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Abstract—Learning video concept detectors from social media sources,
such as Flickr images and YouTube videos, has the potential to address a
wide variety of concept queries for video search. While the potential has
been recognized by many, and progress on the topic has been impressive,
we argue that two key questions, i.e., What visual tagging source is most
suited for selecting positive training examples to learn video concepts? and
What strategy should be used for selecting positive examples from tagged
sources?, remain open. As an initial attempt to answer the two questions,
we conduct an experimental study using a video search engine which
is capable of learning concept detectors from social media, be it socially
tagged videos or socially tagged images. Within the video search engine we
investigate six strategies of positive examples selection. The performance is
evaluated on the challenging TRECVID benchmark 2011 with 400 hours
of Internet videos. The new experiments lead to novel and nontrivial
findings: (1) tagged images are a better source for learning video concepts
from the web, (2) selecting tag relevant examples as positives for learning
video concepts is always beneficial and it can be done automatically
and (3) the best source and strategy compare favorably against several
present-day methods.

I. INTRODUCTION

Many videos are produced every day. In order to pinpoint arbitrary
fragments of a video with respect to a specific query, semantic labels
at a shot or even frame level are prerequisites. Consider for example
the amount of frames that are contained in the 72 hours of Internet
videos that are being uploaded to YouTube every minute. This leaves
us no other choice but to devise machine tagging mechanisms that
can detect visual concepts such as animal, building, and snow at the
frame level [2], [13]. The state-of-the-art in video concept detection
is to learn SVM classifiers from manually labeled frames represented
by visual code features [3], [17]. However, the expense of manual
labeling results in training examples with limited availability. As a
consequence, the performance of concept detection is bounded to a
narrow application domain where a limited array of concepts can be
reliably detected [19].

In order to detect all possible video concepts one can think
of, a promising line of research is to automatically acquire training
examples from social media, where many socially tagged videos and
images exist. Ulges et al. were among the first to learn video concepts
from YouTube [16]. In their system, if social tags of a video match a
given concept, all frames of the video are used as positive examples of
that concept. Setz and Snoek [12] conducted a pilot study on learning
video concepts from Flickr images, directly treating images labeled
with the concept as positives. However, social tags are known to
be unreliable and often irrelevant with respect to the visual content
they are describing [5], [7], [8], [15], [18], [20]. Hence, for learning
meaningful concept detectors from social media, selecting appropriate
examples from a proper data source is crucial.

Fig. 1. What visual tagging source is most suited for learning video concept
detectors?

As noted by Yang et al. [19], the performance of a concept
detector could degenerate severely if the training and the test videos
are from different genres, e.g., broadcast news and documentaries.
However whether this will also hold true in a cross-source scenario,
say applying image classifiers on video data, has not been investigated
yet. We observe prevailing usage of socially tagged videos as the
training source of choice [4], [15], [16], [18], even though selecting
positive training examples from videos is more difficult than selecting
positive examples from images. This is not only because video tags
are noisy, but also a question on how to propagate tags to the frame
level is still open [1], [4]. However whether propagating the tag to the
frame level is more beneficial then simply using the tagged images
has not been addressed yet. The research question thus arises: What
visual tagging source is most suited for selecting positive training
examples for learning video concept detectors?, see Figure 1.

To acquire accurate positive examples from social media, a
common approach is through a retrieval process, where socially
tagged examples are first ranked in terms of their estimated relevance
scores with respect to a given concept [7], [14], [15], [20]. Then, the
top ranked proportion of the examples is preserved. In [7], [20], for
instance, a fixed number of examples are selected for every concept,
while [15] just tried a varying amount of frame fractions. Some even
ignored the unreliability of the social labels, and directly used tagged
videos [16] or tagged images [12] as positive examples. So the second
question arises: What strategy should be used for selecting positive
examples from tagged sources?.

We investigate in this paper what tagged sources and what strate-
gies are most suited for selecting positive training examples to learn
video concept detectors. We structure our paper as an experimental
study with a complete system that learns concepts from social media.
Our three main contributions are: First, we systematically compare
socially tagged videos and images as training data for video concept



Fig. 2. We perform an experimental study with a video concept search engine to evaluate what source and strategy are most suited for learning video concept
detectors from social media.

detection, resulting in new and non-intuitive findings. To the best of
our knowledge, such a comparison has not been done before. Second,
we compare six strategies for positive example selection. We show
that an automatic selection strategy of relevant positive examples
is possible, reaching a near-optimal selection. For now we rely on
a simple selection strategy, which in the future can be improved
with smarter sampling or more dedicated machine learning methods.
Third, the best source and strategy outperform several present day
alternatives on the challenging TRECVID benchmark.

II. RELATED WORK

In a representative work by Ulges et al. [16], video concept
detectors are trained using YouTube videos by directly treating social
tags as relevant labels for all video frames. Wang et al. [18] follow a
similar approach, but use a set of manually labeled videos to bootstrap
the learning process. Setz and Snoek [12] investigate whether Flickr
images can be exploited as a direct training resource for learning
video concepts. Notice that none of the above works compares which
source is a better choice. This study covers the approaches of Ulges et
al. [16] and Setz and Snoek [12], naming them as the ALL-FRAME
and the ALL-IMAGE baselines respectively.

For video it is easy to observe that even when tags are relevant
at the video level, it does not imply that the tags are relevant for all
shots and frames as well. Ulges et al. [15] model the relevance of
video (key)frames with density estimation in the feature space. Thus,
if a video is labelled with multiple tags, their method would not
find representative frames for all tags separately, since their density
estimation operates on the feature space, not the tag space.

Positive example estimation of tagged images has been addressed
by many using the semantic field of the user provided tags [20],
or by neighbor voting of visual neighbors [5]. The semantic field
method [20] determines tag relevance in terms of tag-wise similarity.
Since the semantic field considers the tags only, it cannot identify
relevant frames for individual tags. Li et al. [5] learn the relevance of
tags accompanying an image with a neighbor voting algorithm. They
exploit the observation that similar tags issued for similar images
are reliable, by accumulating tag votes over visually similar images.

Including a diverse set of visual features in the neighbor voting
algorithm further improves the effectiveness of tag relevance [6]. An
alternative to tag relevance is proposed by Liu et al. [8]. Their method
is also founded on neighbor voting, but the neighbors are weighted
with a Gaussian function. Since [8] restricts the neighbors to be
images labeled with the tag, while [5] exploits the entire collection,
we consider the latter better suited for positive example selection.

In the literature, the top ranked proportion of the examples is
preserved [7], [20], or multiple fractions are evaluated and the best
one is determined at the expense of annotation labor [15]. Li et
al. [4] bypass the selection problem by relying on Multiple Instance
Learning (MIL) [11] to estimate the relevance of a video tag at shot
level. In a MIL setting, instances are organized into bags and it is
the bags, instead of individual instances that are labeled for training.
In [4] the tagged videos are considered as labeled bags, and the
frames are the instances. If a video is labeled with a concept, all
its frames are considered as positive. However, the base MIL model
[11] will hurt if videos are miss-labelled, and it is known that the
social tags are imperfect and ambiguous. To overcome this obstacle,
[4] calculates a tag correctness score and uses it as a weight in the
optimization function of the MI logistic regression. For a test frame,
its predicted score is further smoothed using scores of its temporal
neighbors. However it has been shown that for content based image
retrieval, supervised learning is superior over MIL [10]. This study
evaluates [11] and [4], naming them as MIL and MIL+ respectively.
We investigate whether surpassing the selection problem, like is done
in MIL, is a better strategy than selecting the positive examples before
training a concept detector.

III. EXPERIMENTAL VIDEO SEARCH ENGINE

To answer the research questions raised in the introduction, we
structure our paper as an experimental study with a complete system
that learns concepts from social media. We identify three key compo-
nents of such a general system, A) harvesting social media sources,
B) diverse strategies for selection of positive training examples and
C) concept detection using state-of-the-art implementation e.g., [3],
[17]. The dataflow of our system is highlighted in Figure 2.



TABLE I. POSITIVE EXAMPLES FOR 20 CONCEPTS IN BOTH THE
TAGGED VIDEO AND TAGGED IMAGES DATASETS.

Concept YouTube Videos Video Frames Flickr Images

Animal 191 7506 7506
Beach 185 6554 6554
Building 197 5207 5207
Car 192 8508 8508
Child 174 6938 6938
City 169 8326 8326
Face 169 7210 7210
Hand 179 5835 5835
Landscape 181 4005 4005
Mountain 181 6445 6445
Oceans 150 5755 5755
Outdoor 184 6103 6103
Plant 151 5139 5139
Road 170 8047 8047
Sky 154 6261 6261
Snow 177 7467 7467
Sports 196 6685 6685
Streets 141 7493 7493
Trees 158 5805 5805
Vehicle 184 4621 4621

A. Harvesting social media sources

We harvest two type of media sources, tagged videos and tagged
images. The tagged videos are collected from YouTube, which is one
of the most popular service for video sharing. The tagged images are
selected from Flickr as one of the most popular sharing service for
images. We learn detectors for 20 concepts, covering objects like Car,
Plant and scenes like Outdoor, Landscape. We name the two sources
as Tagged Videos and Tagged Images.

Tagged Videos. In order to construct a diverse set, we collect
videos retrieved by four distinct ranking criteria, i.e., view count,
relevance, date published and user rating. We obtain for each of the 20
concepts four lists of retrieved videos and their metadata, containing
videos id, tags, author, video duration etc. The date published ensures
that new instances of concepts like Car and Building models are
covered. We include in our dataset the top 50 retrieved videos
from each of the four ordering criteria. Hence, for each concept we
download the most viewed, most relevant, most recently uploaded
and best rated videos. We shot segment each video and define the
middle frame of each shot as a keyframe. Since we want to show the
influence of frame selection, we maintain only those videos that have
at least two shots. This process resulted in 200 hours of web video
and 130K keyframes.

Tagged Images. We adopt the Flickr image collection from [5].
The images are of medium size with width or height fixed to 500
pixels. A subset from this dataset is selected as training source for
videos. Considering fair comparison, the number of images for each
of the 20 concepts we maintain the same as the number of frames
from the Tagged Videos dataset. In total, this collection has 130K
images.

The number of examples per concept for both sources are shown
in Table I.

B. Selection strategies

Given a specific concept ω, we select positive training examples
from the two sources described in Section III-A. Let x be such an
example in consideration. Depending on the source of training data,
x is either an image labeled with ω or a frame extracted from a
video labeled with ω. One selection strategy is to rely on the social
tags and to randomly select tagged examples x with the concept ω.

However, as aforementioned, due to the subjective nature of social
tagging, simply treating x as a positive example may be problematic.
Therefore another strategy is to calculate tag relevance per example,
and then select the top ranked examples. For every example x labeled
with concept ω, we use the multi-feature variant of the neighbor
voting algorithm [6] to compute tag relevance scores.

The tag relevance scores allow us to rank the examples such
that the most relevant examples are deemed to be placed at the top.
As noted earlier, how many of the top examples should be selected
remains a question. Instead of setting an ad hoc threshold, in this
work we make an endeavor to determine a cut-off automatically. To
this end, we consider a simple strategy, calculating which example
x should be selected based on some decision rule. We employ the
Bayesian decision rule because of its effectiveness. For each example,
we use s to denote its tag relevance score and r to denote the
corresponding rank, where r = 0, . . . , n− 1, and n is the number of
examples labeled with ω.

We observe that the first tag relevant example is very often a
positive response, see Figure 3. Hence, we use this first-hit example
as a reference point to estimate the probability of the other examples
being positive. In that regard, we introduce a binary random variable
y, where y = 1 means x is positive, and 0 otherwise. The problem of
positive example selection boils down to estimating the conditional
probability p(y = 1|x). With the Bayesian decision theorem, we
define the selection rule simply as:





x is selected, if
p(y = 1|x)

p(y = 0|x)
> 1,

unselected, otherwise.
(1)

For computing p(y = 1|x), we have access to two observations with
respect to x, i.e., the relevance score s, and the corresponding rank r.
Using a single observation is limited, since the scores are discrimina-
tive but less robust, while the quantized ranks tend to be more robust
but less discriminative. Hence, we consider their combination, which
should result in a better estimation of p(y = 1|x). Using probability
algebra, we have p(y|x) = p(y|s, r) = p(s, r|y)p(y)/p(s, r). For
p(s, r|y), we make a practical simplification by estimating it through
p(s|y) · p(r|y). We also expand p(s|y) and p(r|y) using Bayes’
theorem. Accordingly, we rewrite

p(y|x) ≈ p(y|s)p(y|r)p(s)p(r)

p(s, r)p(y)
, (2)

For the unknown prior p(y), an uniform prior assumption is reason-
able, and the decision function is

p(y = 1|x)

p(y = 0|x)
=

p(y = 1|s)p(y = 1|r)
p(y = 0|s)p(y = 0|r) . (3)

With the intuition that examples with larger tag relevance scores and
higher ranks are more likely to be positive, we simply approximate
p(y = 1|s) as

p(y = 1|s) ≈ s

smax
, (4)

where smax is the score of the top ranked example, and compute
p(y = 1|r) as

p(y = 1|r) ≈ 1− r

n
. (5)

C. Concept detection

We follow a state-of-the-art bag of visual codes pipeline to train
video concept detectors [17]. We compute SIFT, OpponentSIFT and



Fig. 3. Positive training examples automatically selected from social media by
this paper. Left columns show the selected images and frames, while the right
columns show images and videos labeled with a given concept but discarded
by the selection strategy for relevant examples.

RGBSIFT descriptors at (1) Harris-Laplace keypoints and (2) dense
sampled points, at every 6 pixels for two scales. As visual features we
employ a spatial pyramid of 1x1 and 1x3. The codebook size is 4,096,
constructed with k-means clustering. As classifier we employ a one-
vs-all Support Vector Machines with the fast histogram intersection
kernel [9] for its high efficiency. The SVM models are optimized by
3-fold cross validation.

IV. THREE EXPERIMENTS

A. Test Set

As test data we adopt the challenging internet video collection
from the TRECVID 2011 benchmark [13]. We use the development
dataset provided for the Semantic Indexing task, which consists of 400
hours of Internet Archive videos, having 263,355 shots. Each shot is
represented with a single keyframe. The dataset comes with ground
truth annotations on a keyframe level, including the 20 concepts
identified in our experiments. We evaluate all runs on this set.

B. Experiment 1: What source?

In experiment 1 we address the research question what visual
tagging source is most suited for selecting positive training examples
to learn video concepts?. We use the Tagged Videos and the Tagged
Images described in Section III-A as instantiations of two distinct
visual tagging sources. We learn concept detectors using the ALL-
FRAME [21] and the ALL-IMAGE [15] scenarios separately, and
compare their performance.

C. Experiment 2: What strategy?

Besides the ALL-FRAME and the ALL-IMAGE baselines, we
introduce the following six additional example selection strategies,
where the first three are based on the Tagged Videos and the last
three are based on the Tagged Images.

Strategy 1a. Relevant Frames. We calculate a tag relevance score for
each keyframe before ranking. A fraction of the top ranked frames for

TABLE II. EXPERIMENT 1: WHAT SOURCE? ANSWER: SOCIALLY
TAGGED IMAGES.

Concept Tagged Videos Tagged Images

Animal 0.053 0.088
Beach 0.278 0.386
Building 0.343 0.496
Car 0.164 0.249
Child 0.048 0.104
City 0.067 0.137
Face 0.359 0.660
Hand 0.098 0.169
Landscape 0.317 0.539
Mountain 0.079 0.495
Oceans 0.106 0.472
Outdoor 0.747 0.696
Plant 0.171 0.198
Road 0.193 0.358
Sky 0.311 0.554
Snow 0.092 0.289
Sports 0.119 0.127
Streets 0.119 0.202
Trees 0.490 0.704
Vehicle 0.225 0.282

mAP 0.219 0.360

each concept are selected as positive training examples. We vary the
fraction to investigate the influence of a varying number of positive
examples.
Strategy 1b. Random Frames. We randomly sample positive frames
from the Tagged Videos for each concept. We vary the number of
sampled positive examples to investigate their influence.
Strategy 1c. Automatic Frame Selection. We rely on the same
frame ranks as in strategy 1a, but here we estimate the selection
with the simple Bayes approach described in section III-B.

Strategy 2a. Relevant Images. We calculate a tag relevance score for
each image before ranking. A fraction of the top ranked images for
each concept are selected as positive training examples. We vary the
fraction to investigate the influence of a varying number of positive
examples.
Strategy 2b. Random Images. We randomly select images from the
Tagged Images as positive training data per concept. We vary the
number of selected positive examples to investigate their influence.
Strategy 2c. Automatic Images Selection. For this strategy we rely
on the images ranked by tag relevance per concept. Due to the large
variance of the tag relevance scores for Tagged Images, we smooth
the scores using the common logarithm. We estimate the selection
with the simple Bayes approach described in section III-B.

We would like to stress that the same set of negatives were
used for all video strategies 1a, 1b, 1c and the All-FRAME baseline.
For each concept we sample the negatives randomly from the other
concepts and limit the number to five times the number of positive
examples. For the image strategies 2a, 2b, 2c and the All-IMAGE
baseline we follow a similar protocol, but here the negatives are
sampled from images. While we are aware that selecting appropriate
negative examples per concept benefits generalization [7], we prefer
to keep the set of negatives constant in our experiments so that we
can properly evaluate the influence of selecting positive examples.
We refer to Table I for the numbers.

D. Experiment 3: Present-day comparison

We compare the sources and strategies with four present day
methods we discussed in section II.: Multiple-instance learning (MIL)
[11], Context aware multiple-instance learning with temporal smooth-
ing (MIL+) [4], ALL-FRAME [16] and ALL-IMAGE [12]. For MIL



TABLE III. EXPERIMENT 2: WHAT STRATEGY? ANSWER: USING AUTOMATIC RELEVANCE SELECTION OF POSITIVE EXAMPLES FROM VISUAL
TAGGING SOURCES.

Strategies using tagged videos Strategies using tagged images

Concept 1a. Lower-bound 1a. Upper-bound 1b. Random 1c. Automatic 2a. Lower-bound 2a. Upper-bound 2b. Random 2c. Automatic

Animal 0.059 0.085 0.039 0.081 0.100 0.110 0.092 0.110
Beach 0.278 0.267 0.262 0.276 0.301 0.358 0.360 0.359
Building 0.350 0.372 0.181 0.379 0.457 0.532 0.475 0.531
Car 0.174 0.240 0.150 0.239 0.299 0.302 0.232 0.296
Child 0.052 0.068 0.042 0.060 0.099 0.108 0.099 0.111
City 0.075 0.136 0.061 0.103 0.147 0.156 0.121 0.158
Face 0.465 0.542 0.366 0.504 0.592 0.650 0.645 0.651
Hand 0.101 0.102 0.099 0.102 0.160 0.172 0.170 0.171
Landscape 0.328 0.466 0.234 0.427 0.474 0.538 0.525 0.539
Mountain 0.092 0.292 0.043 0.193 0.440 0.554 0.553 0.553
Oceans 0.113 0.383 0.183 0.353 0.468 0.496 0.486 0.490
Outdoor 0.763 0.777 0.800 0.824 0.725 0.754 0.677 0.737
Plant 0.174 0.273 0.155 0.263 0.164 0.185 0.195 0.187
Road 0.207 0.243 0.149 0.242 0.311 0.336 0.331 0.336
Sky 0.360 0.378 0.230 0.423 0.447 0.528 0.501 0.516
Snow 0.073 0.209 0.068 0.217 0.239 0.318 0.282 0.308
Sports 0.129 0.152 0.125 0.145 0.188 0.190 0.130 0.186
Streets 0.124 0.150 0.102 0.150 0.210 0.224 0.179 0.215
Trees 0.504 0.553 0.492 0.548 0.599 0.677 0.669 0.681
Vehicle 0.194 0.281 0.162 0.313 0.307 0.316 0.272 0.314

mAP 0.231 0.298 0.197 0.292 0.336 0.375 0.350 0.372

we use the publicly available code of [11]. The first three approaches
rely on the Tagged Videos, whereas the last approach relies on the
Tagged Images. We report results on the Test Set.

Evaluation criteria. We adopt average precision, a common
approach in the video retrieval literature [13] and mean average
precision to evaluate the overall performance.

V. RESULTS

A. What source?

We summarize the results of experiment 1 in Table II. Better
detectors are obtained from the Tagged Images than from the Tagged
Videos. When simply using all available tagged images for training,
we obtain an mAP of 0.360, where for the video alternative we obtain
an mAP of 0.219. We observe more genuine positives selected from
the Tagged Images than the Tagged Videos. Selected training examples
are shown in Figure 3. We attribute the difference in relative gain
of tagged images over tagged video frames to their better annotation
quality and to the fact that videos have more irrelevant content. When
a tag is assigned to a complete video, often only a small fraction of
the video content is relevant to the tag. We conclude from the results
that tagged images are a better source than tagged videos for learning
video concept detectors.

B. What strategy?

Figure 4 shows the performance curve of concept detectors
derived from positive examples selected by the six strategies. Using
images as training source is better than video for all strategies.
Relevance selection is in general better then randomly selecting
frames or images for all cut-offs in both sources as shown in Figure 4.
For the best possible relevant image selection (fraction = 0.6), we
gain a 7% relative improvement over the same amount of randomly
selected images. For the video alternative, we obtain the best possible
result for a fraction of 0.1, which obtains a 52% relative improvement
over random selection. There is a clear decrease in performance as
we select larger fractions of frames, see strategy 1a, Figure 4. Since
larger fractions contain more noisy data, i.e. frames that also have low
tag relevance score, the classifier learns less accurate models. In the
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Strategy 2a. Relevant Images
Strategy 2b. Random Images
Strategy 2c. Auto Selected Images

Fig. 4. Experiment 2: What Strategy? Training concept detectors with
video frames or images, after tag relevance selection is always beneficial.
The simple automatic selection is a good approximation of the best possible
selected fraction for both video frames and images.

case of tagged images there is less noise compared to tagged videos,
since the tag is directly appointed to the visual content of the image.
Consequently, for images larger fractions show better performance,
see strategy 2a, Figure 4. Selection of smaller fractions also ignore
relevant images, which results in training less accurate classifiers. It
is also important to note that with a selection of relevant examples
from the collections, apart from the gain in performance, we also
reduce the number of training examples which leads to a speed-up
during training.



TABLE IV. EXPERIMENT 3: PRESENT-DAY COMPARISON.

Strategies using tagged videos Strategies using tagged images

Concept MIL [11] MIL+ [4] ALL-FRAME [16] This Paper ALL-IMAGE [12] This Paper

Animal 0.032 0.040 0.053 0.081 0.088 0.110
Beach 0.053 0.079 0.278 0.276 0.386 0.359
Building 0.148 0.145 0.343 0.379 0.496 0.531
Car 0.130 0.130 0.164 0.239 0.249 0.296
Child 0.044 0.039 0.048 0.060 0.104 0.111
City 0.041 0.048 0.067 0.103 0.137 0.158
Face 0.357 0.376 0.359 0.504 0.660 0.651
Hand 0.081 0.076 0.098 0.102 0.169 0.171
Landscape 0.092 0.092 0.317 0.427 0.539 0.539
Mountain 0.030 0.030 0.079 0.193 0.495 0.553
Oceans 0.034 0.037 0.106 0.353 0.472 0.490
Outdoor 0.636 0.654 0.747 0.824 0.696 0.737
Plant 0.143 0.144 0.171 0.263 0.198 0.187
Road 0.147 0.147 0.193 0.242 0.358 0.336
Sky 0.229 0.242 0.311 0.423 0.554 0.516
Sports 0.041 0.040 0.119 0.145 0.127 0.186
Snow 0.028 0.032 0.092 0.217 0.289 0.308
Streets 0.103 0.102 0.119 0.150 0.202 0.215
Trees 0.372 0.407 0.490 0.548 0.704 0.681
Vehicle 0.128 0.138 0.225 0.313 0.282 0.314

mAP 0.175 0.180 0.219 0.298 0.360 0.372

The simple Bayes approach for automatic selection of positive
examples, approximates the best selection quite closely (see the
solid and dashed lines in Figure 4). In case of image selection it
outperforms the best possible relevant image selection (fraction =
0.6) for 9 concepts even. We conclude that selecting relevant images
and video frames is needed when learning concepts from the web.
The selection cut off can be estimated automatically. We employed a
simple Bayes approach, although more extensive sampling methods
can be incorporated in the future.

C. Present-day comparison

In Table IV we compare our system with present-day approaches.
When considering video as training source in a multiple instance
learning setting, MIL+ [4] improves 3% over MIL [11]. The results
confirm the value of context and temporal smoothing for identifying
appropriate video tags at frame level. When we follow the ALL-
FRAME strategy [16], which simply uses all frames of a tagged
video, rather than selecting, we obtain even better results than the
multiple instance approaches. The mAP for [16] results in a 22%
relative improvement over [4]. However, the automatic selection for
video frames outperforms all approaches for 19 out of 20 concepts.
When relying on images as training source for concept detectors we
observe similar behavior. The ALL-IMAGE strategy [12] reaches an
mAP of 0.360, clearly improving over video and resulting in the
best overall result for the concepts Face, Road, Sky and Trees. The
automatic selection of example images is the best performer with an
mAP of 0.372, and the top performer for 16 out of 20 concepts. We
conclude that training concept detectors from a tagged image source
using a relevant example selection strategy outperforms present-day
alternatives.

VI. CONCLUSION

For learning video concepts from social media, what visual
tagging source is most suited for selecting positive training examples
is an important yet open question. This paper is, and to the best of
our knowledge, the first endeavor to answer this question through
a systematic empirical study. Additionally we also investigate What
strategy should be used for selecting positive examples from tagged
sources?, since it is known that social tags can be unreliable.
Supported by experiments on a present day testbed, our major findings
are: 1) Tagged images are the preferred choice as training source,
when compared to tagged videos. Under all settings, concept detectors

trained on tagged images surpass their counterparts trained on tagged
videos, with an absolute improvement of approximately 10% in terms
of mAP. While images may not be one’s first option in the past
research, we find that the better annotation quality let them beat videos
with ease. 2) For both tagged videos and tagged images, selecting
positive examples from those with the largest tag relevance scores
is superior to getting positives at random. We show that relevant
examples can be selected automatically, obtaining a near-optimal
result. 3) Compared to several present day alternatives using all tagged
examples, or Multiple Instance learning, the selection strategy of
tag relevant examples produces better video concept detectors. To
conclude, to learn video concept detectors from social media, we
recommend relevance selection of tagged images.

VII. ACKNOWLEDGEMENT

This research is supported by the Dutch national program COM-
MIT and the Basic Research funds in Renmin University of China
from the central government (13XNLF05).

REFERENCES

[1] L. Ballan, M. Bertini, A. Del Bimbo, and G. Serra. Enriching and
localizing semantic tags in internet videos. In MM, 2011.

[2] S. Chang, D. Ellis, W. Jiang, K. Lee, A. Yanagawa, A. C. Loui,
and J. Luo. Large-scale multimodal semantic concept detection for
consumer video. In MIR, 2007.

[3] Y. Jiang, J. Yang, C. Ngo, and A. Hauptmann. Representations of
keypoint-based semantic concept detection: A comprehensive study.
TMM, 12(1):42–53, 2010.

[4] G. Li, M. Wang, Y.-T. Zheng, H. Li, Z.-J. Zha, and T.-S. Chua.
Shottagger: tag location for internet videos. In ICMR, 2011.

[5] X. Li, C. Snoek, and M. Worring. Learning social tag relevance by
neighbor voting. TMM, 11(7):1310–1322, 2009.

[6] X. Li, C. Snoek, and M. Worring. Unsupervised multi-feature tag
relevance learning for social image retrieval. In CIVR, 2010.

[7] X. Li, C. Snoek, M. Worring, and A. W. M. Smeulders. Harvesting
social images for bi-concept search. TMM, 14(4):1091–1104, 2012.

[8] D. Liu, X. Hua, L. Yang, M. Wang, and H. Zhang. Tag ranking. In
WWW, 2009.

[9] S. Maji, A. Berg, and J. Malik. Classification using intersection kernel
support vector machines is efficient. In CVPR, 2008.

[10] S. Ray and M. Craven. Supervised versus multiple instance learning:
An empirical comparison. In ICML, 2005.

[11] B. Settles, M. Craven, and S. Ray. Multiple-instance active learning.
In NIPS. 2008.

[12] A. Setz and C. Snoek. Can social tagged images aid concept-based
video search? In ICME, 2009.

[13] A. Smeaton, P. Over, and W. Kraaij. Evaluation campaigns and
TRECVid. In MIR, 2006.

[14] Y. Sun and A. Kojima. A novel method for semantic video concept
learning using web images. In MM, 2011.

[15] A. Ulges, C. Schulze, D. Keysers, and T. Breuel. Identifying relevant
frames in weakly labeled videos for training concept detectors. In CIVR,
2008.

[16] A. Ulges, C. Schulze, D. Keysers, and T. Breuel. A system that learns
to tag videos by watching youtube. In ICVS, 2008.

[17] K. van de Sande, T. Gevers, and C. Snoek. Evaluating color descriptors
for object and scene recognition. PAMI, 32(9):1582–1596, 2010.

[18] Z. Wang, M. Zhao, Y. Song, S. Kumar, and B. Li. Youtubecat: Learning
to categorize wild web videos. In CVPR, 2010.

[19] J. Yang and A. Hauptmann. (un)reliability of video concept detection.
In CIVR, 2008.

[20] S. Zhu, C.-W. Ngo, and Y.-G. Jiang. Sampling and ontologically pooling
web images for visual concept learning. TMM, 14(4):1068–1078, 2012.


