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Abstract—Learning classifiers for many visual concepts is
important for image categorization and retrieval. As a classifier
tends to misclassify negative examples which are visually similar
to positive ones, inclusion of such misclassified and thus relevant
negatives should be stressed during learning. User-tagged images
are abundant online, but which images are the relevant negatives
remains unclear. Sampling negatives at random is the de facto
standard in the literature. In this paper we go beyond random
sampling by proposing Negative Bootstrap. Given a visual con-
cept and a few positive examples, the new algorithm iteratively
finds relevant negatives. Per iteration we learn from a small
proportion of many user-tagged images, yielding an ensemble of
meta classifiers. For efficient classification, we introduce Model
Compression such that the classification time is independent of
the ensemble size. Compared to the state of the art, we obtain
relative gains of 14% and 18% on two present-day benchmarks
in terms of mean average precision. For concept search in one
million images, model compression reduces the search time from
over 20 hours to approximately 6 minutes. The effectiveness and
efficiency, without the need of manually labeling any negatives,
make negative bootstrap appealing for learning better visual
concept classifiers.

Index Terms—Visual categorization, relevant negative exam-
ples, negative bootstrap, model compression

I. INTRODUCTION

LABELED examples are crucial to learn visual concept

classifiers for image categorization and retrieval. To be

more precise, we need positive and negative examples with

respect to a specific concept, as shown in Fig. 1. When the

number of concepts is large, obtaining labeled examples in an

efficient way is essential. Traditionally, labeled examples are

annotated by expert annotators. However, expert labeling is

labor intensive and time consuming, making well-labeled ex-

amples expensive to obtain and consequently their availability

is limited.

Much research has been conducted towards inexpensive

solutions to acquire positive examples, e.g., from web image
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(a) Positive examples of ‘whale’

(b) Negative examples of ‘whale’ obtained by random sampling

(c) Relevant negatives of ‘whale’ (this paper)

Fig. 1. A positive set and two negative sets of visual concept ‘whale’.
The negative set (b) is obtained by random sampling from a large set of
user-tagged images, while the negative set (c) is sampled from the same set
by the proposed algorithm. Compared to (b), our negatives are visually more
similar to the positive set (a). Hence, they are more relevant, yielding more
accurate visual classifiers for concept search. Note that the relevant negatives
are obtained automatically, without the need of manual verification.

search results [1]–[3] or socially tagged data [4]–[6], or by

online collaborative annotation [7]–[9]. For instance, Schroff

et al. [1] train a visual classifier on web image search results of

a given concept, and re-rank the search results by the classifier.

Though the automated approaches are not comparable to

dedicated manual annotation [4], [5], their output provides a

good starting point for manual labeling. Deng et al. [9] build an

ImageNet wherein positive examples of a WordNet concept are

obtained by labeling web image search results of the concept

using a micro payment service. Compared to traditional expert

labeling, the new labeling mechanism yields positive examples

for many categories with lower cost. In this paper we assume

that positive examples are obtained by (one of) the approaches

described above, and focus on obtaining negative examples.

Since negative examples of a concept belong to many

other concepts, most of expert labeling efforts are dedicated

to annotating negatives. One might consider bypassing the

negative labeling problem by one-class learning, which creates

classifiers using positive examples only [10]. However, be-

cause negative examples also bear valuable information, they
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are important for classification. This has been well observed

in Tao et al. [11] for interactive image retrieval. Our empirical

study shows that visual classifiers trained by one-class learning

are inferior to classifiers trained by two-class learning [12]. So

labeling negatives remains essential, but methods which can

reduce the manual labeling effort are needed.

Obtaining negative examples seems to be trivial, as they

are abundant in large photo repositories such as Flickr and

Facebook. For a specific concept, say ‘whale’, due to the

relatively sparse occurrence of its positive examples against

its negatives in these repositories, sampling a fraction of the

data at random already yields a set of genuine negatives.

Indeed, random sampling is the de facto standard in the

literature for obtaining negative examples [1], [3]–[5], [12],

[13]. Given the massive amount of potential negatives, training

on a small proportion of the data also makes it feasible to learn

classifiers on normal computers. Further, conducting random

sampling multiple times leads to ensemble learning [14].

This methodology trains multiple meta classifiers on multiple

(disjoint) subsets of the data, and combines the meta classifiers

to make final decisions. Evidence from the machine learning

community shows encouraging results on learning from large

data in an ensemble [15]. Also, there are good examples in

the multimedia community, leveraging the methodology for

learning an ensemble of classifiers for visual search [16], [17].

Ensemble learning with random negative seems attractive for

learning visual concepts from abundant negatives.

A classifier tends to misclassify negative examples which

are visually similar to positive examples. For learning a visual

classifier for the concept ‘whale’, confusing negatives such

as images of birds in water, as illustrated in Fig. 1, should

be included during learning. As such relevant negatives are in

minority, random sampling alone is not enough for identifying

them. In order to go beyond random sampling, the question

arises which examples are relevant negatives?

In principle, the relevant negatives shall have visual patterns

partially overlapping the positive examples. Following this

thought, one might try to manually add positive examples of

confusing negative classes such as ‘bird’ or ‘ocean’ to the

negative training data. However, the relevance of a negative

example depends on the underlying visual features, kernels,

and classifiers, and is not necessarily consistent with what an

observer may expect. It is therefore difficult to specify relevant

negative classes by hand-crafted rules. One may consider an

active learning system [18], [19], asking an annotator to label

examples the system considers most useful. Active learning

helps reduce human labeling effort as reported for interactive

visual search reranking [20], [21] and interactive image anno-

tation [22]. Nonetheless, human interaction is mandatory in an

active learning process. In contrast, we aim to acquire relevant

negatives in a fully automatic manner.

Although ensemble learning with random negatives exploits

more negative data and therefore may include relevant neg-

atives accidently, its performance is bounded by the lack of

relevant negatives. Moreover, the execution of all its individual

meta classifiers requires a classification time proportional to

the size of the ensemble. Recently, Maji et al. [23] found that

for the histogram intersection kernel, the decision function

of an SVM classifier can be well approximated by linear

interpolation on a fixed number of precomputed points. This

finding makes the classification time independent of the

number of support vectors, leading to efficient execution of

individual classifiers. Nonetheless, the execution time of the

ensemble classifier remains proportional to the number of meta

classifiers.

When extending the number of concepts, there will be a

more dense division of the data space in terms of semantic

classes. As class boundaries need to be better defined, there

is a natural need to increase the number of training examples.

When adding new negative training examples, one has the

option to add random negatives, or to select new relevant

negatives. In this paper we plea to go for relevant negatives. In

that case, the confinement of the class boundary to just the area

of the class and nothing more proves to be as important as the

extension of the class boundary by adding new positives. From

the above considerations it is clear that random negatives will

not help as they are far away from the class boundary. When

adding new elements, relevant negatives are indeed superior to

random negatives. But the superiority is achieved only when

appropriate care is taken to balance classes during training.

Therefore, for the purpose of extending concept recognition

to many classes, in this paper we make three contributions to

visual categorization.

1. First, we argue that when extending the training set, one

should select relevant negatives as the extension to be preferred

over random negatives for better classifier performance.

2. Second, for good training under unbalanced classes, we

propose Negative Bootstrap, an iterative negative ensemble

learning strategy, to select relevant negatives from many user-

tagged images, without the need of new annotation.

3. Third, for computational feasibility, we introduce Model

Compression, which extends [24] from a single classifier to an

ensemble of classifiers, making classification time independent

of the number of meta classifiers.

The rest of the paper is organized as follows. Related work

is reviewed in Section II. We detail the new negative bootstrap

algorithm in Section III. Experiments are set up in Section IV.

Result analysis is given in Section V. We conclude the paper

in Section VI.

II. RELATED WORK

To automatically create a negative training set for a given

concept, the mainstream methods randomly sample a relatively

small subset from a large pool of (user-tagged) examples

[1], [3]–[5], [12], [13], [16]. The pool may consist of web

images with free texts [1], [3] or consumer photos with user

provided tags [4], [13]. Apart from the obvious fact that

random sampling is simple and easy to use, we attribute its

popularity to two reasons. First, except for some over frequent

concepts such as ‘sky’ and ‘person’, the chance of finding

genuine positive examples in a random fraction of the pool

is low. False negatives can be further reduced by removing

images labeled with the given concept or its semantically

related tags [12], [13], [24]. Second, as the possible negatives

substantially outnumber the positive training set, downsam-

pling the negatives bypasses class imbalance which is known
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to affect classifier learning [17], [25], [26]. If the pool is

sufficiently large, one might end up with a set of reliable

negatives, but not necessarily the most relevant ones.

When negative examples are selected at random, the perfor-

mance of individual classifiers varies. According to Breiman’s

bagging theory [27], such variance can be reduced by model

averaging. Hence, both Natsev et al. [16] and Tao et al. [17]

perform random sampling multiple times to create multiple

classifiers, and combine them uniformly. While the negative

examples vary, the positive examples are fully used because

they are relatively rare. To distinguish such a strategy from

classical bagging [27] which conducts re-sampling on both

positive and negative examples, Tao et al. term it asymmetric

bagging [17]. Although the robustness of the final classifier

is improved by classifier aggregation, the quality of asym-

metric bagging is bounded by the lack of relevant negatives.

Moreover, since all meta classifiers need to be executed,

the classification time is proportional to the amount of meta

classifiers. In sum, the lack of relevant negative examples and

the computational cost for running all meta classifiers put

the effectiveness and efficiency of asymmetric bagging into

question.

Obtaining negative examples with manual annotation for

free has also been studied in the context of text categorization,

e.g., [28]. There, unlabeled examples are inserted into the

negative set, if they are most dissimilar to the positives,

or predicted as negatives with high confidence by current

classifiers. Yan et al. [29] reported a similar idea in the context

of video retrieval. Though sampling at the bottom probably

yields reliable negatives, an intrinsic drawback is that those

negatives are already correctly classified, adding them to the

training process is not so useful by definition. Indeed, Natsev

et al. [16] reported that such conservative sampling is inferior

to random sampling.

The algorithm we introduce in this paper bears some

conceptual resemblance to active learning [18] and AdaBoost

[30], as all of them seek useful examples for learning a

new classifier. But the new algorithm has a number of char-

acteristics which make it different. There are two notable

differences between negative bootstrap and active learning.

First, in contrast to active learning which requires human

interaction to label examples selected in each round, negative

bootstrap selects relevant examples without human interaction.

Second, different from active learning wherein the new input

data is supposed to be unlabeled and comprised of positive and

negative examples, our setting assumes that the new input data

contains negatives only. Hence, in active learning, examples

the system is most uncertain about, namely closest to the

decision boundary [18], are considered informative. Negative

bootstrap, by contrast, selects negative examples which are

most misclassified, i.e., falling on the positive side and distant

from the boundary. Inclusion of such negatives in training

pushes towards a tight boundary in the area of the target

class, yielding classifiers with better discrimination ability.

Compared to AdaBoost which works on fully labeled data, our

algorithm takes user-tagged data as its starting point. Unlike

AdaBoost, we do not have to maintain the distribution of

weights on the entire training data, and we do not need manual

labeling of negatives. Therefore, negative bootstrap is more

suited for exploiting large datasets.

Our model compression is inspired by Maji et al. [23].

The authors accelerate histogram intersection kernel SVMs

by introducing a fast kernel computation approximation. The

key innovation is that by exploiting the additive property of the

histogram intersection kernel, the computation of the SVM de-

cision function is re-expressed as the sum of decision functions

with respect to individual feature dimensions. Further, for each

dimension, its decision function can be efficiently computed by

linear interpolation on a limited set of precomputed decision

scores. As a consequence, the test time becomes independent

of the number of support vectors. While Maji’s algorithm

targets at accelerating a single classifier, we aim to compress

an ensemble of classifiers such that the classification time

will be independent of the amount of meta classifiers. When

using the compressed model for finding relevant negatives, the

training time is also reduced.

Besides [23] as a method for speeding up classification,

we also notice an increasing interest in efficient training of

the histogram intersection kernel SVMs [31]–[33]. Since these

algorithms work on the meta classifier level while our algo-

rithm works on the ensemble level, they are complementary.

We leave the study of their integration for future exploration.

III. NEGATIVE BOOTSTRAP

Given a set of unlabeled images, we search for images

which contain a specific concept ω by employing a visual

classifier of the concept [34]. Let x be an image. Its content-

based representation is a d-dimensional feature vector. We

will refer to an image and its corresponding feature vector

interchangeably, using x(i) to indicate the i-th dimension of

the vector. We use g(x) to denote a classifier, which produces

a real-valued score of an image being a positive instance

of the target concept. In particular, g(x) > 0 means the

image is classified as positive, and negative otherwise. We

need classifiers robust to high dimensional features common

in visual classification. To that end, we choose SVMs which

can simultaneously minimize the empirical classification error

and maximize the functional margin, i.e., the largest distance

of the decision boundary to the nearest training data [35]. The

maximum-margin property makes SVMs a solid choice for

building visual classifiers, as demonstrated by [36]–[39]. The

SVM version of g(x) is defined as

g(x) = b+

n∑

j=1

αj · yj · K(x, xj), (1)

where αj is the positive coefficient of support vector xj , b is

the intercept, yj ∈ {−1, 1} is a class label, n is the number of

support vectors, and K a kernel function measuring the visual

similarity between two examples. A good, but expensive,

choice for K is the χ2 kernel [37]–[39]. Recently, both Maji

et al. [23] and Uijlings et al. [40] have shown that the

histogram intersection kernel is close to the χ2 kernel in terms

of visual classification accuracy, but it is far more efficient.

Moreover, Wu [33] proofs that the histogram intersection

kernel is a positive definite kernel for non-negative real-valued
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histograms. Given theoretical and empirical justifications, we

prefer this kernel in our study. Given two images x and x′,

the histogram intersection kernel is defined as

K(x, x′) =

d∑

i=1

min(x(i), x′(i)). (2)

To obtain g(x), we need both positive and negative training

data. We assume that positive data are obtained for instance

by the approaches described in Section I. As indicated, for

negative training data, we aim to harvest them from user-

tagged images on the web, but with no need of manual

verification. Let B+ be a positive set, S a set of user-tagged

images independent of B+, and B− a negative set from S . We

derive g(x) from B+ and B−:

g(x)← learn-classifier(B+,B−). (3)

Because B+ usually has a limited number of elements, we

make full use of it. The learning process (3) optimizes b and

{αj} such that hinge loss is minimized, with the following

constraints [41]:

n∑

j=1

αj · yj = 0,

0 ≤ αj ≤ C, j = 1, . . . , n,

(4)

where C is the regularization parameter.

A. Iterative Negative Ensemble Learning

Given a target concept ω and its positive set B+, we aim

to select a set B− which contains relevant negatives from

S . The relevance of a negative example depends on the

classifier. Negative examples which are most misclassified,

that is, predicted as positive instances with the largest scores,

are most relevant to improve classification. Hence, we shall

sort S in descending order by g(x) and select the top ranked

examples to form B−, formalized as the following condition

on B−:

∀x ∈ B−, x′ ∈ S\B− ⇒ g(x) > 0, g(x) > g(x′). (5)

In practice (5) is not directly applicable, because the negatives

S are not manually verified, meaning an exhaustive search

will incorrectly treat genuine positive examples as relevant

negatives. Moreover, the large-scale property of S makes the

search computationally challenging. Downsampling is thus

necessary. Due to the random factor in downsampling, negative

examples as well as the classifier obtained in a single trial

tend to be suboptimal. A common solution is to generate an

ensemble of meta classifiers by multiple trials, and average

their output, as has been used by Natsev et al. [16] for

video retrieval and Tao et al. [17] for image retrieval. We

also construct an ensemble of classifiers, but with the notable

distinction that our negative examples are more relevant than

the random negatives in [16], [17].

We use T to denote the number of iterations, and t =
1, . . . , T to index the iterations. Let Gt(x) be the final classi-

fier obtained after t iterations. In the t-th iteration, we conduct

a two-stage adaptive sampling to acquire the most relevant

negative examples according to Gt−1(x), the latest classifier

obtained in previous iterations. In the first stage, we randomly

sample m examples from S to form a candidate set Ut, as

expressed by

Ut ← random-sampling(S,m). (6)

To reduce the chance of incorrectly having genuine positives

in Ut, we let m≪ |S|. In the second stage, we use Gt−1(x)
to classify each example in Ut, and obtain Ũt in which each

example is associated with a classification score. We express

Ũt by

Ũt ← classify(Ut, Gt−1(x)). (7)

We sort examples in Ũt by their scores in descending order and

select the top ranked examples to form the relevant negative

set, denoted by B
(t)
−

.

To derive a new classifier given the new negative data

B
(t)
−

, if we simply add B
(t)
−

to the existing training data, we

will come face to face with the imbalanced data problem as

the negatives accumulate. Moreover, the training complexity

increases per iteration. Hence, in each iteration, we train a new

classifier on B+ and B
(t)
−

. To make the positive and negative

classes perfectly balanced, we set the number of selected

negatives equal to |B+|, i.e,

B
(t)
−
← select-top(Ũt, |B+|), (8)

where | · | is the cardinality of a set. Subsequently, a new

meta classifier gt(x) is learned from B+ and B
(t)
−

using (3).

Because B
(t)
−

is composed of negatives most misclassified by

the previous classifier, we can safely assume that the new

classifier is complementary to its ancestors. Following the

regular bootstrap aggregation, we combine the meta classifiers

by model averaging:

Gt(x) =
1

t

t∑

j=1

gj(x) =
t− 1

t
Gt−1(x) +

1

t
gt(x). (9)

Since no classifier is available in the first iteration, we acquire

B
(1)
w−

by random sampling.

For obtaining relevant negatives in the t-th iteration, we have

to compute (7), which involves running t− 1 meta classifiers.

In total, the number of classifiers to be executed will be T ·(T−
1)/2. Since the number of support vectors in a meta classifier

has an order of |B+|, the time complexity of scoring an image

would be O(|B+|·d), meaning an order of O((t−1)·|B+|·d·m)
for computing (7). Moreover, because T iterations results in T
meta classifiers and we have to apply all of them, searching for

one concept has a time complexity proportional to the number

of iterations. Acceleration is thus crucial for both training and

testing.

B. Model Compression

We introduce model compression by generalizing the fast

intersection kernel algorithm [23] from a single classifier to

an ensemble of classifiers. Our compact model classifies an

image at a constant time complexity, while simultaneously

maintaining the effectiveness of negative bootstrap.
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Notice that although we use uniform weights to combine

classifiers (9), the weights can be optimized when we have

access to extra validation data. To express (9) in a more generic

form, let λt be a nonnegative weight for a meta classifier gt(x).
Accordingly, we express the ensemble classifier GT (x) as

GT (x) =

T∑

t=1

λt · gt(x). (10)

Substituting (1) and (2) in (10) leads to

GT (x) =

T∑

t=1

λt · bt+

d∑

i=1

T∑

t=1

nt∑

j=1

λt · αt,j · yt,j ·min(x(i), xt,j(i))

︸ ︷︷ ︸
decision value per dimension

.

(11)

As shown in (11), the decision value is the sum of decision

values of each dimension plus the sum of all intercepts from

the T meta classifiers. Since the term containing the intercepts

is independent of x, it can be easily compressed into a

constant.

For a single classifier g(x) as defined in (1), Maji et al.

construct a function hi to indicate the decision value computed

on the i-th dimension [23]:

hi(z) =

n∑

j=1

αj · yj ·min(z, xj(i)), (12)

where z is a variable. They have proven that for an arbitrary z,

hi(z) can be computed as a linear interpolation on hi(xj(i))
and hi(xk(i)), where xj and xk are two specific support

vectors of g(x). We argue that a similar conclusion holds when

multiple classifiers are linearly combined.

To incorporate classifier combination, we first extend (12)

to the following form:

Hi(z) =
T∑

t=1

nt∑

j=1

λt · αt,j · yt,j ·min(z, xt,j(i)). (13)

Notice that (13) is exactly the decision value per dimen-

sion in (11). Given the T meta classifiers, we use M
to denote the number of support vectors in total, i.e.,

M =
∑T

t=1 nt. By putting the i-th dimension of these

support vectors together, we have a sequence of M elements

{x1,1(i), . . . , x1,n1
, . . . , xT,1, . . . , xT,nT

(i)}. We sort the se-

quence in ascending order, and use x̄j(i) to denote the sorted

elements, j = 1, . . . ,M . For each sorted element, we denote

its corresponding model weight, support vector coefficient, and

class label as λ̄j , ᾱj , and ȳj , respectively. The sorting and

renaming operations allow us to rewrite (13) as

Hi(z) =

M∑

j=1

λ̄j · ᾱj · ȳj ·min(z, x̄j(i)). (14)

Taking into account the relative position of z with respect to

the interval [x̄1(i), x̄M (i)], we can accelerate the computation

of (14). With the constraints (4), we have
∑M

j=1 λ̄j ·ᾱj ·ȳj = 0.

Consequently, if z ≤ x̄1(i), we have Hi(z) = z
∑M

j=1 λ̄j · ᾱj ·
ȳj = 0. When z ≥ x̄M (i), due to the min function in (14), we

have H(z) = H(x̄M (i)). For any z within the interval, there

always exists an integer ri such that x̄ri(i) ≤ z ≤ x̄ri+1(i).
We proof that Hi(z) is a linear interpolation on Hi(x̄ri(i))
and Hi(x̄ri+1(i)) as follows:

Hi(z) = βi ·Hi(x̄ri(i)) + (1− βi) ·Hi(x̄ri+1(i)), (15)

where βi =
x̄ri+1(i)−z

x̄ri+1(i)−x̄ri
(i) . Hence, if we have

Hi(x̄1(i)), . . . , Hi(x̄M (i)) precomputed, Hi(z) can be

efficiently computed. Substituting (15) into (11), we obtain

the decision value of the ensemble classifier as the sum of

linear interpolations on a set of precomputed functions,

GT (x) = b0+

d∑

i=1

(βi ·Hi(x̄ri(i)) + (1− βi) ·Hi(x̄ri+1(i))) ,

(16)

where

b0 =

T∑

t=1

λt · bt,

and

βi = min(1,max(0,
x̄ri+1(i)− x(i)

x̄ri+1(i)− x̄ri(i)
)).

For computing βi, we use the min and the max functions to

cope with x(i) oustside the interval [x̄1(i), x̄M (i)].
Thus far, GT (x) has not been compressed. We still have

to sort M elements for each dimension, and conduct binary

search to locate ri for (15). To compress the ensemble

classifier and to bypass the binary search, we adopt the

strategy from Maji et al. [23] and uniformly divide the interval

[x̄1(i), x̄M (i)] into q segments. With such an approximation,

the linear interpolations are conducted by looking up a real-

valued table with size of d× q, instead of d×M . It is in this

manner that we compute the decision value for each dimension

in constant time, independent of the number of meta classifiers

and their support vectors. As a consequence, we reduce the

complexity of scoring an example from O(T · |B+| · d) to

O(d). Now, computing (7) has an order of O(d ·m) only.

We summarize the negative bootstrap algorithm in Table I.

The algorithm has a number of desirable properties. By iter-

atively mining relevant negatives, we obtain visual classifiers

with better discrimination ability. With model compression,

we not only speed up the training process, but also make the

time complexity of visual concept search independent of the

number of meta classifiers.

IV. EXPERIMENTAL SETUP

A. Data sets

Pseudo Negative Examples. As an instantiation of S , we

use a set of 3.5M user-tagged images1 randomly sampled from

Flickr in our previous work [6]. Since batched-tagged pictures

are often visually redundant, we remove them beforehand.

We also exclude images whose social tags contain no visual

concepts, as determining the negativeness of these examples

1http://staff.science.uva.nl/∼xirong/tagrel/
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TABLE I
THE NEGATIVE BOOTSTRAP ALGORITHM.

Input: Positive examples B+, User-tagged images S

Output: Compressed visual classifier GT (x)

1 B
(1)
−
← random-sampling(S, |B+|)

2 g1(x)← learn-classifier(B+,B
(1)
−

)
3 G1(x)← compress-models({g1(x)})

4 for t := 2 to T do
5 Ut ← random-sampling(S,m)
6 Ũt ← classify(Ut, Gt−1(x))

7 B
(t)
−
← select-top(Ũt, |B+|)

8 gt(x)← learn-classifier(B+,B
(t)
−

)
9 Gt(x)← compress-models({g1(x), . . . , gt(x)})

10 end

is difficult. To that end, we create a vocabulary of 5K visual

concepts by taking the intersection between the ImageNet

vocabulary [9] and social tags used by over a hundred users.

By removing images having no tags corresponding to the

vocabulary, we obtain an S consisting of 610K images.

We evaluate negative bootstrap on two present-day bench-

mark sets [42], [43] which provide ground truth annotations

for a diverse set of visual concepts including objects such as

‘bicycle’ and ‘horse’, scenes such as ‘beach’ and ‘cityscape’,

and events such as ‘dancing’ and ‘swimming’. Further, to

test the effectiveness of the new algorithm for visual concept

search in larger data, we create our third test set of one million

images.

Two Benchmark Sets. VOC08-devel2 [42] and NUS-WIDE3

[43]. Both sets were collected from Flickr, with manually ver-

ified annotations for 20 and 81 visual concepts, respectively.

The VOC08-devel set consists of the following two distinct

subsets: VOC08train with 2,111 images and VOC08val with

2,221 images. We take the positive set B+ from VOC08train,

and use VOC08val for testing. As the original NUS-WIDE

training and testing sets were divided at random, they have

many batch-tagged images from the same users, introducing a

dependency between the two sets. To avoid such a dependency,

we exclude batch-tagged images and images whose social

tags do not overlap with the 81 concepts, resulting in a set

of 128,097 images. We then divide this set into two subsets

in terms of the Flickr DateUploaded property. Images in

the resulting NUSpast (64,048 images) were uploaded before

NUSfuture (64,049 images). This division improves general-

izations of our findings to unseen data. We use NUSpast as

another source of B+, and NUSfuture as our second test set.

A Test Set of 1M Images. This set consists of one million

images collected from Flickr in a random fashion, independent

of the training data and the other test data. Less than 0.2% of

the 1M set appears in VOC08 and NUS-WIDE and 0.6% in

S . Removing the overlapped part does not affect the result.

B. Experiments

Experiment 1. Negative Bootstrap vs. State of the Art. We

compare negative bootstrap with the following two state of

2http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2008/
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

the art algorithms, both of which rely on a form of random

sampling to obtain negative examples: pure random sampling

[1], [4], [5], [12], [13], and asymmetric bagging [16], [17].

For a fair comparison, whenever applicable we will make the

three algorithms share the same input and parameters. As the

number of negative examples and the number of iterations are

the two parameters shared by the three algorithms, we let all

the algorithms sample negative examples from the same pool,

use the same amount of negatives to train a meta classifier, and

run the same number of iterations. This experimental protocol

allows us to conclude which algorithm yields the most relevant

negatives.

By choosing |B+| from {20, 100, 500}, we compare

the algorithms given varying amounts of positive examples

available. For concepts that have positive examples less than

required, we use all the available positive examples.

To study whether adding relevant negatives is as important

as adding new positives, we implement a strategy which

keeps the negative set fixed, but randomly samples positives

from the entire positive training data in each iteration to

construct new meta classifiers. For a fair comparison between

this ‘sampling positives’ strategy, asymmetric bagging, and

negative bootstrap, we let them have the same 20 random

positives and 20 random negatives as their starting point, and

the same amount of positives and negatives hereafter.

Experiment 2. The Influence of Model Compression. By

comparing negative bootstrap with and without model com-

pression, we study the influence of model compression on both

effectiveness and efficiency. The amount of positive examples

for each concept is set to be 100. We report training and testing

time in seconds, which are averaged over concepts.

Experiment 3. Negative Bootstrap for Concept Search in

Large Data. Given the classifiers trained in Experiment 1 by

negative bootstrap and asymmetric bagging respectively, we

apply them for concept search in the 1M test set. We take the

intersection between VOC and NUS-WIDE concepts as the

query concepts: ‘airplane’, ‘bird’, ‘boat’, ‘car’, ‘cat’, ‘cow’,

‘dog’, ‘horse’, ’person’, and ‘train’. As there is no ground-

truth available for the 1M set, we manually check for genuine

positives in the top ranked images. To reduce the manual

annotation effort and potential labeling bias towards certain

runs, we employ a pooling mechanism similar to the TRECVid

benchmark [44]. For each run, we put its top 20 ranked images

into a common pool without indicating their origin. For a

given concept, we label an image as positive if the concept

is (partially) visible in the image. Artificial correspondences

such as drawings, toys, and statues are labeled as negative.

Notice that for image search by visual classifiers, we

deliberately treat the 1M test set as unlabeled. But because

the test images are already associated with user tags, this

allows us to compare the two algorithms further in a reranking

scenario: applying the classifiers to rerank tag-based image

search results. For the reranking experiment, we construct

the initial tag-based search results using search-by-tag, which

sorts images labeled with a target concept in descending order

according to the time they were uploaded.

Experiment 4. Qualitative Analysis of Relevant Negatives.

To gain a more intuitive understanding of negative bootstrap,
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we examine negatives which are most misclassified in each

iteration. Recall that the negatives are associated with user

tags. In order to quickly see which negative classes are most

relevant to a given concept, we employ tag clouds to visualize

the distribution of user tags in the selected negatives.

C. Implementations

To train visual classifiers, we use the popular bag of

keypoints plus SVMs pipeline [37], [38], [45]. To extract bag

of keypoints features, we choose dense sampling to locate

keypoints and the SIFT as keypoint descriptors [37]. We create

a codebook of 1,024 bins by running K-means clustering on

SIFT descriptors extracted from a holdout set of random Flickr

images. With the descriptors quantized by the codebook, each

image is represented by a 1,024-dimensional l1-normalized

dense-SIFT histogram. We train two-class SVMs using LIB-

SVM [41]. For the parameter C, we empirically find that

setting it to be 1 is a good choice.

To study the influence of different parameters on the effec-

tiveness of negative bootstrap, we vary the size of the candidate

set Ut by setting m to be fivefold, tenfold, and fifteenfold

of |B+|, respectively. We choose the number of segments q
from {50,100}, and set the number of iterations T to 50. Our

experiments show that the algorithm is robust to the parameter

changes. Hence, unless specified, we use the following setting:

m=10×|B+|, q=100, and T=50.

For the implementation of asymmetric bagging, we follow

[17] but use the full feature space rather than random sub-

spaces, as studying random subspaces is beyond the scope

of this paper. In the t-th iteration, random sampling selects

B
(t)
−

at random to train a classifier, while asymmetric bagging

uniformly combines the classifier and t-1 classifiers generated

in the previous rounds.

To reduce the chance of incorrectly selecting genuine pos-

itives for a given concept w, we remove images labeled with

w or its semantically related tags [24]. We observe that if an

image is labeled with visual concepts, but not labeled with

w or its semantically related tags, the image tends to be a

negative example of w. We implement the set of related tags as

the union of childnodes of w in WordNet [46] and tags closest

to w according to their Normalized Google Distance [47].

Notice that the tag reasoning is conducted in the tag space,

rather than in the visual feature space where categorization is

performed. Hence we obtain reliable negatives, amongst which

we expect sufficient samples that are relevant for training

classifiers.

Evaluation Criteria. We adopt Average Precision (AP), a

common choice for evaluating visual search engines [36],

[44]. As AP measures the ranking quality of the entire list

while a user may be interested in the top ranked results, we

report precision at 20 (P20) in addition to AP. The overall

performance is averaged over the concepts.

V. RESULTS

A. Experiment 1. Negative Bootstrap vs. State of The Art

As shown in Fig. 2, negative bootstrap compares favor-

ably to random sampling and asymmetric bagging. In the
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(b) Test set: NUSfuture

Fig. 2. Experiment 1. Negative Bootstrap vs. State of the Art. The
number of positive training examples per concept is 100. Negative bootstrap
outperforms both random sampling and asymmetric bagging.

first round, as no classifier is available, all algorithms start

with the same negative set B
(1)
−

, and consequently produce

the same classifier G1(x). Afterwards, while the baselines

continue selecting random negatives, our algorithm starts to

search for the most relevant negatives. The performance of

random sampling varies due to the random factor in sampling.

Asymmetric bagging reduces such variance by combining

meta classifiers. Moreover, as the meta classifiers are trained

on distinct negative sets, the combined classifier is more suited

for test data of diverse content. Because of this, asymmet-

ric bagging yields larger improvements on NUSfuture than

VOC08val. The random sampling runs has an averaged mAP

of 0.262 on VOC08val and 0.131 on NUSfuture. In compar-

ison, asymmetric bagging obtains a relative improvement of

3% on VOC08val and 10% on NUSfuture in terms of mAP.

Compared to asymmetric bagging, negative bootstrap obtains

a relative gain of 14% on VOC08val and 18% on NUSfuture.

Recall that all the three algorithms use the same positive
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(b) 100 positive examples
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(c) 500 positive examples

Fig. 3. Negative Bootstrap vs. Asymmetric Bagging: A Concept-by-Concept Comparison. We report results on the 81 concepts in NUSfuture, measured
in terms of average precision. Falling at the left side of the reference line x=0 means asymmetric bagging is better, while falling at the right side means
negative bootstrap is better. Given varying amounts of positive training data, (a) 20 positive training examples, (b) 100 positives, and (c) 500 positives, negative
bootstrap outperforms asymmetric bagging for all settings. Moreover, more positive training data results in larger improvements.

data. The results allow us to conclude that negatives found by

negative bootstrap are more relevant than randomly sampled

negatives for learning visual concepts.

Further, to reveal whether the improvement is merely con-

tributed by very few concepts, we make a concept-by-concept

comparison, as shown in Fig. 3. Given the same amount

of positive training data B+, negative bootstrap outperforms

asymmetric bagging. More positive training data results in

larger improvements. When only 20 positive examples are

used for training, for 55 out of the 81 concepts in NUSfuture,

negative bootstrap beats asymmetric bagging. When |B+|
increases to 100 and 500, the number of winning concepts

increases to 62 and 64, respectively. These results show the

viability of negative bootstrap.

The improvement over asymmetric bagging is obtained at

the price of increasing training time. While it takes asymmetric

bagging 18 seconds to train 50 meta classifiers, negative

bootstrap with model compression costs 77 seconds.

To further justify the necessity of classifier ensemble, we

pool the negatives obtained from each iteration to learn just

one classifier. To cope with class imbalance, the positive

and negative classes are assigned with different cost factors

according to the reciprocal of their distribution in the training

data. The single classifier with an mAP of 0.258 on VOC08val

and 0.151 on NUSfuture is less effective than the ensemble.

As shown in Fig. 4, purely expanding the positive data is

less effective than adding relevant negatives for defining a

proper class boundary. As random negatives are often distant

from the boundary, their gain is also relatively limited. It is

clear from Fig. 4 that relevant negatives are the best, and

require no new annotation. Negative bootstrap is thus attractive

towards expansion to more and more concepts.

TABLE II
EXPERIMENT 2. THE INFLUENCE OF MODEL COMPRESSION. THE

PERFORMANCE OF NEGATIVE BOOTSTRAP with AND without MODEL

COMPRESSION ON THE TWO BENCHMARK SETS.

VOC08val NUSfuture

Metric without with without with

mean Average Precision 0.306 0.304 0.171 0.171
Precision at 20 0.503 0.512 0.436 0.443
Test time (seconds) 190 0.6 5,664 18

B. Experiment 2. The Influence of Model Compression

As shown in Fig. 5, the training time of negative bootstrap

without model compression grows quadratically with respect

to the number of iterations. In contrast, model compression

reduces the training time from 1,736 seconds to 77 seconds.

Using the compressed model, we also achieve faster concept

search. As shown in Table II, to search for a specific concept

on NUSfuture, applying the 50 meta classifiers takes 5,664

seconds. With model compression, we finish the search process

in 18 seconds approximately. The advantage becomes more

clear when we deal with larger collections. The result verifies

the efficiency of model compression.

As shown in Table II and Fig. 2, negative bootstrap with

model compression, reaching an mAP of 0.304 on VOC08val

and 0.171 on NUSfuture, is as effective as negative boot-

strap without model compression. For a more comprehensive

comparison, we perform a paired t-test on NUSfuture, and

obtain a p value of 0.90 for mAP and 0.38 for P20. Since

the value is much larger than the standard 0.05 significance

level, the performance difference between the two runs are

not statistically significant. The results allow us to conclude

that model compression substantially accelerates the negative

bootstrap process, meanwhile the effectiveness of negative
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Fig. 4. Comparing different strategies for adding new training examples.
Meta classifiers in each iteration are trained on 20 positives and 20 negatives.
Testset: NUSfuture. Compared to adding new positive examples by ‘sampling
positives’ and adding random negative examples by ‘asymmetric bagging’,
adding relevant negatives by ‘negative bootstrap’ is most effective.
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Fig. 5. Model Compression accelerates Negative Bootstrap. Training
time is measured throughout the negative bootstrap process, including meta
classifier training, negative example selection, and model compression.

bootstrap is maintained.

Concerning the impact of different parameters on negative

bootstrap, reducing q from 100 to 50 has a negligible impact on

the performance. Because the memory footprint of compressed

models is proportional to q, this result is attractive when we

want to cache many classifiers into memory. The choice of

m mainly affects the first few iterations. For instance, the

performance curves with m=15×|B+| dip at T = 2 (data not

shown). This is because g2(x, ω) is derived from B
(2)
−

, which

are the most misclassified negatives by G1(x, ω), and thus

very distinct from generic negatives. Consequently, g2(x, ω) is

less effective for classifying generic negatives. Nevertheless,

as subsequent classifiers are designed to be complementary to

their ancestors, such ineffectiveness is tentative and resolved

by adaptive sampling. We observe that the performance curves

converge after 20 iterations. We recommend the following

parameters: m=10×|B+|, q = 50, and T = 20.

C. Experiment 3. Negative Bootstrap for Concept Search in

Large Data

As shown in Table III, when user tags are available, the

SearchByTag run has a P20 of 0.745. When reranking the tag-

based search results by visual classifiers, both asymmetric bag-

ging and negative bootstrap improve the performance, making

P20 close to 1. In such a reranking scenario, negative bootstrap

is slightly better than asymmetric bagging. When no user tags

are given, as in a typical scenario of visual concept search in

unlabeled data, classifiers trained on the relevant negatives are

more accurate than classifiers trained by asymmetric bagging,

with an absolute improvement of 0.245. For a more intuitive

comparison, we show some image search results in Fig. 6.

Because we continuously select the most relevant negatives,

the ensemble classifier imposes a more tight boundary around

the positive examples. As a consequence, classifiers trained

on relevant negatives are more discriminative. In addition,

with the compressed models on our machine it only takes

approximately 6 minutes to scan 1M images per query, which

would be over 20 hours without model compression.

D. Experiment 4. Qualitative Analysis of Relevant Negatives

As we use the Dense-SIFT feature, negative examples

visually close to the positives in terms of their visual context

are recognized as the most relevant negatives for training (see

Fig. 7). For the concept ‘car’ as shown in Fig. 7(b), one might

expect images of ‘bus’ in the relevant negative set as the

two concepts often appear in a similar visual context, e.g.,

a street scene. Because the two concepts have a high co-

occurrence in user tagging, ‘bus’ is treated as semantically

related to ‘car’ by the tag reasoning strategy. Consequently,

images labeled with ‘bus’ are automatically excluded by this

strategy. As an alternative, negative bootstrap automatically

finds ‘firetruck’ as the most relevant class. Since ‘truck’ and

‘bus’ have similar visual patterns, the ‘car’ classifier with

‘firetruck’ as negatives can still distinguish ‘car’ from ‘bus’.

The results show the merit of negative bootstrap, even when

the selected negative classes might not be the first option

in terms of a human’s perception. For some concepts such

as ‘window’, ’person’, and ‘grass’, we find that asymmetric

bagging performs better. This is largely due to the fact that

these concepts are frequently present in the background and

they are less labeled by user tagging. Because there is no

manual verification in the negative bootstrap process, some

genuine positives are incorrectly included in the negative

set, as shown in Fig. 7(c). Nevertheless, for the majority of

the concepts in consideration, we observe improvements. In

addition, we have manually checked the error rate of the

selected negatives for the 20 VOC concepts as shown in Fig. 8.

Reliable negatives can be obtained at an averaged error rate of

0.042. In sum, the qualitative and quantitative results further

demonstrate the effectiveness of negative bootstrap in finding

relevant negatives for learning visual classifiers.
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TABLE III
EXPERIMENT 3. NEGATIVE BOOTSTRAP FOR VISUAL CONCEPT SEARCH IN LARGE DATA, MEASURED IN TERMS OF PRECISION AT 20. IN THE

COMPARISON BETWEEN NEGATIVE BOOTSTRAP AND ASYMMETRIC BAGGING, THE WINNER IS INDICATED BY A GRAY CELL.

Rerank by visual classifier Search by visual classifier

Concept Search by tag Asymmetric Bagging Negative Bootstrap Asymmetric Bagging Negative Bootstrap

airplane 0.750 1.000 0.950 0.750 0.750

bird 1.000 0.950 0.950 0.150 0.800

boat 0.850 1.000 0.950 0.800 0.950

car 0.600 0.850 1.000 0.500 0.900

cat 0.650 0.900 1.000 0.200 0.650

cow 0.550 1.000 1.000 0.150 0.150

dog 0.900 1.000 1.000 0.250 0.450

horse 0.800 0.950 1.000 0.350 0.650

person 0.800 1.000 1.000 1.000 0.850

train 0.550 0.950 0.950 0.400 0.850

MEAN 0.745 0.960 0.980 0.455 0.700

(a) Searching for ‘car’ by asymmetric bagging

(b) Searching for ‘car’ by negative bootstrap

(c) Searching for ‘bird’ by asymmetric bagging

(d) Searching for ‘bird’ by negative bootstrap

Fig. 6. Search for visual concepts in one million images by visual classifiers. The top 30 results are shown. Notice that the results are obtained using
the visual classifiers alone, without taking user tags into account. A red border indicates a false positive result. Best viewed in color.

VI. SUMMARY AND CONCLUSIONS

Given widely available user-tagged images online, in this

paper we study which images are relevant negatives for

learning visual concept classifiers. To that end, we propose

Negative Bootstrap. Given a specific concept and a few posi-

tive examples, the new algorithm combines random sampling

and adaptive selection to iteratively find relevant negatives.

To address the inefficiency in applying ensemble classifiers,

we introduce Model Compression to compress an ensemble

of histogram intersection kernel SVMs. Consequently, the

prediction time is independent of the size of the ensemble. To

justify our proposals, we exploit 610K user-tagged images as

pseudo negative examples, and conduct visual concept search

experiments on two popular benchmark sets and a third test

set of one million Flickr images.

The experimental results allow us to draw a number of

conclusions. First, relevant negatives can be selected from

those negatives which have the highest probability of being
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(a) Relevant negatives of ‘bear’ (b) Relevant negatives of ‘car’

(c) Relevant negatives of ‘window’ (d) Relevant negatives of ‘moon’

Fig. 7. The 80 most relevant negative examples for a specific concept, found by negative bootstrap. By visualizing the distribution of user tags in the
selected negatives as a tag cloud, we see which negative classes are most relevant to a given concept.

misclassified, but with no need of actually labeling any neg-

ative examples. Compared to classifiers trained on randomly

sampled negative examples, classifiers derived from such rel-

evant negative have better discrimination ability. Compared to

asymmetric bagging, the new algorithm obtains a relative gain

of 14% and 18% in terms of mean average precision on the two

benchmarks. Second, the confinement of the class boundary to

just the area of the class and nothing more by adding relevant

negatives proves to be as important as the extension of the

class boundary by adding new positives. Without introducing

annotation overhead, relevant negatives are key to expansion

to more classes. Third, model compression substantially ac-

celerates training and testing, while at the same time the

effectiveness of negative bootstrap is maintained. For visual

concept search in the 1M set, model compression reduces the

search time from tens of hours to just a few minutes.
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Fig. 8. Error rate of negative training examples selected by negative

bootstrap. The error rate is the proportion of (manually checked) genuine
positives in the negative training data. Despite the absence of manual
verification, for the majority of concepts, reliable negatives can be obtained
at an averaged error rate of 0.042.

As the results suggest, when combined with the latest

achievements in obtaining positive examples, negative boot-

strap brings learning thousands of visual concepts with good

discrimination ability within reach. What is more, model

compression facilitates learning visual concepts on demand by

classifier ensembles. Negative bootstrap opens up interesting

avenues for future research.
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