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Distance-Based Image Classification:
Generalizing to new classes at near-zero cost

Thomas Mensink, Member IEEE, Jakob Verbeek, Member, IEEE,
Florent Perronnin, and Gabriela Csurka

Abstract—We study large-scale image classification methods that can incorporate new classes and training images continuously
over time at negligible cost. To this end we consider two distance-based classifiers, the k-nearest neighbor (k-NN) and nearest
class mean (NCM) classifiers, and introduce a new metric learning approach for the latter. We also introduce an extension of the
NCM classifier to allow for richer class representations. Experiments on the ImageNet 2010 challenge dataset, which contains
over 106 training images of 1,000 classes, show that, surprisingly, the NCM classifier compares favorably to the more flexible
k-NN classifier. Moreover, the NCM performance is comparable to that of linear SVMs which obtain current state-of-the-art
performance. Experimentally we study the generalization performance to classes that were not used to learn the metrics. Using
a metric learned on 1,000 classes, we show results for the ImageNet-10K dataset which contains 10,000 classes, and obtain
performance that is competitive with the current state-of-the-art, while being orders of magnitude faster. Furthermore, we show
how a zero-shot class prior based on the ImageNet hierarchy can improve performance when few training images are available.

Index Terms—Metric Learning, k-Nearest Neighbors Classification, Nearest Class Mean Classification, Large Scale Image
Classification, Transfer Learning, Zero-Shot Learning, Image Retrieval
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1 INTRODUCTION

I N this paper we focus on the problem of large-scale, multi-
class image classification, where the goal is to assign

automatically an image to one class out of a finite set of
alternatives, e.g . the name of the main object appearing in
the image, or a general label like the scene type of the
image. To ensure scalability, often linear classifiers such
as linear SVMs are used [1], [2]. Additionally, to speed-
up classification, dimension reduction techniques could be
used [3], or a hierarchy of classifiers could be learned [4],
[5]. The introduction of the ImageNet dataset [6], which
contains more than 14M manually labeled images of 22K
classes, has provided an important benchmark for large-scale
image classification and annotation algorithms. Recently,
impressive results have been reported on 10,000 or more
classes [1], [3], [7]. A drawback of these methods, however,
is that when images of new categories become available, new
classifiers have to be trained from scratch at a relatively high
computational cost.

Many real-life large-scale datasets are open-ended and
dynamic: new images are continuously added to existing
classes, new classes appear over time, and the semantics
of existing classes might evolve too. Therefore, we are
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interested in distance-based classifiers which enable the
addition of new classes and new images to existing classes
at (near) zero cost. Such methods can be used continuously
as new data becomes available, and additionally alternated
from time to time with a computationally heavier method
to learn a good metric using all available training data. In
particular we consider two distance-based classifiers.

The first is the k-nearest neighbor (k-NN) classifier, which
uses all examples to represent a class, and is a highly non-
linear classifier that has shown competitive performance for
image classification [3], [7], [8], [9]. New images (of new
classes) are simply added to the database, and can be used
for classification without further processing.

The second is the nearest class mean classifier (NCM),
which represents classes by their mean feature vector of its
elements, see e.g . [10]. Contrary to the k-NN classifier, this
is an efficient linear classifier. To incorporate new images (of
new classes), the relevant class means have to be adjusted or
added to the set of class means. In Section 3, we introduce
an extension which uses several prototypes per class, which
allows a trade-off between the model complexity and the
computational cost of classification.

The success of these methods critically depends on the
used distance functions. Therefore, we cast our classifier
learning problem as one of learning a low-rank Mahalanobis
distance which is shared across all classes. The dimension-
ality of the low-rank matrix is used as regularizer, and to
improve computational and storage efficiency.

In this paper we explore several strategies for learning
such a metric. For the NCM classifier, we propose a novel
metric learning algorithm based on multi-class logistic dis-
crimination (NCMML), where a sample from a class is
enforced to be closer to its class mean than to any other
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class mean in the projected space. We show qualitatively and
quantitatively the advantages of our NCMML approach over
the classical Fisher Discriminant Analysis [10]. For k-NN
classification, we rely on the Large Margin Nearest Neighbor
(LMNN) framework [11] and investigate two variations
similar to the ideas presented in [11], [12] that significantly
improve classification performance.

Most of our experiments are conducted on the Im-
ageNet Large Scale Visual Recognition Challenge 2010
(ILSVRC’10) dataset, which consists of 1.2M training im-
ages of 1,000 classes. To apply the proposed metric learn-
ing techniques on such a large-scale dataset, we employ
stochastic gradient descend (SGD) algorithms, which access
only a small fraction of the training data at each iteration
[13]. To allow metric learning on high-dimensional image
features of datasets that are too large to fit in memory, we
use in addition product quantization [14], a data compression
technique that was recently used with success for large-scale
image retrieval [15] and classifier training [1].

As a baseline approach, we follow the winning entry of
the ILSVRC’11 challenge [1]: Fisher vector image repre-
sentations [16] are used to describe images and one-vs-
rest linear SVM classifiers are learned independently for
each class. Surprisingly, we find that the NCM classifier
outperforms the more flexible k-NN classifier. Moreover, the
NCM classifier performs on par with the SVM baseline, and
shows competitive performance on new classes.

This paper extends our earlier work [17], as follows.
First, for the NCM classifier, in Section 3, we compare the
NCMML metric learning to the classic FDA, we introduce
an extension which uses multiple centroids per class, we
explore a different learning objective, and we examine the
critical points of the objective. Second, in Section 4, we
provide more details on the SGD triplet sampling strategy
used for LMNN metric learning, and we present an efficient
gradient evaluation method. Third, we extend the experimen-
tal evaluation with an experiment where NCMML is used
to learn a metric for instance level image retrieval.

The rest of the paper is organized as follows. We first
discuss a selection of related works which are most relevant
to this paper. In Section 3 we introduce the NCM classifier
and the NCMML metric learning approach. In Section 4
we review LMNN metric learning for k-NN classifiers.
We present extensive experimental results in Section 5,
analyzing different aspects of the proposed methods and
comparing them to the current state-of-the-art in different
application settings such as large scale image annotation,
transfer learning and image retrieval. Finally, we present our
conclusions in Section 6.

2 RELATED WORK

In this section we review related work on large-scale image
classification, metric learning, and transfer learning.

2.1 Large-scale image classification
The ImageNet dataset [6] has been a catalyst for research
on large-scale image annotation. The current state-of-the-art

[1], [2] uses efficient linear SVM classifiers trained in a one-
vs-rest manner in combination with high-dimensional bag-
of-words [18], [19] or Fisher vector representations [16].
Besides one-vs-rest training, large-scale ranking-based for-
mulations have also been explored in [3]. Interestingly, their
WSABIE approach performs joint classifier learning and
dimensionality reduction of the image features. Operating
in a lower-dimensional space acts as a regularization during
learning, and also reduces the cost of classifier evaluation
at test time. Our proposed NCM approach also learns low-
dimensional projection matrices but the weight vectors are
constrained to be the projected class means. This allows for
efficient addition of novel classes.

In [3], [7] k-NN classifiers were found to be competitive
with linear SVM classifiers in a very large-scale setting
involving 10,000 or more classes. The drawback of k-NN
classifiers, however, is that they are expensive in storage
and computation, since in principle all training data needs
to be kept in memory and accessed to classify new images.
This holds even more for Naive-Bayes Nearest Neighbor
(NBNN) [9], which does not use descriptor quantization, but
requires storage of all local descriptors of all training images.
The storage issue is also encountered when SVM classifiers
are trained since all training data needs to be processed in
multiple passes. Product quantization (PQ) was introduced
in [15] as a lossy compression mechanism for local SIFT
descriptors in a bag-of-features image retrieval system. It
has been subsequently used to compress bag-of-words and
Fisher vector image representations in the context of image
retrieval [20] and classifier training [1]. We also exploit PQ
encoding in our work to compress high-dimensional image
signatures when learning our metrics.

2.2 Metric learning

There is a large body of literature on metric learning, but
here we limit ourselves to highlighting just several methods
that learn metrics for (image) classification problems. Other
methods aim at learning metrics for verification problems
and essentially learn binary classifiers that threshold the
learned distance to decide whether two images belong to
the same class or not, see e.g . [21], [22], [23]. Yet another
line of work concerns metric learning for ranking problems,
e.g . to address text retrieval tasks as in [24].

Among those methods that learn metrics for classification,
the Large Margin Nearest Neighbor (LMNN) approach of
[11] is specifically designed to support k-NN classification.
It tries to ensure that for each image a predefined set of
target neighbors from the same class are closer than samples
from other classes. Since the cost function is defined over
triplets of points —that can be sampled in an SGD training
procedure— this method can scale to large datasets. The set
of target neighbors is chosen and fixed using the `2 metric in
the original space; this can be problematic as the `2 distance
might be quite different from the optimal metric for image
classification. Therefore, we explore two variants of LMNN
that avoid using such a pre-defined set of target neighbors,
similar to the ideas presented in [12].
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The large margin nearest local mean classifier [25] assigns
a test image to a class based on the distance to the mean of its
nearest neighbors in each class. This method was reported
to outperform LMNN but requires computing all pairwise
distances between training instances and therefore does not
scale well to large datasets. Similarly, TagProp [8] suffers
from the same problem; it consists in assigning weights to
training samples based on their distance to the test instance
and in computing the class prediction by the total weight of
samples of each class in a neighborhood.

Other closely related methods are metric learning by col-
lapsing classes [26] and neighborhood component analysis
[27]. As TagProp, for each data point these define weights
to other data points proportional to the exponent of negative
distance. In [26] the target is to learn a distance that makes
the weights uniform for samples of the same class and
close to zero for other samples. While in [27] the target
is only to ensure that zero weight is assigned to samples
from other classes. These methods also require computing
distances between all pairs of data points. Because of their
poor scaling, we do not consider any of these methods below.

Closely related to our NCMML metric learning approach
for the NCM classifier is the LESS model of [28]. They
learn a diagonal scaling matrix to modify the `2 distance by
rescaling the data dimensions, and include an `1 penalty on
the weights to perform feature selection. However, in their
case, NCM is used to address small sample size problems
in binary classification, i.e . cases where there are fewer
training points (tens to hundreds) than features (thousands).
Our approach differs significantly in that (i) we work in
a multi-class setting and (ii) we learn a low-dimensional
projection which allows efficiency in large-scale.

Another closely related method is the Taxonomy-
embedding method of [29], where a nearest prototype classi-
fier is used in combination with a hierarchical cost function.
Documents are embedded in a lower dimensional space in
which each class is represented by a single prototype. In
contrast to our approach, they use a predefined embedding
of the images and learn low-dimensional classifies, and
therefore their method resembles more to the WSABIE
method of [3].

The Sift-bag kernel of [30] is also related to our method
since it uses an NCM classifier and an `2 distance in a
subspace that is orthogonal to the subspace with maximum
within-class variance. However, it involves computing the
first eigenvectors of the within-class covariance matrix,
which has a computational cost betweenO(D2) andO(D3),
undesirable for high-dimensional feature vectors. Moreover,
this metric is heuristically obtained, rather than directly
optimized for maximum classification performance.

Finally, the image-to-class metric learning method of [31],
learns per class a Mahalanobis metric, which in contrast to
our method cannot generalize to new classes. Besides, it uses
the idea of NBNN [9], and therefore requires the storage of
all local descriptors of all images, which is impractical for
the large-scale datasets used in this paper.

2.3 Transfer learning

The term transfer learning is used to refer to methods that
share information across classes during learning. Examples
of transfer learning in computer vision include the use
of part-based or attribute class representations. Part-based
object recognition models [32] define an object as a spatial
constellation of parts, and share the part detectors across
different classes. Attribute-based models [33] characterize
a category (e.g . a certain animal) by a combination of
attributes (e.g . is yellow, has stripes, is carnivore), and share
the attribute classifiers across classes. Other approaches
include biasing the weight vector learned for a new class
towards the weight vectors of classes that have already been
trained [34]. Zero-shot learning [35] is an extreme case of
transfer learning where for a new class no training instances
are available but a description is provided in terms of
parts, attributes, or other relations to already learned classes.
Transfer learning is related to multi-task learning, where
the goal is to leverage the commonalities between several
distinct but related classification problems, or classifiers
learned for one type of images (e.g . ImageNet) are adapted to
a new domain (e.g . imagery obtained from a robot camera),
see e.g . [36], [37].

In [38] various transfer learning methods were evalu-
ated in a large-scale setting using the ILSVRC’10 dataset.
They found transfer learning methods to have little added
value when training images are available for all classes.
In contrast, transfer learning was found to be effective in
a zero-shot learning setting, where classifiers were trained
for 800 classes, and performance was tested in a 200-way
classification across the held-out classes.

In this paper we also aim at transfer learning, in the sense
that we allow only a trivial amount of processing on the
data of new classes (storing in a database, or averaging),
and rely on a metric that was trained on other classes to
recognize the new ones. In contrast to most works on transfer
learning, we do not use any intermediate representation in
terms of parts or attributes, nor do we train classifiers for
the new classes. While also considering zero-shot learning,
we further evaluate performance when combining a zero-
shot model inspired by [38] with progressively more training
images per class, from one up to thousands. We find that the
zero-shot model provides an effective prior when a small
amount of training data is available.

3 THE NEAREST CLASS MEAN CLASSIFIER

The nearest class mean (NCM) classifier assigns an image
to the class c∗ ∈ {1, . . . , C} with the closest mean:

c∗ = argmin
c∈{1,...,C}

d(x,µc), (1)

µc =
1

Nc

∑
i:yi=c

xi, (2)

where d(x,µc) is the Euclidean distance between an image
x and the class mean µc, and yi is the ground-truth label of
image i, and Nc is the number of training images in class c.
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Next, we introduce our NCM metric learning approach,
and its relations to existing models. Then, we present an ex-
tension to use multiple centroids per class, which transforms
the NCM into a non-linear classifier. Finally, we explore
some variants of the objective which allow for smaller SGD
batch sizes, and we give some insights in the critical points
of the objective function.

3.1 Metric learning for the NCM classifier
In this section we introduce our metric learning approach,
which we will refer to as “nearest class mean metric learn-
ing” (NCMML). We replace the Euclidean distance in NCM
by a learned (squared) Mahalanobis distance:

dM (x,x′) = (x− x′)>M(x− x′), (3)

where x and x′ are D dimensional vectors, and M is
a positive definite matrix. We focus on low-rank metrics
with M = W>W and W ∈ IRd×D, where d ≤ D
acts as regularizer and improves efficiency for computation
and storage. The Mahalanobis distance induced by W is
equivalent to the squared `2 distance after linear projection
of the feature vectors on the rows of W :

dW (x,x′) = (x− x′)>W>W (x− x′)
= ‖Wx−Wx′ ‖22 . (4)

We do not consider using the more general formulation
of M = W>W + S, where S is a diagonal matrix, as
in [24]. While this formulation requires only D additional
parameters to estimate, it still requires computing distances
in the original high-dimensional space. This is costly for
the dense and high-dimensional (4K-64K) Fisher vectors
representations we use in our experiments, see Section 5.

We formulate the NCM classifier using a probabilistic
model based on multi-class logistic regression and define
the probability for a class c given an feature vector x as:

p(c|x) =
exp

(
− 1

2dW (x,µc)
)∑C

c′=1 exp
(
− 1

2dW (x,µc′)
) . (5)

This definition may also be interpreted as giving the pos-
terior probabilities of a generative model where p(xi|c) =
N (xi;µc,Σ), is a Gaussian with meanµc, and a covariance
matrix Σ =

(
W>W

)−1
, which is shared across all classes1.

The class probabilities p(c) are set to be uniform over all
classes. Later, in Eq. (21), we formulate an NCM classifier
with non-uniform class probabilities.

To learn the projection matrix W , we maximize the log-
likelihood of the correct predictions of the training images:

L =
1

N

N∑
i=1

ln p(yi|xi). (6)

The gradient of the NCMML objective Eq. (6) is:

∇WL =
1

N

N∑
i=1

C∑
c=1

αic W zicz
>
ic, (7)

1. Strictly speaking the covariance matrix is not properly defined as the
low-rank matrix W>W is non-invertible.

Fig. 1: Illustration to compare FDA (left) and NCMML
(right), the obtained projection direction is indicated by the
gray line on which also the projected samples are plotted.
For FDA the result is clearly suboptimal since the blue
and green classes are collapsed in the projected space.
The proposed NCMML method finds a projection direction
which separates the classes reasonably well.

where αic = p(c|xi)− [[yi = c]], zic = µc−xi, and we use
the Iverson brackets [[·]] to denote the indicator function that
equals one if its argument is true and zero otherwise.

Although not included above for clarity, the terms in
the log-likelihood in Eq. (6) could be weighted in cases
where the class distributions in the training data are not
representative for those when the learned model is applied.

3.2 Relation to existing linear classifiers

First we compare the NCMML objective with the classic
Fisher Discriminant Analysis (FDA) [10]. The objective of
FDA is to find a projection matrix W that maximizes the
ratio of between-class variance to within-class variance:

LFDA = tr

(
WSBW

>

WSWW>

)
, (8)

where SB =
∑C

c=1
Nc

N (µ − µc)(µ − µc)
> is the weighted

covariance matrix of the class centers (µ being the data
center), and SW =

∑C
c=1

Nc

N Σc is the weighted sum of
within class covariance matrices Σc, see e.g . [10] for details.

In the case where the within class covariance for each
class equals the identity matrix, the FDA objective seeks
the direction of maximum variance in SB, i.e . it performs
a PCA projection on the class means. To illustrate this, we
show an example of a two-dimensional problem with three
classes in Figure 1. In contrast, our NCMML method aims
at separating the classes which are nearby in the projected
space, so as to ensure correct predictions. The resulting
projection separates the three classes reasonably well.

To relate the NCM classifier to other linear classifiers, we
represent them using the class specific score functions:

f(c,x) = w>c x+ bc, (9)

which are used to assign samples to the class with maximum
score. NCM can be recognized as a linear classifier by
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defining fNCM with bias and weight vectors given by:

bc = − 1
2 ‖Wµc ‖22, (10)

wc = W>Wµc. (11)

This is because − 1
2dW (x,µc) in Eq. (5) can be written as:

− 1
2‖Wx‖

2
2 − 1

2‖Wµc ‖22 + x>W>Wµc,

where the first term is independent of the class c and
therefore irrelevant for classification.

These definitions allows us to relate the NCM classifier
to other linear methods. For example, we obtain standard
multi-class logistic regression, if the restrictions on bc and
wc are removed. Note that these are precisely the restrictions
that allow us adding new classes at near-zero cost, since the
class specific parameters bc and wc are defined by just the
class means µc and the class-independent projection W .

In WSABIE [3] fWSABIE is defined using bc = 0 and,

wc = W>vc, (12)

where W ∈ IRd×D is also a low-rank projection matrix
shared between all classes, and vc is a class specific weight
vector of dimensionality d, both learned from data. This is
similar to NCM if we set vc = Wµc. As in multiclass
logistic regression, however, for WSABIE the vc need to be
learned from scratch for new classes.

The NCM classifier can also be related to the solution
of ridge-regression (RR, or regularized linear least-squares
regression), where the parameters bc and wc are learned by
optimizing the squared loss:

LRR =
1

N

∑
i

(
fRR(c,xi)− yic

)2
+ λ ‖wc ‖22, (13)

where λ acts as regularizer, and where yic = 1, if image i
belongs to class c, and yic = 0 otherwise. The loss LRR can
be minimized in closed form and leads to:

bc =
Nc

N
, and wc =

Nc

N
µ>c (Σ + λI)−1, (14)

where Σ is the (class-independent) data covariance matrix.
Just like the NCM classifier, the RR classifier also allows
to add new classes at low cost, since the class specific
parameters can be found from the class means and counts
once the data covariance matrix Σ has been estimated.
Moreover, if Nc is equal for all classes, RR is similar to
NCM with W set such that W>W = (Σ + λI)−1.

Finally, the Taxonomy-embedding [29] scores a class by:

fTAX(c,x) = v>c W
>Wx− 1

2 ‖vc ‖
2
2, (15)

where W ∈ IRC×D projects the data to a C dimensional
space, and is set using a closed-form solution based on
ridge-regression. The class-specific weight vectors vc are
learned from the data. Therefore, this method relates to the
WSABIE method; it learns the classifier in low-dimensional
space (if C < D), but in this case the projection matrix W
is given in closed-form. It also shares the disadvantage of
the WSABIE method: it cannot generalize to novel classes
without retraining.

3.3 Non-linear NCM with multiple class centroids

In this section we extend the NCM classifier to allow for
more flexible class representations, which result in non-
linear classification. The idea is to represent each class by a
set of centroids, instead of only the class mean.

Assume that we have a set of k centroids {mcj}kj=1 for
each class c. The posterior probability for class c can be
defined as:

p(c|x) =

k∑
j=1

p(mcj |x), (16)

p(mcj |x) =
1

Z
exp

(
− 1

2dW (x,mcj)
)
, (17)

where p(mcj |x) denotes the posterior of a centroid mcj ,
and Z =

∑
c

∑
j exp

(
− 1

2dW (x,mcj)
)

is the normalizer.
The value k offers a transition between NCM (k = 1),

and a weighted k-NN (k equals all images per class), where
the weight of each neighbor is defined by the soft-min of its
distance, c.f . Eq. (17). This is similar to TagProp [8], used
for multi-label image annotation.

This model also corresponds to a generative model, where
the probability for a feature vectorx, to be generated by class
c, is given by a Gaussian mixture distribution:

p(x|c) =

k∑
j=1

πcj N (xi;mcj ,Σ) , (18)

with equal mixing weights πcj = 1/k, and the covariance
matrix Σ shared among all classes. We refer to this method
as the nearest class multiple centroids (NCMC) classifier.
A similar model was independently developed recently for
image retrieval in [39]. Their objective, however, is to
discriminate between different senses of a textual query, and
they use a latent model to select the sense of a query.

To learn the projection matrix W , we again maximize
the log-likelihood of correct classification, for which the
gradient w.r.t. W in this case is given by:

∇WL =
1

N

∑
i,c,j

αicj W zicjz
>
icj , (19)

where zicj = mcj − xi, and

αicj = p(mcj |xi)− [[c = yi]]
p(mcj |xi)∑
j′ p(mcj′ |xi)

. (20)

To obtain the centroids of each class, we apply k-means
clustering on the features x belonging to that class, using
the `2 distance. Instead of using a fixed set of class means, it
could be advantageous to iterate the k-means clustering and
the learning of the projection matrix W . Such a strategy al-
lows the set of class centroids to represent more precisely the
distribution of the images in the projected space, and might
further improve the classification performance. However the
experimental validation of such a strategy falls beyond the
scope of this paper.
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TABLE 1: Comparison of complexity of the considered
alternatives to compute the class probabilities p(c|x).

Distances in D dimensions O
(
dD(mC) +mC(d+D)

)
Distances in d dimensions O

(
dD(m+ C) +mC(d)

)
Dot product formulation O

(
dD(m) +mC(D)

)

3.4 Alternative objective for small SGD batches

Computing the gradients for NCMML in Eq. (7) and NCMC
in Eq. (19) is relatively expensive, regardless of the number
of m samples used per SGD iteration. The cost of this
computation is dominated by the computation of the squared
distances dW (x,µc), required to compute the m × C
probabilities p(c|x) for C classes in the SGD update. To
compute these distances we have two options. First, we
can compute the m × C difference vectors (x − µc),
project these on the d × D matrix W , and compute the
norms of the projected difference vectors, at a total cost of
O
(
dD(mC) + mC(d + D)

)
. Second, we can first project

both the m data vectors and C class centers, and then
compute distances in the low dimensional space, at a total
cost of O

(
dD(m+C)+mC(d)

)
. Note that the latter option

has a lower complexity, but still requires projecting all class
centers at a costO(dDC), which will be the dominating cost
when using small SGD batches with m � C. Therefore,
in practice we are limited to using SGD batch sizes with
m ≈ C = 1, 000 samples.

In order to accommodate for fast SGD updates based on
smaller batch sizes, we replace the Euclidean distance in
Eq. (5) by the negative dot-product plus a class specific bias
sc. The probability for class c is now given by:

p(c|xi) =
1

Z
exp

(
x>i W

>Wµc + sc

)
, (21)

where Z denotes the normalizer. The objective is still
to maximize the log-likelihood of Eq. (6). The efficiency
gain stems from the fact that we can avoid projecting the
class centers on W , by twice projecting the data vectors:
x̂i = x>i W

>W , and then computing dot-products in high
dimensional space 〈x̂i,µc〉. For a batch of m images, the
first step costs O(mDd), and the latter O(mCD), resulting
in a complexity of O

(
dD(m) +mC(D)

)
. This complexity

scales linearly with m, and is lower for small batches with
m ≤ d, since in that case it is more costly to project the class
vectors on W than on the double-projected data vectors x̂i.
For clarity, we summarize the complexity of the different
alternatives we considered in Table 1.

A potential disadvantage of this approach is that we
need to determine the class-specific bias sc when data of
a new class becomes available, which would require more
training than just computing the data mean for the new class.
However, we expect a strong correlation between the learned
bias sc and the bias based on the norm of the projected mean
bc, as shown in Figure 2.

Similarly, as for Eq. (5), we could interpret the class prob-
abilities in Eq. (21) as being generated by a generative model
where the class-conditional models p(x|c) are Gaussian with
a shared covariance matrix. In this interpretation, the class
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L
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Fig. 2: The learned class-specific biases sc and the norm of
the projected means bc are strongly correlated.

specific biases sc define class prior probabilities given by
p(c) ∝ exp

(
1
2 ‖Wµc ‖22 +sc

)
. Therefore, a uniform prior

is obtained by setting sc = − 1
2 ‖Wµc ‖22= bc. A uniform

prior is reasonable for the ILSVRC’10 data, since the classes
are near uniform in the training and test data.

Experimentally, we find that using this formulation yields
comparable results as obtained with the Euclidean distance
of Eq. (5). For example, on ILSVRC’10 with 4K dimen-
sional features and 128 dimensional projection matrix W ,
the classification error decreases from 39.2% when using sc
to 39.0% when using bc at evaluation time, c.f . Table 4. Thus,
we can use the metric learned using Eq. (21), in combination
with the norm of the projected mean as bias, which is easily
computed for new classes.

3.5 Critical points of low rank metric learning
We use a low-rank Mahalanobis distance where M =
W>W , as a way to reduce the number of parameters and
to gain in computational efficiency. Learning a full Maha-
lanobis distance matrix M , however, has the advantage that
the distance is linear in M and that the multi-class logistic
regression objective of Eq. (6) is therefore concave in M ,
see details in [40, page 74]. Using a low-rank formulation,
on the other hand, yields a distance which is quadratic in
the parameters W , therefore the objective function is no
longer concave. In this section we investigate the critical-
points of the low-rank formulation by analyzing W when
the optimization reaches a (local) minimum, and considering
the gradient for the corresponding full matrix M = W>W .

The gradient of the objective of Eq. (6) w.r.t. to M is:

∇ML =
1

N

∑
i,c

αic zicz
>
ic ≡ H, (22)

where αic = [[yi = c]]− p(c|xi), and zic = µc − xi. Then
Eq. (7) follows from the matrix chain rule, and we re-define
∇WL ≡ 2WH . From the gradient w.r.t. W we immediately
observe that W = 0 leads to a degenerate case to obtain a
zero gradient, and similarly for each row of W . Below, we
concentrate on the non-degenerate case.

We observe that H is a symmetric matrix, containing the
difference of two positive definite matrices. In the analysis
we use the eigenvalue decomposition of H = V ΛV >, with
the columns of V being the eigenvectors, and the eigenvalues
are on the diagonal of Λ.
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We can now express the gradient for W as

∇WL = 2WV ΛV > ≡ G. (23)

Thus the gradient of the i-th row of W , which we denote
by gi, is a linear combination of the eigenvectors of H:

gi ≡
∑
j

λj〈wi,vj〉vj , (24)

where wi and vj denote the i-th row of W and the j-th
column of V respectively. Thus an SGD gradient update
will drive a row of W towards the eigenvectors of H that (i)
have a large positive eigenvalue, and (ii) are most aligned
with that row of W . This is intuitive, since we would expect
the low-rank formulation to focus on the most significant
directions of the full-rank metric.

Moreover, the expression for the gradient in Eq. (24)
shows that at a critical pointW ∗ of the objective function, all
linear combination coefficients are zero: ∀i,j : λj〈w∗i ,vj〉 =
0. This indicates that at the critical point, for each row w∗i
and each eigenvector vj it holds that eitherw∗i is orthogonal
to vj , or that vj has a zero associated eigenvalue, i.e . λj = 0.
Thus, at a critical point W ∗, the corresponding gradient for
the full rank formulation at that point, withM∗ = W ∗>W ∗,
is zero in the subspace spanned by W ∗.

Given this analysis, we believe it is unlikely to attain
poor local minima using the low rank formulation. Indeed,
the gradient updates for W are aligned with the most
important directions of the corresponding full-rank gradient,
and at convergence the full-rank gradient is zero in the
subspace spanned by W . To confirm this, we have also
experimentally investigated this by training several times
with different random initializations of W . We observe that
the classification performance differs at most ±0.1% on any
of the error measures used in Section 5, and that the number
of SGD iterations selected by the early stopping procedure
are of the same order.

4 K-NN METRIC LEARNING
We compare the NCM classifier to the k-NN classifier,
a frequently used distance based classifier. For successful
k-NN classification, the majority of the nearest neighbors
should be of the same class. This is reflected in the LMNN
metric learning objective [11], which is defined over triplets
consisting of a query image q, an image p from the same
class, and an image n from another class:

Lqpn =
[
1 + dW (xq,xp)− dW (xq,xn)

]
+
, (25)

where [z]+ = max(0, z). The hinge-loss for a triplet is zero
if the negative image n is at least one distance unit farther
from the query q than the positive image p, and the loss
is positive otherwise. The final learning objective sums the
losses over all triplets:

LLMNN =
∑
q

∑
p∈Pq

∑
n∈Nq

Lqpn, (26)

where Pq and Nq denote a predefined set of positive and
negative images for each query image q. Also in this case
we could weight the terms in the loss function to account
for non-representative class proportions in the training data.

Choice of target neighbors.
In the basic version of LMNN the set of targets Pq for a
query q is set to the query’s k nearest neighbors from the
same class, using the `2 distance. The rationale is that if
we ensure that these targets are closer than the instances of
the other classes, then the k-NN classification will succeed.
However, this implicitly assumes that the `2-targets will also
be the closest points from the same class using the learned
metric, which in practice might not be the case. Therefore,
we consider two alternatives to using a fixed set of target
neighbors.

First, we consider Pq to contain all images of the same
class as q, hence the selection is independent on the metric.
This is similar to [12] where the same type of loss was used to
learn image similarity defined as the scalar product between
feature vectors after a learned linear projection.

Second, we consider dynamically updating Pq to contain
the k images of the same class that are closest to q using the
current metricW , hence different target neighbors can be se-
lected depending on the metric. This method corresponds to
minimizing the loss function also with respect to the choice
of Pq . A similar approach was proposed in [11], where every
T iterations Pq is redefined using target neighbors according
to the current metric.

Triplet sampling strategy.
Here, we describe a sampling strategy which obtains the
maximal number of triplets from m images selected per
SGD iteration. Using a small m is advantageous since the
cost of the gradient evaluation is in large part determined by
computing the projections Wx of the images, and, if used,
the cost of decompressing the PQ encoded signatures.

To generate triplets, we first select uniformly at random
a class c that will provide the query and positive images.
When Pq is set to contain all images of the same class, we
sample 2

3m images from the class c, and 1
3m images across

other classes. In this manner we can construct about 4
27m

3

triplets, i.e . about 4 million triplets for m = 300 used in our
experiments, see our technical report [41] for more details.

For other choices of Pq we do the following:
• For a fixed set of target neighbors, we still sample

1
3m negative images, and take as many query images
together with their target neighbors until we obtain 2

3m
images allocated for the positive class.

• For a dynamic set of target neighbors we simply
select the closest neighbors among the 2

3m sampled
positive images using the current metric W . Although
approximate, this avoids computing the dynamic target
neighbors among all the images in the positive class.

Efficient gradient evaluation.
For either choice of the target set Pq , the gradient can be
computed without explicitly iterating over all triplets, by
sorting the distances w.r.t. query images. The sub-gradient
of the loss of a triplet is given by:

∇WLqpn = [[Lqpn > 0]] 2 W
(
xqpx

>
qp − xqnx

>
qn

)
, (27)
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1) Sort distances w.r.t. q in ascending order; for positive
images use dW (xq,xp) + 1 to account for the margin.

2) Accumulate, from start to end, the number of negative
images up to each position.

3) Accumulate, from end to start, the number of positive
images after each position.

4) Read-off the number of hinge-loss generating triplets of
image p or n.

Algorithm 1: Compute coefficients Aqn and Aqp.

where xqp = xq − xp, xqn = xq − xn. We can write the
gradient w.r.t. LLMNN in matrix form as:

∇WLLMNN = 2 W XAX>, (28)

where X contains the m feature vectors used in an SGD
iteration, and A is a coefficient matrix. This shows that once
A is available, the gradient can be computed in time O(m2),
even if a much larger number of triplets is used.

When Pq contains all images of the same class, A can be
computed from the number of loss generating triplets:

Aqn = 2
∑
p

[[Lqpn > 0]], Apq = −2
∑
n

[[Lqpn > 0]].

Once Aqp and Aqn are known, the coefficients Aqq , App,
and Ann are obtained from the former by summing, e.g .
Aqq =

∑
pAqp −

∑
nAqn, see [41] for more details.

In Algorithm 1 we describe how to efficiently compute
the coefficients. The same algorithm can be applied when
using a small set of fixed, or dynamic target neighbors. In
particular, the sorted list allows to dynamically determine
the target neighbors at a negligible additional cost. In this
case only the selected target neighbors obtain non-zero
coefficients, and we only accumulate the number of target
neighbors after each position in step 3 of the algorithm.

The cost of this algorithm is O(m logm) per query, and
thus O(m2 logm) when using O(m) query images per
iteration. This is significantly faster than explicitly looping
over all O(m3) triplets.

Note that while this algorithm enables fast computation
of the sub-gradient of the loss, the value of the loss itself
cannot be determined using this method. However, this is not
a problem when using an SGD approach, as it only requires
gradient evaluations, not function evaluations.

5 EXPERIMENTAL EVALUATION

In this section we experimentally validate our models de-
scribed in the previous sections. We first describe the dataset
and evaluation measures used in our experiments, followed
by the presentation of the experimental results.

5.1 Experimental Setup and Baseline Approach

Dataset: In most of our experiments we use the
dataset of the ImageNet Large Scale Visual Recognition
2010 challenge (ILSVRC’10)2. This dataset contains 1.2M
training images of 1,000 object classes (with between 660

2. See http://www.image-net.org/challenges/LSVRC/2010/index

to 3047 images per class), a validation set of 50K images
(50 per class), and a test set of 150K images (150 per class).

In some of the experiments, we use the ImageNet-10K
dataset introduced in [7], which consists of 10,184 classes
from the nodes of the ImageNet hierarchy with more than
200 images. We follow [1] and use 4.5M images as training
set, 50K as validation set and the rest as test set.

Image representation: We represent each image with
a Fisher vector (FV) [16] computed over densely extracted
128 dimensional SIFT descriptors [42] and 96 dimensional
local color features [43], both projected with PCA to 64
dimensions. FVs are extracted and normalized separately
for both channels and then combined by concatenating the
two feature vectors. We do not make use of spatial pyramids.
In our experiments we use FVs extracted using a vocabulary
of either 16 or 256 Gaussians. For 16 Gaussians, this leads
to a 4K dimensional feature vector, which requires about
20GB for the 1.2M training set (using 4-byte floating point
arithmetic). This fits into the RAM of our 32GB servers.

For 256 Gaussians, the FVs are 16 times larger, i.e . 64K
dimensional, which would require 320GB of memory. To fit
the data in memory, we compress the feature vectors using
product quantization [14], [15]. In a nutshell, it consists
in splitting the high-dimensional vector into small sub-
vectors, and vector quantizing each sub-vector indepen-
dently. We compress the dataset to approximately 10GB
using 8-dimensional sub-vectors and 256 centroids per sub-
quantizer, which allows storing each sub-quantizer index in
a single byte, combined with a sparse encoding of the zero
sub-vectors, see [1]. In each iteration of SGD learning, we
decompress the features of a limited number of images, and
use these (lossy) reconstructions to compute the gradient.

Evaluation measures: We report the average top-1
and top-5 flat error used in the ILSVRC’10 challenge. The
flat error is one if the ground-truth label does not correspond
to the top-1 label with highest score (or any of the top-5
labels), and zero otherwise. The motivation for the top-5
error is to allow an algorithm to identify multiple objects
in an image and not being penalized if one of the objects
identified was in fact present but not included in the ground
truth of the image which contains only a single object
category per image.

Baseline approach: For our baseline, we follow the
state-of-the-art approach of [44] and learn weighed one-vs-
rest SVMs with SGD, where the number of negative images
in each iteration is sampled proportional to the number of
positive images for that class. The proportion parameter
is cross validated on the validation set. The results of the
baseline can be found in Table 4 and Table 7. We observe that
the performance when using the 64K dimensional features
(28.0) is significantly better than the 4K ones (38.2), despite
the lossy PQ compression.

In Table 4 the performance using the 64K features is
slightly better than the ILSVRC’10 challenge winners [2]
(28.0 vs. 28.2 flat top-5 error), and close to the results of [1]
(25.7 flat top-5 error), wherein an image representation of
more than 1M dimensions was used. In Table 7 our baseline
shows state-of-the-art performance on ImageNet-10K when

http://www.image-net.org/challenges/LSVRC/2010/index
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TABLE 2: Complexity comparison of classifier training.

Training times in CPU days
4K 64K

Method 128 256 512 Full 128 256 512 Full

SVM 2.7 21.3
NCM 1.9 4.5 12.1 32.9 80.3 141.2
k-NN 4.6 5.1 10.1

Number of images seen during training
C I T Total

SVM 1,000 65 120k 7,800M
NCM 1 1,000 500k 500M
k-NN 1 300 2M 600M

using the 64K features, obtaining 78.1 vs 81.9 flat top-1
error [44]. We believe that this is due to the use of the color
features, in addition to the SIFT features used in [44].

SGD training and early stopping: To learn the
projection matrix W , we use SGD training and sample
at each iteration a fixed number of m training images to
estimate the gradient. Following [24], we use a fixed learning
rate and do not include an explicit regularization term, but
rather use the projection dimension d, as well as the number
of iterations as an implicit form of regularization. For all
experiments we proceed as follows:

1) run for a large number of iterations (≈ 750K-2M),
2) validate every 50K (k-NN) or 10K (NCM) iterations,
3) select metric with lowest top-5 error.

In case of a tie, the metric with the lowest top-1 error is
chosen. Similarly, all hyper-parameters, like the value of k
for k-NN, are validated in this way. Unless stated otherwise,
training is performed using the ILSVRC’10 training set, and
validation on the provided 50K images of the validation set.

Training and testing complexity: In Table 2 we give
an overview of the training times and number of images
seen during training for the different algorithms. While the
training times are difficult to compare due to the use of
different implementations (Matlab and C/C++) and different
machines, it is interesting to see that the the number of
training images used to convergence is roughly of the same
order for the different algorithms. We compare the methods
in terms of (i) the number of models that is learned: SVM
learns C = 1, 000 different classifiers, while the NCM/k-
NN methods both learn a single projection matrix (C = 1),
(ii) the number of images I per iteration: for SVM we use
64 negative images per positive image (I = 65), for NCM
we use I = 1, 000, and for k-NN we use I = 300, and (iii)
the number of iterations T .

While it is straightforward to parallelize the learning of
the SVMs (e.g . each machine learns a single classifier), it
is more complex for the proposed methods where a shared
projection matrix is learned for all classes. Nevertheless,
the core components of these methods can be written as
matrix products (e.g . projections of the means or images,
the gradients of the objectives, etc .), for which we benefit
from optimized multi-threaded implementations.

At test time, evaluation of the classifiers is expensive
for the k-NN classifiers, but cheap for the NCM and SVM

TABLE 3: Comparison of results for different k-NN clas-
sification methods using the 4K dimensional features. For
all methods, except those indicated by ‘Full’, the data is
projected to a 128 dimensional space.

k-NN classifiers
SVM `2 `2 LMNN All Dynamic
Full Full + PCA 10 20 10 20

Top-5 38.2 55.7 57.3 50.6 50.4 44.2 39.7 40.7

classifiers. For the SVMs, the cost is O(MCD), where C is
the number of classes, D the dimensionality of the feature
vector and M the number of images in the test set. The
NCM classifier, can be evaluated at the same cost by pre-
computing the double projection of the means, similar to the
approach discussed in Section 3.4. If the dimensionality of
the projection matrix d is smaller than C, then it may be
more efficient to project the test images in O(MDd), and to
compute the distances in the projected space in O(MCd).

5.2 k-NN metric learning results
We start with an assessment of k-NN classifiers in order
to select a baseline for comparison with the NCM classifier.
Given the cost of k-NN classifiers, we focus our experiments
on the 4K dimensional features, and consider the impact of
the different choices for the set of target images Pq (see
Section 4), and the projection dimensionality.

We initialize W as a PCA projection, and determine the
number of nearest neighbors to be used for classification on
the validation set; typically 100 to 250 neighbors are optimal.

Target selection for k-NN metric learning.
In the first experiment we compare the three different options
of Section 4 to define the set of target images Pq , while
learning projections to 128 dimensions. For LMNN and
dynamic targets, we experimented with various numbers of
targets on the validation set and found that using 10 to 20
targets yields the best results.

The results in Table 3 show that all methods lead to metrics
that are better than the `2 metric in the original space, or
after a PCA projection to 128 dimensions. Furthermore, we
can improve over LMNN by using all within-class images as
targets, or even further by using dynamic targets. The success
of the dynamic target selection can be explained by the fact
that among the three alternatives, the learning objective is
the most closely related to the k-NN classification rule. The
best performance on the flat top-5 error of 39.7 using 10
dynamic targets is, however, slightly worse than the 38.2
error rate of the SVM baseline.

Impact of projection dimension on k-NN classification.
Next, we evaluate the influence of the projection dimension-
ality d on the performance, by varying d between 32 and
1024. We only show results using 10 dynamic targets, since
this performed best among the evaluated k-NN methods.
From the results in Table 4 we see that a projection to
256 dimensions yields the lowest error of 39.0, which still
remains somewhat inferior to the SVM baseline.
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TABLE 4: Comparison on ILSVRC’10 of the k-NN and
NCM classifiers with related methods, using the 4K and 64K
dimensional features and for various projection dimensions.

4K dimensional features
Projection dim. 32 64 128 256 512 1024 Full

SVM baseline 38.2
k-NN, dynamic 10 47.2 42.2 39.7 39.0 39.4 42.4
NCM, NCMML 49.1 42.7 39.0 37.4 37.0 37.0
NCM, FDA 65.2 59.4 54.6 52.0 50.8 50.5
NCM, PCA + `2 78.7 74.6 71.7 69.9 68.8 68.2 68.0
NCM, PCA + inv. cov. 75.5 67.7 60.6 54.5 49.3 46.1 43.8
Ridge-regression, PCA 86.3 80.3 73.9 68.1 62.8 58.9 54.6
WSABIE 51.9 45.1 41.2 39.4 38.7 38.5

64K dimensional features
SVM baseline 28.0
NCMML and `2 31.7 31.0 30.7 63.2
WSABIE 32.2 30.1 29.2

5.3 Nearest class mean classifier results

We now consider the performance of NCM classifiers and
the related methods described in Section 3. For all experi-
ments we use the NCM with Euclidean distance according
to Eq. (5). In Table 4 we show the results.

We first consider the results for the 4K dimensional
features. As observed for the k-NN classifier, also for NCM
using a learned metric outperforms using the `2 distance
(68.0); which is worse than using `2 distances for the k-
NN classifier (55.7, see Table 3). However, unexpectedly,
with metric learning we observe that our NCM classifier
(37.0) outperforms the more flexible k-NN classifier (39.0),
as well as the SVM baseline (38.2) when projecting to 256
dimensions or more. Our implementation of WSABIE [3]
scores slightly worse (38.5) than the baseline and our NCM
classifier, and does not generalize to new classes without
retraining.

We also compare our NCM classifier to several other
algorithms which do allow generalization to new classes.
First, we consider two other supervised metric learning
approaches, NCM with FDA (which leads to 50.5) and
ridge-regression (which leads to 54.6). We observe that
NCMML outperforms both methods significantly. Second,
we consider two unsupervised variants of the NCM classifier
where we use PCA to reduce the dimensionality. In one case
we use the `2 metric after PCA. In the other, inspired by
ridge-regression, we use NCM with the metric W generated
by the inverse of the regularized covariance matrix, such
that W>W = (Σ + λI)−1, see Section 3.2. We tuned
the regularization parameter λ on the validation set, as was
also done for ridge-regression. From these results we can
conclude that, just like for k-NN, the `2 metric with or
without PCA leads to poor results (68.0) as compared to
a learned metric. Also, the feature whitening implemented
by the inverse covariance metric leads to results (43.8) that
are better than using the `2 metric, and also substantially
better than ridge-regression (54.6). The results are however
significantly worse than using our learned metric, in partic-
ular when using low-rank metrics.
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Fig. 4: Results of the NCMC-test classifier, which uses k = 1
at train time and k > 1 at test time, for the 4K (left) and 64K
(right) features, for several values of k during evaluation.

TABLE 5: Results of the NCMC classifier using the 4K
features, compared to the NCM classifier and the best
NCMC-test classifier (with k in brackets).

NCM NCMC-test NCMC
Proj. Dim. (k) 5 10 15

128 39.0 36.3 (30) 36.2 35.8 36.1
256 37.4 36.1 (20) 35.0 34.8 35.3
512 37.0 36.2 (20) 34.8 34.6 35.1

When we use the 64K dimensional features, the results of
the NCM classifier (30.8) are somewhat worse than the SVM
baseline (28.0); again the learned metric is significantly
better than using the `2 distance (63.2). WSABIE obtains
an error of 29.2, in between the SVM and NCM.

Illustration of metric learned by NCMML.
In Figure 3 we illustrate the difference between the `2 and
the Mahalanobis metric induced by a learned projection
from 64K to 512 dimensions. For two reference classes we
show the five nearest classes, based on the distance between
class means. We also show the posterior probabilities on
the reference class and its five neighbor classes according
to Eq. (5). The feature vector x is set as the mean of the
reference class, i.e . a simulated perfectly typical image of
this class. For the `2 metric, we used our metric learning
algorithm to learn a scaling of the `2 metric to minimize
Eq. (6). This does not change the ordering of classes, but
ensures that we can compare probabilities computed using
both metrics. We find that, as expected, the learned metric
has more visually and semantically related neighbor classes.
Moreover, we see that using the learned metric most of the
probability mass is assigned to the reference class, whereas
the `2 metric leads to rather uncertain classifications. This
suggests that using the `2 metric many classes are placed at
comparable distances.

Non-linear classification using multiple class centroids.
In these experiments we use the non-linear NCMC classifier,
introduced in Section 3.3, where each class is represented
by a set of k centroids. We obtain the k centroids per class
by using the k-means algorithm in the `2 space.

Since the cost of training these classifiers is much higher,
we run two sets of experiments. In Figure 4, we show the
performance of the NCMC-test classifier, where only at test
time k = [2, . . . , 30] is used, while using a metric obtained
by the NCM objective (k = 1). In Table 5, we show the
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Fig. 3: The nearest classes for two reference classes using the the `2 distance and metric learned by NCMML. Class
probabilities are given for a simulated image that equals the mean of the reference class, see text for details.

performance of the NCMC classifier, trained with the NCMC
objective, using the 4K features, compared to the NCM
method and the best NCMC-test method.

From the results we observe that a significant performance
improvement can be made by using the non-linear NCMC
classifier, especially when using a low number of projection
dimensions. When learning using the NCMC classifier we
can further improve the performance of the non-linear clas-
sification, albeit for a higher training cost. When using as
little as 512 projection dimensions and k = 10 centroids,
we obtain a performance of 34.6 on the top-5 error. This
is an improvement of about 2.4 absolute points over the
NCM classifier (37.0), and 3.6 absolute points over SVM
classification (38.2), c.f . Table 4.

For the 64K features, the NCMC (with k = 10 and d =
512) yields to a top-5 error 29.4, which is about 1.3 points
improvement over the NCM classifier.

5.4 Generalizing to new classes with few samples
Here we explore the ability of the distance based classifiers
to generalize to novel classes. For the NCM we also consider
its performance as a function of the number of training
images available to estimate the mean of novel classes.

Generalization to classes not seen during training.
In this experiment we split the ILSVRC’10 dataset into a
training set consisting of approximately 1M images from
800 classes, and an evaluation set of the 200 held-out classes.
The error is evaluated in a 1,000-way classification task, and
computed over the 30K images in the test set of the held-
out classes. Performance on the test images of the 800 train
classes changes only marginally and including them would
obscure the changes among the test images of the 200 held-
out classes. The early stopping strategy uses the validation
set of the 800 training classes.

In Table 6 we show the performance of NCM and k-NN
classifiers, and compare it to the control setting where the

TABLE 6: Results for 1,000-way classification among test
images of 200 classes not used for metric learning, and
control setting when learned on all classes.

4K dimensional features
SVM NCM k-NN

Projection dim. Full 128 256 512 1024 `2 128 256 `2

Trained on all 37.6 38.6 36.8 36.4 36.5 39.0 38.4
Trained on 800 42.4 40.5 40.1 40.0 66.6 42.7 42.6 54.2

64K dimensional features
Trained on all 27.7 31.7 30.8 30.6
Trained on 800 39.2 38.1 37.8 61.9

metric is trained on all 1,000 classes. The results show that
both classifiers generalize remarkably well to new classes.
For comparison we also include the results of the SVM
baseline, and the k-NN and NCM classifiers using the `2
distance, evaluated over the 200 held-out classes. In partic-
ular for 1024 dimensional projections of the 4K features,
the NCM classifier achieves an error of 40.0 over classes
not seen during training, as compared to 36.5 when using
all classes for training. For the 64K dimensional features
the drop in performance is larger, but still surprisingly good
considering that training for the novel classes consists only
in computing their means.

Generalization to the ImageNet-10K dataset: In
this experiment we demonstrate the generalization ability
of the NCM classifier on the ImageNet-10K dataset. We
use projections learned and validated on the ILSVRC’10
dataset, and only compute the means of the 10K classes.
The results in Table 7 show that, even in this extremely
challenging setting, the NCM classifier performs remarkably
well compared to methods which require training of 10K
classifiers. We note that, to the best of our knowledge, our
baseline results (78.1 top-1 error) exceed the previously
known state-of-the-art (81.9 and 80.8) [44], [45].

Training our SVM baseline system took 9 and 280 CPU
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TABLE 7: Comparison of the results on the ImageNet-10K dataset: the NCM classifier with metrics learned on the
ILSVRC’10 dataset, the NCM using `2 distance, the baseline SVM, and previously reported SVM results [1], [7], [44] and
the Deep Learning results of [45].

4K dimensional features 64K dimensional features Previous Results
Method NCM SVM NCM SVM [7] [1] [44] [45]
Proj. dim. 128 256 512 1024 `2 4K 128 256 512 `2 64K 21K 131K 128K

Top-1 error 91.8 90.6 90.5 90.4 95.5 86.0 87.1 86.3 86.1 93.6 78.1 93.6 83.3 81.9 80.8
Top-5 error 80.7 78.7 78.6 78.6 89.0 72.4 71.7 70.5 70.1 85.4 60.9

days respectively for the 4K and 64K features, while the
computation of the means for the NCM classifier took
approximately 3 and 48 CPU minutes respectively. This
represents roughly a 8,500 fold speed-up as compared to
the SVMs, given a learned projection matrix.

Accuracy as function of sample size of novel classes.
In this experiment we consider the error as a function of the
number of images that are used to compute the means of
novel classes. Inspired by [38], we also include a zero-shot
learning experiment, where we use the ImageNet hierarchy
to estimate the mean of novel classes from related classes.
We estimate the mean of a novel class µz using the means
of its ancestor nodes in the ILSVRC’10 class hierarchy:

µz =
1

|Az|
∑
a∈Az

µa, (29)

where Az denotes the set of ancestors of node z, and µa is
the mean of ancestor a. The mean of an internal node, µa, is
computed as the average of the means of all its descendant
training classes.

If we view the estimation of each class mean as the
estimation of the mean of a Gaussian distribution, then the
mean of a sample of imagesµs corresponds to the Maximum
Likelihood (ML) estimate, while the zero-shot estimate µz

can be thought of as a prior. To obtain a maximum a-
posteriori (MAP) estimate µp, we combine the prior and
the ML estimate as follows:

µp =
nµs +mµz

n+m
, (30)

where the ML estimate is weighed by n the number of
images that were used to compute it, and the prior mean
obtains a weight m determined on the validation set [46].

In Figure 5 we analyze the performance of the NCM
classifier trained on the images of the same 800 classes
used above, with a learned projection from 4K and 64K
to 512 dimensions. The metric and the parameter m are
validated using the images of the 200 held-out classes of the
validation set. We again report the error on the test images of
the held-out classes in a 1,000-way classification as above.
We repeat the experiment 10 times, and show error-bars at
three times standard deviation. For the error to stabilize we
only need approximately 100 images to estimate the class
means. The results show that the zero-shot prior can be
effectively combined with the empirical mean to provide
a smooth transition from the zero-shot setting to a setting
with many training examples. Inclusion of the zero-shot prior
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Fig. 5: Results of NCM as a function of the number of images
used to compute the means for test classes. Comparison of
the ML (blue) and MAP (red ) mean estimates, for the 4K
(left) and 64K (right) features, in a 1,000-way classification
task, including baseline (black ) when trained on all classes.

leads to a significant error reduction in the regime where ten
images or less are available. Also, the results show that the
validation on the 200 hold-out classes or on the 800 training
classes yields comparable error rates (40.1 vs 39.9, using
4K and 512d, c.f . Table 6 and Figure 5).

In [38] a zero-shot error rate of 65.2 was reported in a
200-way classification task. Using the NCM with our prior
mean estimates leads to comparable error rates of 66.5 (4K)
and 64.0 (64K). Note that a different set of 200 hold-out
classes were used, as well as different features. However
their baseline performance of 37.6 top-5 error is comparable
to our 4K features (38.2).

Instance level image retrieval.
Query-by-example image retrieval can be seen as an image
classification problem where only a single positive sample
(the query) is given and negative examples are not explicitly
provided. Recently, using classifiers to learn a metric for
image retrieval was considered in [47]. They found the
Joint Subspace and Classifier Learning (JSCL) method to
be the most effective. It consists of learning jointly a set
of classifiers and a projection matrix W using WSABIE,
Eq. (12) on an auxiliary supervised dataset. After training,
the learned projection matrixW is used to compute distances
between queries and database images.

Similarly, we propose to learn a metric using our NCM
classifier on the auxiliary supervised dataset and to use the
learned metric to retrieve the most similar images for a given
query.

For this experiment we use the same public benchmarks
as in [47]. First, the INRIA Holidays data set [48], which
consists of 1,491 images of 500 scenes and objects. For
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TABLE 8: Results of instance level image retrieval on the
Holidays and UKB dataset, using 4K features. NCMML is
compared to a PCA baseline and the JSCL method of [47].

INRIA Holidays dataset UKB dataset
no projection: 77.4% no projection: 3.19

Dim PCA JSCL NCM NCM* PCA JSCL NCM

32 61.3 67.7 69.3 63.3 2.82 3.04 3.07
64 68.0 73.6 75.4 68.8 3.01 3.23 3.23
128 72.3 76.4 79.6 73.1 3.08 3.31 3.33
256 75.0 78.3 80.2 74.0 3.15 3.36 3.32
512 76.8 78.9 80.6 73.5 3.18 3.36 3.31

evaluation, one image per scene / object is used as query
to search within the remaining images, and accuracy is
measured as the mean average precision (mAP) over the
500 queries. Second, the University of Kentucky Benchmark
dataset (UKB) [49], which contains 4 images of 2,550
objects (10,200 images). For evaluation, each image is used
as query and the performance is measured by 4×recall@4
averaged over all queries, hence the maximal score is 4. For
both datasets we extract the 4K image features used in our
earlier experiments, these are also used in [47]. To compute
the distance between two images, we use the cosine-distance,
i.e . the dot-product on `2-normalized vectors.

We use NCMML to train a metric on the ILSVRC’10
data set, while using early stopping based on retrieval
performance, similar as in [47]. To avoid tuning on the
test data, the validation is performed on the other dataset,
i.e . when testing on UKB we regularize on Holidays and
vice versa. In Table 8 we compare the performance of the
NCM based metric with that of JSCL, with a baseline PCA
method, and with the performance using the original high-
dimensional descriptors. Finally, for the Holidays dataset
we included the NCM metric optimized for classification
performance on the ILSVRC’10 validation data set (NCM*).

From these results we observe that the NCM metric yields
similar performance as the JSCL method on both datasets. A
projection to only 128 dimensions or more yields an equal or
better retrieval performance as using the original features or
the PCA baseline. On the Holidays dataset the NCM metric
outperforms the JSCL metric, while on the UKB dataset
JSCL slightly outperforms NCM. Both the NCM and JSCL
methods are effective to learn a projection metric for instance
level retrieval, while employing class level labels.

Note that it is crucial to use retrieval performance for
early stopping; the results of NCM* are in fact worse
than using the original descriptors. Thus, the classification
objective determines a good “path” through the space of
projection matrices, yet to obtain good retrieval performance
the number of iterations is typically an order of magnitude
smaller than for classification. We explain this discrepancy
by the fact that instance level retrieval does not require the
suppression of the within class variations. This suggests also
that even better metrics may be learned by training NCM on
a large set of queries with corresponding matches.

6 CONCLUSIONS

In this paper we have considered large-scale distance-based
image classification, which allow integration of new data
(possibly of new classes) at a negligible cost. This is not
possible with the popular one-vs-rest SVM approach, but is
essential when dealing with real-life open-ended datasets.

We have introduced NCMML, a metric learning method
for NCM classification, which maximizes the log-likelihood
of correct class prediction, with class probabilities using
the soft-min over distances between a sample and the class
means. The extended non-linear NCMC classifier offers a
trade-off in the complexity, from the linear NCM to the non-
parametric k-NN, by the number of used class-centroids.

We have experimentally validated our models and com-
pared to a state-of-the-art baseline of one-vs-rest SVMs
using Fisher vector image representations. Surprisingly we
found that the NCM outperforms the more flexible k-NN
and that its performance is comparable to a SVM baseline,
while projecting the data to as few as 256 dimensions.

Our experiments on the ImageNet-10K dataset show that
the learned metrics generalize well to unseen classes at
a negligible cost. While only computing class means, as
opposed to training 10,000 SVM classifiers, we obtain
competitive performance at roughly a 8,500 fold speedup.

Finally we have also considered a zero-shot learning
setting and have shown that NCM provides a unified way to
treat classification and retrieval problems.
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