspirational for automated event recognition.
Therefore, before describing our experimental protocol to address
the research questions, we first study the vocabulary that humans
use to describe events in videos.
3. Human event description

To analyze the vocabulary that humans use to describe events,
we utilize a set of textual descriptions written by humans to
describe web videos containing events. We process textual
descriptions for 13,265 videos, as provided by the TRECVID 2012
Multimedia Event Detection task corpus [47]. For each web video
in this corpus a textual description is provided that summarizes
the event happening in the video by highlighting its dominant con-
cepts. Fig. 2 illustrates some videos and their corresponding textual
descriptions.

After removing stop words and stemming, we end up with 5433
distinct terms from the 13,265 descriptions making up a human
vocabulary for describing events. Naturally, the frequency of these
terms varies, as also observed by [9]. Most of the terms seldom
occur in event descriptions. Whereas, only a few terms have high
term-frequencies. To be precise, 50% of the terms occur once in
the descriptions and only 2% occurs more than five times. Terms
like man, girl, perform and street appear most frequent, while
bluefish, conductor, Mississippi and Bulgarian are
instances of less frequent terms. Looking into the vocabulary, we
observe that the terms used in human descriptions can be mapped
to five distinct concept types, as typically used in the computer
vision and multimedia literature: objects, actions, scenes, visual
attributes and non-visual concepts. We manually assign each
vocabulary term into one of these five types. After this exercise
we observe that 44% of the terms refer to objects. Moreover, we
note that a considerable number of objects are dedicated to various
types of animals and people; i.e., lion, and teen. About 21% of the
terms depict actions, like walking. Approximately 10% of the
concept types are about scenes, such as kitchen. Visual attributes
cover about 13% of the terms; i.e., white, flat, and dirty. The
remaining 12% of the terms belong to concepts, which are not
visually depictable; i.e., poem, problem, and language. We sum-
marize the statistics of our human event descriptions in Fig. 3.

We observe that when describing video events, humans use
terms with varying generalizations. Some terms are very special-
ized and refer to specific objects; like, salmon, cheesecake and
sand castle. While other terms are more general and refer to a
broader set of concepts; like human, vegetation and outdoor.
We analyze the generalization of the vocabulary terms using their
depth in the WordNet hierarchy [32]. In this hierarchy, the terms
are structured based on their hypernym/hyponym relations, so
the more specialized terms are placed at the deeper levels. Our
study shows that the 5433 vocabulary terms have an average
depth of 9.07 ± 5.29. The high variance in term depths indicates
that the human vocabulary to describe events is composed of both
specific and general terms.

To summarize, analyzing the available event descriptions, we
observe that the vocabulary that humans use to describe events
is composed of a few thousand words, derived from five distinct
concept types: objects, actions, scenes, visual attributes and
non-visual concepts. Moreover, we observe that the vocabulary con-
tains both specific and general concepts. Strengthened by these
observations about the human vocabulary for describing events,
we design five experiments to answer our research questions on
the ideal vocabulary for recognizing events in arbitrary web video.
4. Experimental setup

To answer the research questions raised in Section 2.3, we cre-
ate a rigorous empirical setting. First, we introduce the video data-
sets used to evaluate the event recognition experiments. Then we
explain the pool of concept detectors, which we employ to create



Fig. 2. Examples of videos and human-added textual descriptions, from which we study how humans describe events.
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Fig. 3. We divide the human vocabulary for describing events into concept types
containing objects, actions, scenes, attributes and non-visual concepts. Our analysis
reveals that objects and actions constitute 65% of the human vocabulary when
describing events.
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vocabularies. Finally, the pipeline used for event recognition using
concept vocabularies is presented.
4.1. Video datasets

For the event recognition experiments, we rely on two publicly
available video collections: the TRECVID Multimedia Event Detec-
tion [47] and the Columbia Consumer Video [18] datasets. TREC-
VID MED [47] consists of 13,274 event videos sampled from the
TRECVID 2012 Multimedia Event Detection task corpus, as used
in [8]. This dataset consists of over 400 h of user-generated video
with a large variation in quality, length and content. Moreover, it
comes with ground-truth annotations at video level for 25 real-
world events, including life events, instructional events, sport
events, etc. Following [8], the dataset is divided into a training
set (66%) and a test set (34%).

Columbia CV [18] contains 9317 user-generated videos from
YouTube. This dataset consists of over 210 h of videos in total,
where each video has an average length of 80 s. Moreover, the
dataset contains ground-truth annotations at video level for 20
semantic categories, where 15 of them are events. The other five
categories are objects and scenes, which are excluded from the
dataset in our experiments: ‘‘bird’’, ‘‘cat’’, ‘‘dog’’, ‘‘beach’’ and ‘‘play-
ground’’. We use the training and test set divisions as defined in
[18].

We summarize the training and test set statistics for both video
datasets per event in Table 1.
4.2. Concept vocabulary

To create the vocabularies, we need a comprehensive pool of
concept detectors. We build this pool of detectors using the human
annotated training data from two publicly available resources: the
TRECVID 2012 Semantic Indexing task [47,3] and the ImageNet
Large-Scale Visual Recognition Challenge 2011 [6]. The former
has annotations for 346 semantic concepts on 400,000 keyframes
from web videos. The latter has annotations for 1000 semantic
concepts on 1,300,000 photos. The categories are quite diverse
and include concepts from various types; i.e., object, scene and
action. Note that the training data is different from the TRECVID



Table 1
Number of positive videos in the datasets used in our experiments, split per event. The number of negative videos for each event are around 8800 and 4500 for the TRECVID MED
and the Columbia CV dataset, respectively.

TRECVID MED Columbia CV

Event Train Test Event Train Test

Attempting board trick 98 49 Basketball 182 181
Feeding animal 75 48 Baseball 150 151
Landing fish 71 36 Soccer 161 162
Wedding ceremony 69 35 Ice skating 192 193
Working wood working project 79 40 Skiing 197 196
Birthday party 121 61 Swimming 199 202
Changing vehicle tire 75 37 Biking 136 137
Flash mob gathering 115 58 Graduation 143 145
Getting vehicle unstuck 85 43 Birthday 158 160
Grooming animal 91 46 Wedding reception 129 130
Making sandwich 83 42 Wedding ceremony 111 110
Parade 105 50 Wedding dance 174 176
Parkour 75 38 Music performance 403 403
Repairing appliance 85 43 Non-music performance 345 346
Working sewing project 86 43 Parade 191 194
Attempting bike trick 43 22
Cleaning appliance 43 22
Dog show 43 22
Giving directions location 43 22
Marriage proposal 43 22
Renovating home 43 22
Rock climbing 43 22
Town hall meeting 43 22
Winning race without vehicle 43 22
Working metal crafts project 43 22
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MED videos and their textual descriptions, which are used for
studying the human vocabulary, as discussed in Section 3.

Leveraging the annotated data available in these datasets, we
train 1346 concept detectors in total. We follow the state-of-the-
art for our implementation of the concept detectors. We use den-
sely sampled SIFT, OpponentSIFT and C-SIFT descriptors [53] with
Fisher vector coding [42]. The codebook used has a size of 256
words. As a spatial pyramid we use the full image and three hori-
zontal bars [21]. The feature vectors representing the training
images form the input for a fast linear Support Vector Machine
[45].

As summarized in Fig. 3, the concepts that humans use to
describe events are derived from object, action, scene, attributes
and non-visual concept types. It is hard to imagine that non-visual
concepts can be detected by their visual features, so we exclude
them from our study. With respect to the importance of the actors
in depicting events [46], as well as their high frequency in human
descriptions, we consider people and animal as extra concept types
in our experiments. Inspired by this composition, we divide our
concept pool by manually assigning each concept to one of the
six types. Consequently, we end up with the following concept
types: object containing 706 concepts, action containing 36 con-
cepts, scene containing 135 concepts, people containing 83 con-
cepts, animal containing 338 concepts and attribute containing 48
concepts. Fig. 4 provides an overview of the concept types and
shows example instances.

4.3. Event recognition

In the event recognition experiments, we follow the common
pipeline as used in the literature [31,58,14,30]. Unless noted other-
wise we use the following implementation. We decode the videos
by uniformly extracting one frame every two seconds. Then all the
concept detectors are applied on the extracted frames. After con-
catenating the detector outputs, each frame is represented by a
concept vector. Finally, the frame representations are pooled into
a video level representation by averaging and normalizing as pro-
posed in [43]. On top of this concept vocabulary representation per
video, we use again a linear SVM classifier to train the event
recognizers.

5. Experiments

We perform five experiments to address our research questions.
Each concept vocabulary used in the experiments is evaluated
based on its performance in recognizing events using the datasets,
pipeline and evaluation protocol described in Section 4. Moreover,
the vocabularies are all derived from the concept pool introduced
in Section 4.2.

� Experiment 1: How many concepts to include in the vocabu-
lary? To study this question, we create several vocabularies
with varying sizes and evaluate their performance for recogniz-
ing events. Each vocabulary is made of a random subset of the
concept detectors from the concept pool. To compensate for
possible random effects, all experiments are repeated 50 times
and the results are averaged.
� Experiment 2: What concept types to include in the vocabu-

lary? We look into this question by comparing two types of
vocabularies: (i) single type vocabularies, where all concepts
are derived from one type and (ii) joint type vocabularies, where
concepts are derived from all available concept types. We per-
form this experiment for six kinds of single type vocabularies:
object, action, scene, people, animal and attribute types respec-
tively.
To make the single type and joint type vocabularies more com-
parable, we force the vocabularies to be of equal size. We do so
by randomly selecting the same number of concepts from the
concept pool. All the experiments are repeated 500 times to bal-
ance possible random effects.
� Experiment 3: Which concepts to include in the vocabulary?

In this experiment, we investigate whether the concept vocab-
ulary for event recognition should be made of general concepts,
specific concepts, or their mixture. We manually label and
select two sets of general and specific concepts from the
concept pool. The former contains 149 general concepts, i.e.,



Fig. 4. Random training examples of the 1346 concept detectors included in the overall vocabulary used in our experiments, grouped by their concept type.
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vegetation, human and man made thing, and the latter
contains 619 specific concepts, i.e., religious figure,
emergency vehicle and pickup truck. The rest of the con-
cepts, which are not clearly general or specific, are not involved
in this experiment. Using these sets we compare three types of
vocabularies: (i) a general vocabulary in which all the concepts
are general, (ii) a specific vocabulary in which all the concepts
are specific and (iii) a mixture vocabulary in which the concepts
are randomly selected from both general and specific concept
sets. We repeated this experiment for different vocabulary sizes
and found that the results remained stable. The reported results
are obtained for a vocabulary size of 70, averaged over 500
repetitions.
� Experiment 4: How accurate should the concept detectors

be? We look into this question by decreasing the detector accu-
racies and measuring how the event recognition performance
responds. To decrease the detector accuracies we follow two
different approaches: the first approach trains less sophisticated
concept detectors, and the second approach imposes noise into
the concept prediction scores.
In the first approach, we train four versions of our vocabulary
concept detectors at different levels of sophistication: (i)
100%-3SIFT-SP is the most sophisticated version, where the
detectors are implemented as described in Section 4.2. In this
version, detectors are trained on all available training data. (ii)
30%-3SIFT-SP is similar to 100%-3SIFT-SP, but the detectors are
trained on a random subset of 30% of the available concept
training examples. (iii) 30%-SIFT-SP is similar to 30%-3SIFT-SP,
but does not include any color SIFT and only relies on standard
intensity SIFT. (iv) 30%-SIFT is the same as 30%-SIFT-SP, but with-
out using any spatial pyramid. The four versions of the detectors
are trained for the 346 semantic concepts from the TRECVID
Semantic Indexing dataset.
In the second approach, we make the concept detectors inaccu-
rate by gradually imposing increasing amounts of noise into
their predictions. The output of each concept detector, as an
SVM classifier, is a real-valued number which is supposed to
be larger than +1 and smaller than �1 for positive and negative
samples. However in practice, the SVM only assigns these
values to the samples which are confidently classified, while
other samples are assigned to the unconfident area in between
�1 and 1. Looking into the concept detector predictions, we
observe that most of them are agglomerated in the unconfident
area. The less accurate a concept detector is, the more samples
are assigned to the unconfident area. To simulate the detector
accuracy changes, we randomly select predictions and shift
them towards the center of the unconfident area, which has
the least decision confidence. We gradually increase the
amount of noise and repeat the experiments 50 times to com-
pensate for possible random factors.
� Experiment 5: How to normalize the concept detectors? In

this experiment, we investigate the effect of normalizing con-
cept vocabularies on video event recognition accuracy. We com-
pare the representation obtained from un-normalized
predictions with the representations obtained by applying sev-
eral normalizations as introduced in Section 2.2: supervised,
unsupervised, assumption-based and assumption-free normali-
zation. We apply sigmoid normalization as a supervised method
and compare it with Z-score and W-score, as instances of unsu-
pervised normalizations. Moreover, to study the effect of mak-
ing assumptions on the distribution of concept detector
predictions we compare Z-score, which assumes a Gaussian dis-
tribution, with W-score normalization, which is an assumption-
free method.

Each experiment results in a ranking of the videos from both the
test sets based on the probability that the video contains the event
of interest. As the evaluation criterion for these ranked lists, we
employ average precision (AP) which is in wide use for evaluating
visual retrieval results [47]. We also report the average perfor-
mance over all events as the mean average precision (MAP).

6. Results

6.1. Experiment 1: How many?

As shown in Fig. 5, adding more concept detectors to the
vocabulary improves the event recognition performance. The
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improvement gain is particularly prevalent for small vocabularies.
When increasing the vocabulary from 50 to 300, on TRECVID MED
for example, the MAP increases from 0.125 to 0.221. The improve-
ment is less prevalent when more than 1000 detectors are part of
the vocabulary. When increasing the vocabulary from 1000 to 1346
the absolute MAP improvement is only 0.012 on average. We
observe similar behavior on Columbia CV. We speculate that the
improvement comes from the finer gain partitioning of the event
feature space, which in our case is caused by the concept annota-
tions, but is also achievable along other means [57].

However, by looking into individual event recognition results
we observe that not all events behave similar when increasing
the vocabulary size. For some events, i.e., ‘‘flash mob gathering’’, a
relatively high average precision of 0.34 is obtained by including
only 50 concepts. We observe that there are some concepts within
the vocabulary which are very discriminative for this event i.e.,
group of people, dancing and people marching. In contrast,
for some other events i.e., ‘‘giving directions to a location’’, the event
recognition performance is not improved by increasing the vocab-
ulary size. Apparently, there is no concept in the vocabulary, which
can effectively discriminate this event from others. It demonstrates
that besides the vocabulary size, the relevance of vocabulary con-
cepts should be considered.

The error bars plotted in Fig. 5 indicate the variance in MAPs for
various vocabularies. The variance demonstrates that with the
same number of concept detectors, some vocabularies perform
better than others. In the next two experiments, we study the char-
acteristics of these optimal vocabularies.

Small vocabularies have poor performances in recognizing
events. In addition, their effectiveness could be rapidly increased
by adding a few more concept detectors. So, in general we recom-
mend to include at least 200 concept detectors in the vocabulary.
6.2. Experiment 2: What concept types?

Tables 2 and 3 compare single type and joint type vocabularies
for recognizing events. Comparing the MAPs for both datasets, we
conclude that joint type vocabularies outperform single type
vocabularies for all six concept types on average. It demonstrates
that when creating the vocabulary, it is better to sample the
concept detectors from diverse types. Hence, we need to detect
the objects, people, actions and scenes occurring in the video
jointly to recognize the event properly. In other words, all of the
concept types contribute to the recognition of events.
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Fig. 5. Experiment 1: Increasing the vocabulary size improves the event recognition
performance. This improvement is especially prevalent for small vocabularies
containing less than 200 concept detectors.
When we analyze individual event recognition results, we
observe a few cases exist where a single type vocabulary outper-
forms the joint type because of the tight connection between the
event description and specific concepts. For example, using a single
type vocabulary made of animals only, we achieve a higher average
precision for ‘‘feeding animal’’, ‘‘grooming animal’’ and ‘‘dog show’’
events in comparison to a joint type vocabulary on the TRECVID
MED dataset. Similarly, the ‘‘Ice Skating’’ and ‘‘Skiing’’ events from
the Columbia CV dataset are recognized better by the action
concepts than by the joint vocabulary. Nevertheless, joint type
vocabularies do better than single type vocabularies on average.
Therefore, we consider joint type vocabularies more suited for
general purpose event recognition. The performance difference
between the single type and joint type vocabularies varies per con-
cept type. For some types, like animal, the difference is substantial
(0.158 vs. 0.239 and 0.310 vs. 0.265 on the TRECVID MED and the
Columbia CV dataset respectively), while for others, like action, it is
almost negligible (0.067 vs. 0.076 and 0.197 vs. 0.217 on the
TRECVID MED and the Columbia CV dataset respectively). We attri-
bute the performance difference to at least two reasons. First, our
concept detectors are trained on a global image level, so they
contain a considerable amount of contextual information. Conse-
quently, some single types may contain a wide sample of contex-
tual information including ‘semantic overlap’ from other concept
types. The action pool, for example, may contain action detectors
in varying scenes using various objects. Second, when creating
several concept detectors for a similar type, it is likely that the
detectors will be correlated, especially for the less diverse types,
e.g., People and Animal. To clarify this observation we plot the cor-
relation between concept detectors within a concept type in Fig. 6.
As shown in this figure, the highly correlated concepts tend to be-
long to the same concept type. Therefore, including too many con-
cepts from the same type in a vocabulary, especially from the less
diverse concept types like animal and people, leads to correlated
concepts and should be avoided.

We recommend to make the vocabulary diverse by including
concepts from various concept types and to limit the number of
concepts for the less diverse types.
6.3. Experiment 3: Which concepts?

Tables 4 and 5 compare three types of vocabularies: specific,
general and mixture. According to the MAPs on both datasets,
the general vocabulary performs better than the specific vocabu-
lary, but the mixture vocabulary is in both cases the best overall
performer.

We observe that for a few events a specific vocabulary outper-
forms the others, e.g., ‘‘repairing appliance’’ and ‘‘music performance’’.
For these events, there are some specific and discriminative
concepts available in the vocabulary. For example, the washing

machine, refrigerator and microwave concepts for ‘‘repairing
appliance’’ and music stool, instrumental musician and
acoustic guitar concepts for ‘‘music performance’’. While the
specific concepts may be distinctive for recognizing some events,
the concepts typically occur in only few videos. Hence, they are
absent in most videos and do not contribute much to generic event
recognition. Therefore, if the vocabulary consists of specific con-
cepts only, it will perform well in recognizing the events relevant
to those concepts, but it will perform poor for other events. In con-
trast to the specific concepts, general concepts occur in a large num-
bers of videos. Although these concepts are not discriminative
individually, taking several of them together into a vocabulary
makes the event recognition better than using a specific vocabulary.
Since it is able to simultaneously utilize distinctive specific con-
cepts and general concepts, the best performance is obtained when



Table 2
Experiment 2: Comparison of single type and joint type vocabularies for event recognition on the TRECVID MED dataset. Each column pair compares a single and joint type
vocabulary. To make the vocabularies more comparable within a concept type, we force them to be of equal size. Note that the number of concept detectors (in parenthesis) varies
per concept type, so comparison across concept types should be avoided. The results demonstrate that for all the six concept types, joint type vocabularies outperform single type
vocabularies on average. Best results per type denoted in bold.

Concept type

Event Object(670) Action(34) Scene(128) People(78) Animal(321) Attribute(45)

Single Joint Single Joint Single Joint Single Joint Single Joint Single Joint

Attempting board trick 0.368 0.348 0.056 0.073 0.115 0.169 0.065 0.119 0.120 0.271 0.082 0.079
Feeding animal 0.035 0.044 0.029 0.074 0.024 0.042 0.040 0.041 0.073 0.045 0.055 0.037
Landing fish 0.337 0.423 0.055 0.076 0.157 0.246 0.074 0.182 0.323 0.360 0.054 0.111
Wedding ceremony 0.493 0.520 0.054 0.073 0.139 0.193 0.141 0.119 0.162 0.388 0.040 0.070
Working wood working project 0.194 0.203 0.029 0.040 0.074 0.101 0.118 0.072 0.116 0.167 0.032 0.048
Birthday party 0.264 0.277 0.098 0.099 0.115 0.174 0.138 0.131 0.139 0.239 0.058 0.095
Changing vehicle tire 0.171 0.174 0.034 0.054 0.073 0.105 0.036 0.076 0.054 0.153 0.043 0.052
Flash mob gathering 0.471 0.494 0.257 0.212 0.349 0.304 0.321 0.337 0.415 0.475 0.273 0.251
Getting vehicle unstuck 0.330 0.362 0.092 0.138 0.186 0.268 0.110 0.217 0.294 0.338 0.069 0.154
Grooming animal 0.126 0.149 0.033 0.070 0.129 0.147 0.075 0.080 0.146 0.127 0.075 0.068
Making sandwich 0.178 0.197 0.023 0.061 0.116 0.127 0.050 0.098 0.070 0.176 0.029 0.066
Parade 0.268 0.304 0.169 0.119 0.215 0.219 0.119 0.182 0.126 0.275 0.093 0.141
Parkour 0.398 0.432 0.023 0.063 0.150 0.234 0.034 0.147 0.089 0.356 0.031 0.074
Repairing appliance 0.244 0.323 0.063 0.078 0.192 0.224 0.086 0.126 0.104 0.259 0.100 0.083
Working sewing project 0.295 0.252 0.048 0.075 0.129 0.163 0.107 0.123 0.194 0.238 0.021 0.082
Attempting bike trick 0.480 0.502 0.264 0.076 0.250 0.245 0.037 0.171 0.129 0.392 0.031 0.096
Cleaning appliance 0.079 0.064 0.019 0.039 0.022 0.049 0.021 0.045 0.029 0.058 0.015 0.035
Dog show 0.500 0.534 0.093 0.102 0.423 0.455 0.114 0.236 0.555 0.512 0.116 0.122
Giving directions location 0.029 0.031 0.013 0.027 0.019 0.025 0.011 0.021 0.016 0.029 0.012 0.021
Marriage proposal 0.069 0.075 0.016 0.024 0.030 0.033 0.027 0.023 0.018 0.050 0.010 0.016
Renovating home 0.179 0.232 0.011 0.049 0.071 0.120 0.019 0.078 0.085 0.192 0.016 0.053
Rock climbing 0.347 0.375 0.027 0.092 0.217 0.176 0.101 0.173 0.309 0.322 0.063 0.104
Town hall meeting 0.424 0.456 0.059 0.099 0.270 0.244 0.116 0.172 0.266 0.379 0.158 0.115
Winning race without vehicle 0.139 0.147 0.082 0.061 0.075 0.101 0.069 0.081 0.088 0.138 0.073 0.060
Working metal crafts project 0.052 0.054 0.019 0.032 0.018 0.033 0.020 0.029 0.019 0.038 0.020 0.024

Mean 0.259 0.279 0.067 0.076 0.142 0.168 0.082 0.123 0.158 0.239 0.063 0.082

Table 3
Experiment 2: Comparison of single type and joint type vocabularies for event recognition on the Columbia CV dataset, following the explanation in Table 2. Best results per type
denoted in bold.

Concept type

Event Object(670) Action(34) Scene(128) People(78) Animal(321) Attribute(45)

Single Joint Single Joint Single Joint Single Joint Single Joint Single Joint

Basketball 0.309 0.352 0.258 0.270 0.380 0.426 0.172 0.354 0.322 0.371 0.217 0.305
Baseball 0.159 0.233 0.151 0.217 0.180 0.205 0.172 0.279 0.161 0.233 0.144 0.158
Soccer 0.176 0.221 0.173 0.212 0.233 0.229 0.228 0.267 0.211 0.217 0.197 0.221
Ice Skating 0.275 0.296 0.248 0.200 0.204 0.284 0.264 0.364 0.168 0.296 0.128 0.228
Skiing 0.455 0.499 0.375 0.288 0.294 0.417 0.394 0.404 0.320 0.437 0.189 0.327
Swimming 0.573 0.597 0.220 0.256 0.328 0.405 0.338 0.346 0.542 0.516 0.149 0.288
Biking 0.234 0.201 0.106 0.116 0.183 0.210 0.109 0.162 0.128 0.205 0.096 0.131
Graduation 0.220 0.294 0.095 0.120 0.105 0.147 0.119 0.129 0.170 0.176 0.106 0.118
Birthday 0.295 0.303 0.164 0.228 0.219 0.242 0.217 0.202 0.275 0.286 0.189 0.193
Wedding reception 0.172 0.179 0.126 0.144 0.168 0.162 0.149 0.122 0.166 0.170 0.144 0.133
Wedding ceremony 0.225 0.276 0.172 0.195 0.153 0.239 0.226 0.175 0.130 0.268 0.165 0.194
Wedding dance 0.414 0.433 0.195 0.198 0.375 0.340 0.231 0.286 0.399 0.407 0.218 0.227
Music performance 0.413 0.418 0.231 0.240 0.314 0.338 0.305 0.316 0.375 0.387 0.268 0.280
Non-music performance 0.302 0.305 0.199 0.256 0.244 0.268 0.215 0.247 0.270 0.291 0.214 0.222
Parade 0.388 0.421 0.241 0.320 0.355 0.357 0.293 0.327 0.334 0.396 0.247 0.273

Mean 0.307 0.335 0.197 0.217 0.249 0.285 0.229 0.265 0.265 0.310 0.178 0.220
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the vocabulary contains a mixture of both specific and general
concepts.

We recommend to insert both general and specific concepts
into the event recognition vocabulary.

6.4. Experiment 4: How accurate?

Tables 6 and 7 demonstrate the effect of training less accurate
vocabulary concept detectors on event recognition performance.
Comparing 100%-3SIFT-SP and 30%-3SIFT-SP demonstrates the
effect of using less examples to train vocabulary concept detectors.
It shows that training concept detectors on 30% of the available
training data does not substantially degrade the event recognition
performance. More specifically on the TRECVID MED dataset, the
performance is degraded only by a relative 8% in terms of MAP,
and on the Columbia CV dataset the event recognition performance
is not degraded at all. Comparing 30%-3SIFT-SP and 30%-SIFT-SP
demonstrates the effect of using fewer descriptor types in training
the detectors. It shows that using only SIFT descriptors, rather than
concatenation of SIFT, Opponent-SIFT and C-SIFT descriptors,
degrades the MAP is only by a relative 4% and 5% for the TRECVID
MED and the Columbia CCV datasets, respectively. Furthermore,
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Table 4
Experiment 3: Comparison of specific, general and mixture vocabularies for event
recognition on the TRECVID MED dataset. The results demonstrate that the general
vocabulary outperforms the specific vocabulary on average. The best results are
obtained when the vocabulary consists of both general and specific concepts. Best
results per type denoted in bold.

Event Specific General Mixture

Attempting board trick 0.090 0.108 0.130
Feeding animal 0.041 0.042 0.045
Landing fish 0.113 0.107 0.139
Wedding ceremony 0.071 0.140 0.164
Working wood working project 0.083 0.065 0.073
Birthday party 0.078 0.135 0.138
Changing vehicle tire 0.058 0.062 0.071
Flash mob gathering 0.301 0.284 0.337
Getting vehicle unstuck 0.195 0.246 0.282
Grooming animal 0.064 0.079 0.081
Making sandwich 0.059 0.089 0.119
Parade 0.073 0.203 0.161
Parkour 0.104 0.226 0.210
Repairing appliance 0.111 0.098 0.101
Working sewing project 0.076 0.075 0.082
Attempting bike trick 0.044 0.080 0.090
Cleaning appliance 0.125 0.092 0.123
Dog show 0.219 0.178 0.230
Giving directions location 0.028 0.019 0.053
Marriage proposal 0.013 0.017 0.025
Renovating home 0.023 0.074 0.083
Rock climbing 0.178 0.156 0.194
Town hall meeting 0.064 0.226 0.158
Winning race without vehicle 0.102 0.102 0.117
Working metal crafts project 0.040 0.021 0.036

Mean 0.094 0.117 0.130

Table 5
Experiment 3: Comparison of specific, general and mixture vocabularies for event
recognition on the Columbia CV dataset. Results and conclusions are similar as in
Table 4. Best results per type denoted in bold.

Event Specific General Mixture

Basketball 0.214 0.240 0.290
Baseball 0.130 0.273 0.167
Soccer 0.169 0.259 0.226
Ice skating 0.215 0.204 0.222
Skiing 0.271 0.195 0.307
Swimming 0.324 0.163 0.531
Biking 0.125 0.298 0.177
Graduation 0.097 0.112 0.191
Birthday 0.158 0.256 0.222
Wedding reception 0.112 0.121 0.129
Wedding ceremony 0.124 0.147 0.181
Wedding dance 0.263 0.301 0.316
Music performance 0.313 0.297 0.305
Non-music performance 0.224 0.244 0.255
Parade 0.376 0.370 0.384

Mean 0.208 0.232 0.260
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comparing 30%-SIFT-SP and 30%-SIFT demonstrates that including
spatial pyramids in the detectors does not improve the event rec-
ognition. To summarize, the results demonstrate that the more
sophisticated detectors do not substantially improve the event rec-
ognition performance.

Rather than training less sophisticated detectors we also per-
form the experiment with degrading the concept detector accura-
cies by imposing noise into their prediction scores. As expected,
the results in Fig. 7 demonstrate that event recognition perfor-
mance degrades by adding more noise to the concept detector pre-
dictions in the vocabulary. When the noise amount is rather small,
i.e., up to 30%, the event recognition remains relatively robust. For a
vocabulary containing 1346 concepts, on the TRECVID MED for
example, the relative performance drops by only 3% when the
noise amount is 30%. When 50% noise is inserted into the concept
detection results for the full vocabulary, the performance drops by
11%. It means that even if 50% of the detector predictions are dis-
torted, the event recognition performance will be degraded by only
11%. We observe even more robust behavior against the imposed
noise on the Columbia CV. Interestingly, it implies that improving
the current level of concept detector accuracy has at best a limited
influence on the overall event recognition performance.

What is more, improving the detector accuracies has the same
effect on event recognition performance as adding more detectors
to the vocabulary. If we insert 50% noise into the vocabulary made
of 50 concept detectors, on the TRECVID MED for example, the
event recognition performance is 0.10 in terms of MAP. We may
improve the accuracy by removing the noise again, or by adding
50 more (noisy) concept detectors to the vocabulary. In both cases
the event recognition performance increases to 0.13 in terms of
MAP. We observe similar behavior on Columbia CV. Considering
the wide availability of large amounts of training data for concept
detectors [11], adding more concept detectors seems to be more
straightforward than improving the detector accuracies for event
recognition vocabularies.

Our experiments confirm the observation by Hauptmann et al.
[9]: effective video retrieval can be achieved even when concept
detector accuracies are modest, if sufficiently many concepts are
combined. As a conclusion, we recommend to increase the size of
the concept vocabulary rather than improving the quality of the
individual detectors.

6.5. Experiment 5: How to normalize?

The results of this experiment, are shown in Tables 8 and 9.
Both tables demonstrate that the representation obtained from
un-normalized detector predictions is outperformed by all the nor-
malized representations. More specifically on the TRECVID MED,
normalizing the detector predictions by sigmoid, Z-score, and
W-score normalization improves the event recognition perfor-
mance, in terms of MAP, by 13%, 68% and 89%, where on Columbia
CV the numbers are 27%, 164% and 169%, respectively. This sub-
stantial improvement is achieved because normalization boosts
the event representation by making the predictions of different
concept detectors comparable. Looking into the distribution of
detector predictions, as illustrated in Fig. 8, we observe that differ-
ent detectors generate different predictions distributions, which



Table 6
Experiment 5: Event recognition performance on the TRECVID MED dataset for four versions of vocabulary concept detectors with varying levels of robustness. The vocabularies
include 346 semantic concepts trained on the TRECVID Semantic Indexing task 2012. More sophisticated concept detectors, using more training data, extra image descriptors, and
spatial pyramids do not improve the event recognition performance substantially. Best results per type denoted in bold.

Event 100%-3SIFT-SP 30%-3SIFT-SP 30%-SIFT-SP 30%-SIFT

Attempting board trick 0.217 0.291 0.242 0.254
Feeding animal 0.045 0.042 0.075 0.043
Landing fish 0.231 0.237 0.309 0.374
Wedding ceremony 0.468 0.410 0.405 0.424
Working wood working project 0.118 0.080 0.131 0.101
Birthday party 0.119 0.136 0.148 0.144
Changing vehicle tire 0.156 0.179 0.088 0.084
Flash mob gathering 0.359 0.352 0.347 0.380
Getting vehicle unstuck 0.229 0.264 0.274 0.268
Grooming animal 0.158 0.116 0.212 0.133
Making sandwich 0.187 0.142 0.131 0.139
Parade 0.229 0.270 0.184 0.194
Parkour 0.437 0.344 0.317 0.328
Repairing appliance 0.247 0.206 0.191 0.266
Working sewing project 0.149 0.186 0.134 0.097
Attempting bike trick 0.402 0.379 0.283 0.298
Cleaning appliance 0.042 0.060 0.044 0.034
Dog show 0.417 0.342 0.401 0.341
Giving directions location 0.028 0.043 0.042 0.037
Marriage proposal 0.018 0.024 0.028 0.022
Renovating home 0.117 0.065 0.085 0.125
Rock climbing 0.271 0.178 0.175 0.251
Town hall meeting 0.388 0.265 0.179 0.217
Winning race without vehicle 0.082 0.064 0.104 0.043
Working metal crafts project 0.044 0.055 0.033 0.034

Mean 0.206 0.189 0.182 0.185

Table 7
Experiment 5: Repetition of the experiment explained in Table 6 on the Columbia CV dataset. Best results per type denoted in bold.

Event 100%-3SIFT-SP 30%-3SIFT-SP 30%-SIFT-SP 30%-SIFT

Basketball 0.469 0.532 0.490 0.489
Baseball 0.187 0.177 0.180 0.206
Soccer 0.435 0.467 0.466 0.499
Ice skating 0.473 0.500 0.490 0.456
Skiing 0.494 0.507 0.457 0.485
Swimming 0.527 0.621 0.593 0.559
Biking 0.279 0.296 0.267 0.247
Graduation 0.207 0.185 0.177 0.179
Birthday 0.304 0.309 0.280 0.282
Wedding reception 0.228 0.210 0.198 0.191
Wedding ceremony 0.201 0.198 0.190 0.203
Wedding dance 0.504 0.467 0.481 0.484
Music performance 0.310 0.310 0.303 0.249
Non-music performance 0.277 0.286 0.267 0.264
Parade 0.497 0.494 0.473 0.495

Mean 0.359 0.371 0.354 0.353
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Fig. 7. Experiment 5: Event recognition performance is robust when small amounts of noise are inserted into the concept detectors of the vocabulary. The more accurate the
concept detectors in a vocabulary, the higher the event recognition performance. However, adding more detectors with the same noise levels may be a more straightforward
way to increase event recognition performance.

A. Habibian, C.G.M. Snoek / Computer Vision and Image Understanding 124 (2014) 110–122 119



Table 8
Experiment 6: Comparison of different methods for normalizing concept detector predictions on the TRECVID MED dataset. Normalization improves the event recognition
performance substantially. Best results per type denoted in bold.

Event Un-normalized Sigmoid [39] Z-score [12] W-score [43]

Attempting board trick 0.173 0.186 0.300 0.417
Feeding animal 0.052 0.052 0.031 0.043
Landing fish 0.151 0.228 0.336 0.439
Wedding ceremony 0.113 0.115 0.476 0.569
Working wood working project 0.161 0.166 0.150 0.185
Birthday party 0.174 0.177 0.321 0.323
Changing vehicle tire 0.075 0.089 0.224 0.207
Flash mob gathering 0.400 0.426 0.406 0.500
Getting vehicle unstuck 0.319 0.308 0.396 0.391
Grooming animal 0.105 0.124 0.167 0.166
Making sandwich 0.125 0.130 0.185 0.213
Parade 0.227 0.240 0.236 0.323
Parkour 0.100 0.119 0.399 0.482
Repairing appliance 0.120 0.127 0.396 0.376
Working sewing project 0.203 0.211 0.282 0.351
Attempting bike trick 0.206 0.280 0.387 0.494
Cleaning appliance 0.060 0.049 0.061 0.070
Dog show 0.353 0.424 0.569 0.537
Giving directions location 0.050 0.053 0.053 0.035
Marriage proposal 0.029 0.033 0.032 0.075
Renovating home 0.127 0.135 0.239 0.234
Rock climbing 0.280 0.313 0.330 0.380
Town hall meeting 0.248 0.370 0.422 0.483
Winning race without vehicle 0.096 0.133 0.151 0.112
Working metal crafts project 0.034 0.037 0.137 0.095

Mean 0.159 0.181 0.267 0.300

Table 9
Experiment 6: Repetition of the experiment explained in Table 8 on the Columbia CV dataset. The effect of normalization is even more prevalent. Best results per type denoted in
bold.

Event Un-normalized Sigmoid [39] Z-score [12] W-score [43]

Basketball 0.208 0.384 0.573 0.560
Baseball 0.048 0.076 0.189 0.260
Soccer 0.143 0.241 0.465 0.439
Ice Skating 0.325 0.427 0.507 0.605
Skiing 0.286 0.446 0.584 0.574
Swimming 0.290 0.303 0.671 0.563
Biking 0.105 0.146 0.300 0.421
Graduation 0.102 0.082 0.282 0.273
Birthday 0.126 0.097 0.382 0.320
Wedding reception 0.148 0.117 0.278 0.307
Wedding ceremony 0.059 0.071 0.250 0.366
Wedding dance 0.173 0.128 0.532 0.563
Music performance 0.103 0.146 0.348 0.431
Non-music performance 0.103 0.157 0.326 0.222
Parade 0.142 0.179 0.522 0.421

Mean 0.157 0.200 0.414 0.422
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are not directly comparable. For some detectors a prediction score
might indicate absence of the concept, while for some other
detectors exactly the same score might indicate concept presence.
Normalizing the predictions makes the vocabulary concept detec-
tors more comparable, which leads to a better event recognition.
Comparing the performance of supervised sigmoid normalization,
with unsupervised Z-score and W-score normalizations, we
observe that unsupervised methods are more effective in repre-
senting events. This contradicts the common practice in the litera-
ture to rely on sigmoid normalization e.g., [31,58,14]. As shown in
Table 8 for the TRECVID MED dataset, using supervised score nor-
malization we obtain an event recognition accuracy of 0.181, in
terms of MAP. But with unsupervised normalization we achieve
an MAP of 0.267 and 0.300 for Z-score and W-score, respectively.
Similarly the supervised normalization is substantially outper-
formed by unsupervised normalizations on the Columbia CV data-
set. The lower performance of supervised normalization is mainly
caused by the fact that it assumes the distribution of concept pres-
ence on training and test data are similar. But this assumption is
violated when the concept detectors are applied, as a vocabulary,
on arbitrary videos that could have different concept presence dis-
tribution from the doctors training data. For example, the concept
Military Vehicle might have a high probability of presence in
its training data but it might never be present in the event videos.
The difference in concept presence distributions between concept
detector training data and event videos degrades the normalization
performance, leading to a less effective event representation. As
Table 8 shows, despite its simplicity Z-score normalization per-
forms well in normalizing the detector outputs and achieves an
event recognition accuracy of 0.267 in terms of MAP. We explain
this by the observation that many concept detectors generate
bell-shaped score distributions that could be modeled as Gaussian
distribution. However, this Gaussian assumption is not valid for all
the score distributions. Some concept detector distributions have



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

x 104

Concept Detector Score
Fr

eq
ue

nc
y

Person

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

x 104

Concept Detector Score

Fr
eq

ue
nc

y

Road

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

x 104

Concept Detector Score

Fr
eq

ue
nc

y

Building

−2 −1 0 1 2
0

0.5

1

1.5

2

2.5

x 104

Concept Detector Score

Fr
eq

ue
nc

y

Indoor

Fig. 8. Experiment 6: The distribution of detector predictions generated by four different concept detectors. Since the predictions have different ranges and distributions, they
are not directly comparable. For example the prediction score �0.5 provides strong evidence about concept presence for Road and Building, while the same prediction
indicates the concept absence for Person and Indoor. Hence, the predictions should be normalized before being used for representing events.

A. Habibian, C.G.M. Snoek / Computer Vision and Image Understanding 124 (2014) 110–122 121
high skewness and some others are not even bell-shaped, which
violates the Gaussian distribution assumption, so degrades the
normalization effectiveness. In our experiments, the best event
recognition performance is obtained after applying the unsuper-
vised and assumption-free W-score normalization. We explain it
by two reasons. First, W-score, as an unsupervised normalization,
does not suffer from the possible incompatibilities between the
concept distributions in the concept detector training data and
the event training data. Second, W-score does not make any
assumption about the overall distribution of concept detector
scores, leading to better generalization.

As a conclusion, we recommend to normalize the detector pre-
dictions in a concept vocabulary, preferably by unsupervised and
assumption-free normalizations.

7. Recommendations

In this paper we study concept vocabularies for event recogni-
tion by characterizing the concept vocabulary composition and
vocabulary concept detectors. We consider five research questions
related to the number, the type, the specificity, the quality and the
normalization of the detectors in concept vocabularies. From the
analysis of our experiments using 1346 concept detectors, two
large public video datasets containing 40 events and a general
event recognition pipeline, we arrive at the following five
recommendations:

� Recommendation 1: In general, use vocabularies containing
more than 200 concepts.
� Recommendation 2: Make the vocabulary diverse by including

various concept types: object, action, scene, people, animal and
attributes. However, selecting too many concepts from the same
type, especially the less diverse concept types, leads to corre-
lated concepts and should be avoided.
� Recommendation 3: Include both general and specific concepts

into the vocabulary.
� Recommendation 4: Increase the size of the concept vocabu-
lary rather than improve the quality of the individual detectors.
� Recommendation 5: Normalize the predictions of vocabulary

concept detectors, preferably by an un-supervised and assump-
tion-free normalization.

The recommendations may serve as guidelines to compose the
appropriate concept vocabularies for future endeavors aiming for
recognizing and, ultimately, explaining the semantics of complex
events in video.

Acknowledgments

This research is supported by the STW STORY project, the Dutch
national program COMMIT, and by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Interior
National Business Center contract number D11PC20067. The US
Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright anno-
tation thereon. Disclaimer: The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoI/NBC, or the US Govern-
ment. The authors thank Dennis Koelma and Koen E.A. van de
Sande for providing concept detectors.

References

[1] Z. Akata, F. Perronnin, Z. Harchaoui, C. Schmid, Label-embedding for attribute-
based classification, in: IEEE Conference on Computer Vision and Pattern
Recognition, IEEE, 2013, pp. 819–826.

[2] T. Althoff, H.O. Song, T. Darrell, Detection bank: an object detection based
video representation for multimedia event recognition, in: ACM International
Conference on Multimedia, ACM, 2012, pp. 1065–1068.

[3] S. Ayache, G. Quénot, Video corpus annotation using active learning, in:
European Conference on IR Research, Springer, 2008, pp. 187–198.

[4] N. Babaguchi, Y. Kawai, T. Kitahashi, Event based indexing of broadcasted
sports video by intermodal collaboration, IEEE Trans. Multimedia 4 (1) (2002)
68–75.

http://refhub.elsevier.com/S1077-3142(14)00029-0/h0175
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0175
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0175


122 A. Habibian, C.G.M. Snoek / Computer Vision and Image Understanding 124 (2014) 110–122
[5] L. Ballan, M. Bertini, A. Del Bimbo, L. Seidenari, G. Serra, Event detection and
recognition for semantic annotation of video, Multimedia Tools Appl. 51 (1)
(2011) 279–302.

[6] A. Berg, J. Deng, S. Satheesh, H. Su, F.-F. Li, Imagenet Large Scale Visual
Recognition Challenge 2011. <http://www.image-net.org/challenges/LSVRC/
2011/>.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale
hierarchical image database, in: IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2009, pp. 248–255.

[8] A. Habibian, K.E.A. van de Sande, C.G.M. Snoek, Recommendations for video
event recognition using concept vocabularies, in: ACM International
Conference on Multimedia Retrieval, ACM, 2013, pp. 89–96.

[9] A. Hauptmann, R. Yan, W.-H. Lin, M. Christel, H. Wactlar, Can high-level
concepts fill the semantic gap in video retrieval? A case study with broadcast
news, IEEE Trans. Multimedia 9 (5) (2007) 958–966.

[10] W. Hu, N. Xie, L. Li, X. Zeng, S. Maybank, A survey on visual content-based
video indexing and retrieval, IEEE Trans. Syst., Man, Cyber., Part C: Appl. Rev.
41 (6) (2011) 797–819.

[11] B. Huet, T.-S. Chua, A. Hauptmann, Large-scale multimedia data collections,
IEEE Multimedia 19 (3) (2012) 12–14.

[12] A. Jain, K. Nandakumar, A. Ross, Score normalization in multimodal biometric
systems, Pattern Recognit. 38 (12) (2005) 2270–2285.

[13] H. Jégou, M. Douze, C. Schmid, P. Pérez, Aggregating local descriptors into a
compact image representation, in: IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2010, pp. 3304–3311.

[14] L. Jiang, A. Hauptmann, G. Xiang, Leveraging high-level and low-level features
for multimedia event detection, in: ACM International Conference on
Multimedia, ACM, 2012, pp. 449–458.

[15] Y.-G. Jiang, Super: towards real-time event recognition in internet videos, in:
ACM International Conference on Multimedia Retrieval, ACM, 2012, pp. 7–14.

[16] Y.-G. Jiang, S. Bhattacharya, S.-F. Chang, M. Shah, High-level event recognition
in unconstrained videos, Int. J. Multimedia Inform. Retrieval (2013) 1–29.

[17] Y.-G. Jiang, J. Yang, C.-W. Ngo, A. Hauptmann, Representations of keypoint-
based semantic concept detection: a comprehensive study, IEEE Trans.
Multimedia 12 (1) (2010) 42–53.

[18] Y.-G. Jiang, G. Ye, S.-F. Chang, D. Ellis, A.C. Loui, Consumer video
understanding: a benchmark database and an evaluation of human and
machine performance, in: ACM International Conference on Multimedia
Retrieval, ACM, 2011, pp 29–37.

[19] Y.-G. Jiang, X. Zeng, G. Ye, D. Ellis, S.-F. Chang, S. Bhattacharya, M. Shah,
Columbia-UCF trecvid2010 multimedia event detection: Combining multiple
modalities, contextual concepts, and temporal matching, in: TRECVID
Workshop, TRECVID, 2010.

[20] I. Laptev, On space-time interest points, Int. J. Comput. Vis. 64 (2-3) (2005)
107–123.

[21] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: spatial pyramid
matching for recognizing natural scene categories, in: IEEE Conference on
Computer Vision and Pattern Recognition, vol. 2, 2006, pp. 2169–2178.

[22] L.-J. Li, H. Su, L. Fei-Fei, E.P. Xing, Object bank: a high-level image
representation for scene classification and semantic feature sparsification,
in: Advances in Neural Information Processing Systems, 2010, pp. 1378–1386.

[23] H.-T. Lin, C.-J. Lin, R.C. Weng, A note on Platt’s probabilistic outputs for support
vector machines, Mach. Learn. 68 (3) (2007) 267–276.

[24] J. Liu, Q. Yu, O. Javed, S. Ali, A. Tamrakar, A. Divakaran, H. Cheng, H.S. Sawhney,
Video event recognition using concept attributes, in: IEEE Workshops on
Applications of Computer Vision, IEEE, 2013, pp. 339–346.

[25] X. Liu, R. Troncy, B. Huet, Finding media illustrating events, in: ACM
International Conference on Multimedia Retrieval, ACM, 2011, pp. 58–65.

[26] Z. Ma, Y. Yang, Y. Cai, N. Sebe, A. Hauptmann, Knowledge adaptation for ad hoc
multimedia event detection with few exemplars, in: ACM International
Conference on Multimedia, ACM, 2012.

[27] Z. Ma, Y. Yang, N. Sebe, K. Zheng, A. Hauptmann, Multimedia event detection
using a classifier-specific intermediate representation, IEEE Trans. Multimedia
(2013) 1628–1637.

[28] Z. Ma, Y. Yang, Z. Xu, S. Yan, N. Sebe, A. Hauptmann, Complex event detection
via multi-source video attributes, in: IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2013.

[29] S. Maji, A.C. Berg, J. Malik, Efficient classification for additive kernel SVMs, IEEE
Trans. Pattern Anal. Mach. Intell. 35 (1) (2013) 66–77.

[30] M. Mazloom, E. Gavves, K.E.A. van de Sande, C.G.M. Snoek, Searching
informative concept banks for video event detection, in: ACM International
Conference on Multimedia Retrieval, ACM, 2013, pp. 255–262.

[31] M. Merler, B. Huang, L. Xie, G. Hua, A. Natsev, Semantic model vectors for
complex video event recognition, IEEE Trans. Multimedia 14 (1) (2012) 88–101.

[32] G. Miller et al., Wordnet: a lexical database for English, Commun. ACM 38 (11)
(1995) 39–41.

[33] G.K. Myers, R. Nallapati, J. van Hout, S. Pancoast, R. Nevatia, C. Sun, A. Habibian,
D.C. Koelma, K.E.A. van de Sande, A.W.M. Smeulders, C.G.M. Snoek, Evaluating
multimedia features and fusion for example-based event detection, Mach. Vis.
Appl. 25 (1) (2014) 17–32.

[34] M. Naphade, J.R. Smith, J. Tesic, S.-F. Chang, W. Hsu, L. Kennedy, A. Hauptmann,
J. Curtis, Large-scale concept ontology for multimedia, IEEE Multimedia 13 (3)
(2006) 86–91.

[35] P. Natarajan, S. Wu, S. Vitaladevuni, X. Zhuang, S. Tsakalidis, U. Park, R. Prasad,
Multimodal feature fusion for robust event detection in web videos, in: IEEE
Conference on Computer Vision and Pattern Recognition, IEEE, 2012, pp.
1298–1305.

[36] S. Oh, A. Hoogs, A. Perera, N. Cuntoor, C.-C. Chen, J.T. Lee, S. Mukherjee, J.
Aggarwal, H. Lee, L. Davis, et al., A large-scale benchmark dataset for event
recognition in surveillance video, in: IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2011, pp. 3153–3160.

[37] S. Oh, S. McCloskey, I. Kim, A. Vahdat, K.J. Cannons, H. Hajimirsadeghi, G. Mori,
A.A. Perera, M. Pandey, J.J. Corso, Multimedia event detection with multimodal
feature fusion and temporal concept localization, Mach. Vis. Appl. (2013) 1–21.

[38] D. Oneata, M. Douze, J. Revaud, J. Schwenninger, D. Potapov, H. Wang, Z.
Harchaoui, J. Verbeek, C. Schmid, R. Aly, K. McGuinness, S. Chen, N. O’Connor,
K. Chatfield, O. Parkhi, R. Arandjelovic, A. Zisserman, F. Basura, T. Tuytelaars,
AXES at trecvid 2012: KIS, INS, and MED, in: TRECVID Workshop, 2012.

[39] J. Platt et al., Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods, Adv. Large Margin Classifiers
10 (3) (1999) 61–74.

[40] N. Rasiwasia, N. Vasconcelos, Holistic context models for visual recognition,
IEEE Trans. Pattern Anal. Mach. Intell. 34 (5) (2012) 902–917.

[41] S. Sadanand, J.J. Corso, Action bank: a high-level representation of activity in
video, in: IEEE Conference on Computer Vision and Pattern Recognition, IEEE,
2012, pp. 1234–1241.

[42] J. Sánchez, F. Perronnin, T. Mensink, J. Verbeek, Image classification with the
Fisher vector: Theory and practice, Int. J. Comput. Vis. 105 (3) (2013) 222–245.

[43] W.J. Scheirer, N. Kumar, P.N. Belhumeur, and T.E. Boult. Multi-attribute spaces:
Calibration for attribute fusion and similarity search. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 2933–2940, 2012.

[44] A. Scherp, R. Jain, M. Kankanhalli, V. Mezaris, Modeling, detecting, and
processing events in multimedia, in: ACM International Conference on
Multimedia, ACM, 2010, pp. 1739–1740.

[45] S. Shalev-Shwartz, Y. Singer, N. Srebro, A. Cotter, Pegasos: primal estimated
sub-gradient solver for SVM, Math. Program. 127 (1) (2011) 3–30.

[46] J.M. Shipley, T.F. Zack (Eds.), Understanding Events, Oxford Series in Visual
Cognition, Oxford University Press, 2008.

[47] A.F. Smeaton, P. Over, W. Kraaij, Evaluation campaigns and TRECVID, in: ACM
International Workshop on Multimedia Information Retrieval, 2006, pp. 321–
330.

[48] C.G.M. Snoek, A.W.M. Smeulders, Visual-concept search solved?, Computer 43
(6) (2010) 76–78

[49] C.G.M. Snoek, M. Worring, Concept-based video retrieval, Found. Trends
Inform. Ret. 2 (4) (2008) 215–322.

[50] A. Tamrakar, S. Ali, Q. Yu, J. Liu, O. Javed, A. Divakaran, H. Cheng, H. Sawhney,
Evaluation of low-level features and their combinations for complex event
detection in open source videos, in: IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2012, pp. 3681–3688.

[51] L. Torresani, M. Szummer, A. Fitzgibbon, Efficient object category recognition
using classemes, in: European Conference on Computer Vision, 2010, pp. 776–
789.

[52] A. Ulges, C. Schulze, M. Koch, T.M. Breuel, Learning automatic concept
detectors from online video, Comput. Vis. Image Understand. 114 (4) (2010)
429–438.

[53] K.E.A. van de Sande, T. Gevers, C.G.M. Snoek, Evaluating color descriptors for
object and scene recognition, IEEE Trans. Pattern Anal. Mach. Intell. 32 (9)
(2010) 1582–1596.

[54] J. Varadarajan, R. Emonet, J. Odobez, Bridging the past, present and future:
modeling scene activities from event relationships and global rules, in: IEEE
Conference on Computer Vision and Pattern Recognition, IEEE, 2012, pp. 2096–
2103.

[55] L. Xie, H. Sundaram, M. Campbell, Event mining in multimedia streams, Proc.
IEEE 96 (4) (2008) 623–647.

[56] J. Yang, A. Hauptmann, (un)Reliability of video concept detection, in:
International Conference on Image and Video Retrieval, ACM, 2008, pp. 85–94.

[57] Y. Yang, M. Shah, Complex events detection using data-driven concepts, in:
European Conference on Computer Vision, Springer, 2012, pp. 722–735.

[58] E. Younessian, T. Mitamura, A. Hauptmann, Multimodal knowledge-based
analysis in multimedia event detection, in: ACM International Conference on
Multimedia Retrieval, ACM, 2012, pp. 51–58.

[59] J. Zhang, M. Marszałek, S. Lazebnik, C. Schmid, Local features and kernels for
classification of texture and object categories: a comprehensive study, Int. J.
Comput. Vis. 73 (2) (2007) 213–238.

http://refhub.elsevier.com/S1077-3142(14)00029-0/h0180
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0180
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0180
http://www.image-net.org/challenges/LSVRC/2011/
http://www.image-net.org/challenges/LSVRC/2011/
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0185
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0185
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0185
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0190
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0190
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0190
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0195
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0195
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0200
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0200
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0205
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0205
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0210
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0210
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0210
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0215
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0215
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0220
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0220
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0225
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0225
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0225
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0230
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0230
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0235
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0235
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0240
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0240
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0245
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0245
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0245
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0250
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0250
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0250
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0255
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0255
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0255
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0260
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0260
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0265
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0265
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0270
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0270
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0275
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0275
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0280
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0280
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0280
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0285
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0285
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0285
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0290
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0290
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0295
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0295
http://refhub.elsevier.com/S1077-3142(14)00029-0/h0295

	Recommendations for recognizing video events by concept vocabularies
	1 Introduction
	2 Related work
	2.1 Characterizing concept vocabulary composition
	2.2 Characterizing vocabulary concept detectors
	2.3 Research questions

	3 Human event description
	4 Experimental setup
	4.1 Video datasets
	4.2 Concept vocabulary
	4.3 Event recognition

	5 Experiments
	6 Results
	6.1 Experiment 1: How many?
	6.2 Experiment 2: What concept types?
	6.3 Experiment 3: Which concepts?
	6.4 Experiment 4: How accurate?
	6.5 Experiment 5: How to normalize?

	7 Recommendations
	Acknowledgments
	References


