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Efficient Targeted Search Using a Focus and Context
Video Browser
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Currently there are several interactive content-based video retrieval techniques and systems available. However, retrieval per-
formance depends heavily on the means of interaction. We argue that effective CBVR requires efficient, specialized user inter-
faces. In this article we propose guidelines for such an interface, and we propose an effective CBVR engine: the ForkBrowser,
which builds upon the principle of focus and context. This browser is evaluated using a combination of user simulation and real
user evaluation. Results indicate that the ideas have merit, and that the browser performs very well when compared to the
state-of-the-art in video retrieval.
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1. INTRODUCTION

The sizes of various video collections both online and offline are increasing rapidly. Also, the available
techniques for analyzing and indexing such collections are extended every day. There is more to search
through, and there are more techniques to support the search process.

In video retrieval, we distinguish two types of search based on the reason for searching. The first
type is exploratory search where the goal is to get insight in the collection or browsing for unexpected
results. The second type is targeted search where the goal is to find multiple relevant items for a
clearly defined search need. This article focuses on making the latter as efficient as possible, though,
in practice, both methods are often intermixed within one system. Targeted video search can be split
into two separate stages. First, in the query stage the users employ a combination of access techniques
that then yield a set of results. Second, in the browse stage users go through these results to select
relevant items.
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In early research systems, search through video collections was done based on filenames, speech
transcripts, or existing user annotation. However, these do not necessarily reflect the actual visual
content. Video content analysis techniques [Lew et al. 2006; Snoek et al. 2007; Natsev et al. 2005;
Wang et al. 2007] resolve this by allowing users to query the video content itself using specialized
input queries. Most algorithms then yield a list of videos that the system deems relevant. It is then
up to the user to browse through this list to select relevant items. With many techniques available,
and many ways to specify a query, users need means of selecting the right technique with the right
parameters for a specific search need. Automatic selection systems do exist; see Natsev et al. [2007]
for an overview. However, controlled benchmarks such as TRECVID [Smeaton et al. 2006] have shown
that, compared to text search systems such as Google, accuracy is still quite limited.

Due to the limited accuracy, interaction is needed for almost all realistic video search tasks. Due to
the limited accuracy in almost all realistic video search tasks, an interactive browse stage is needed
after posing a query. Here, users have to determine whether the current query results are the best
results obtainable for each individual technique, given the user search need. The relatively low per-
formance of these individual techniques makes text domain tools, such as faceted search [Yee et al.
2003] where users iteratively narrow down search parameters in order to find the perfect result, not
directly applicable. The relevant results from individual techniques disappear entirely when combined
and filtered in such a way, long before the total list of results is narrowed down to a manageable level.
New interaction techniques are therefore needed.

In literature, and at benchmarks like TRECVID, we see a variety of systems, each with unique ap-
proaches to interactive search. Some of these interfaces are specifically geared toward finding relevant
results as fast as possible. For example, Hauptmann et al. [2006] use rapid serial visual presentation to
allow categorization of automatic results organized in batches up to nine images. The VisionGo [Luan
et al. 2007] system combines this with relevance feedback optimizing the stream of results the user is
seeing. In both systems the role of the user is limited to visually understanding images and selecting
correct results. Other systems allow for a more exploratory approach, and let the user decide what
to find or select. For example, Christel and Yan [2007] and Zavesky et al. [2008] employ a grid-based
structured visualization of results, with the ordering based on visual or storyboard-based and charac-
teristics. IBM Marvel [Yan et al. 2007] allows users to find results for multiple queries at once allowing
tagging of results with multiple labels. Whether a system is geared to finding specific results or to ex-
plore a collection, in both cases we see a tendency that interfaces which allow for fast and visually
extensive user interaction tend to provide better results.

Typically, the browse stage first requires users to assess the current element, and the possibilities for
navigation. To enhance assessment of both the current element and the navigation, we should leverage
the remarkable capability of humans to quickly perceive, understand, and make decisions about shown
image content. Similar issues have been thoroughly analyzed in the information visualization litera-
ture [Ware 2000], where focus and context techniques are proposed as an effective solution. In our case,
the focus is provided by the current element, which can be a single shot, or a series of shots. The context
is provided by the navigation options from this current element, that is, related shots. We propose to
make targeted search more efficient by developing a focus and context technique for video retrieval.

We start of from our MediaMill CrossBrowser [Snoek et al. 2007] which has been shown to be good at
targeted search when a good starting query is available, but is less effective at exploratory search. The
RotorBrowser [de Rooij and Worring 2010] allows the user to explore a collection using many degrees of
freedom, and is very usable for exploratory search in which users never backtrack to previous results
and have no fixed target. However, this also requires the user to pay attention to more navigation
directions, which slows down the speed in which users can navigate. The RotorBrowser is therefore
less suited for targeted search.
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Fig. 1. Basic workflow for targeted video search. First, in the query phase users pose a query, which yields a list of results. In
the browse phase users then start by inspecting the current set of results. This can be a single focal shot, or a set of shots, and
mark these as relevant. Users then navigate to a new set of results by using any of the available navigation options, and the
cycle repeats. More detailed implementations of the latter two phases will be presented in Figure 5.

Based on these insights and a careful analysis of the aforementioned systems we have developed a
set of design rules that we will describe in Section 2 leading to our ForkBrowser to be described in
Section 3. An evaluation of parameters for the browser is given in Section 4, followed by an evaluation
of effectiveness using simulations and at TRECVID.

2. TARGETED VIDEO SEARCH

The goal of any targeted search system is to allow users to find results for a specific search need in
the most efficient manner possible. In the query stage, users need to indicate their search need by
configuring various query techniques, each yielding a list of results. The browse stage which follows is
composed of two distinct actions. The user looks at some set of results and acts upon it, then the user
choose what to view next. After this there will be a new set of results, and the cycle repeats until the
user decides to stop the search process. See Figure 1 for an overview. In this section, we look at several
existing systems based on these two actions, and extract existing common-sense guidelines from these
systems. We will then use the combination of guidelines to design a browser for targeted video search.

Let us first define targeted search within a video collection more precisely.

Definition 1 (Targeted Video Search). Targeted video search is the act of finding multiple fragments
of video within a collection which answer a specific search need.

What this specific search need is depends on the user. This can vary between search for specific
people or objects, or more generic like search for indoor or outdoor scenes, scenes containing people,
animals, vehicles, or locations.

2.1 Structuring the Collection

Targeted video search relies on a combination of queries and on sebsequent navigation of the results
as well as exploring new parts of the collection. To unify these into one framework we follow de Rooij
and Worring [2010], that uses the notion of threads to define structure as follows.

Definition 2. A thread is a linked sequence of shots in a specified order, based upon an aspect of
their content.

A thread is in essence a ranking of (a part of) the collection, based on a specific feature similarity
space. As such, the output of any query interface in any search interface, which can have various
names in various systems but is often represented by a list of shots, can be called a thread.

We distinguish two types of threads based on the extra input required to generate them. The first
type is the static thread, defined as follows.

Definition 3. A static thread links shots in the collection without requiring extra input.

Static threads place a precomputed structure on top of a video collection. Each static thread can be
seen as a list of shots in which the order is important. An example of a static thread is the timeline

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 8, No. 4, Article 51, Publication date: November 2012.



51:4 • O. de Rooij and M. Worring

of a video: the list of shots starting with the first shot of a video and ending with the last shot of that
video.

The second type is the dynamic thread, that is defined on-the-fly based on some form of input. As an
example, the resulting ranked list of shots from a query would typically be a dynamic thread.

The type of input required for a dynamic thread varies from a single shot of input, to a set of shots. In
order to capture this difference we extend upon de Rooij and Worring [2010] and split dynamic threads
into two definitions.

Definition 4. A single shot dynamic thread links shots in the collection based on a single shot as
input.

Definition 5. A multishot dynamic thread links shots in the collection based on a series of shots as
input.

Together these thread types define navigation options through a video collection. In order to actually
navigate a collection we also need a position within the collection where users navigate from. For this
we define the focus as being the following.

Definition 6. The focal shot sf identifies the current position in the video collection.

Since each shot may be contained in various static threads, or can be the starting point for different
dynamic threads, there will be a series of threads containing sf . These threads span the context of
sf . In an interface typically only a part of this context will be visible, yielding the navigation context,
defined as follwos.

Definition 7. The navigation context for sf is the visible part of the set of threads which contain sf .

As a typical example: consider the user looking for the word “bicycle” in a large collection with a sys-
tem that allows text search and visual similarity matching. This word is present in speech recognition
texts for several shots, some more than others, and a dynamic thread linking these shots would be gen-
erated, with the first shot in the thread being the one with the word “bicycle” being present most times.
In an interface this thread would then be shown (in a list, a grid, or by some other means depending on
the system) and the first shot would be the focus shot. The system would then use similarity matching
on this focus shot to create another dynamic thread with, hopefully, more images of bicycles. Lastly,
the first shot was also part of some video, and therefore part of a timeline, which is a static thread. All
three threads could be displayed in the interface as the navigation context for the user. Users can then
choose a new focus shot by selecting any shot from the navigation context. Subsequently, this action
updates the navigation context, in which they can now find new results.

Using threads, we now look more closely at the inspection and navigation phases of Figure 1.

2.2 Inspection Phase

During targeted search users navigate through a collection, searching for specific items. When these
are found, they mark, label, or otherwise select them. For the purpose of this article we shall use the
shot as the unit of retrieval in video search, though other units, such as individual frames or entire
videos, are also possible.

During the inspection phase users have to look at a shot or a sequence of shots to determine if it
warrants any action. Many interactive video search engines depict a single keyframe from the shot,
and let users base their actions on that alone. However, the content at the beginning of a shot can be
quite different from the content at the end of that same shot. Also, video contains motion that cannot
be seen by only looking at a keyframe. This means that a shot cannot be represented by just a single
image.
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Besides the need to display more than the keyframe, the information content and visual complexity
of a shot vary [Sundaram and Chang 2001]. Also, certain search needs will require more attention to
detail from the users than others. Intuitively, when a search need is simple, for example, find shots
of grass, not much detail is needed to be able to see that a shot is relevant, and mark it as such, and
many shots can be marked at once. When a search need is more complex, such as find shots of a person
walking up the stairs users require more detail to accurately determine whether to mark shots.

The preceding observations lead to the following guidelines.

Guideline 1. The user has to be able to efficiently inspect the setting, scene, and all objects and
their motions within a shot, with the level detailed adapted to the complexity.

The interpretation of a single shot can change when its surroundings are changed, the so-called
Kuleshov effect. To ensure that users mark shots correctly they have to be able to access the timeline,
which is indeed shown to be important for video retrieval [Rautiainen et al. 2006; Adcock et al. 2005;
Christel et al. 2004; Snoek et al. 2007].

Guideline 2. The user has to be able to view the temporal context of video shots in order to deter-
mine the relevance of the current shot.

During the inspection phase users have to mark or label shots for relevance. This is often done by
clicking on a shot, or by pressing a key. Depending on the search task the number of available relevant
shots within the collection varies, and the local shot relevance density varies with it. Furthermore,
as stated in Guideline 1 the level of detail varies. When limited detail is needed more shots can be
visually inspected at once. The user therefore has to be able to choose between batch-labeling many
results at once or mark individual results one by one. Therefore, we have the next guideline.

Guideline 3. The user should be able to label multiple shots at the same time, when this is more
efficient.

2.3 Navigation Phase

When the current selection of shots has been mentally processed by the user, the user has the option to
navigate to different results. In our thread model this implies selecting any thread, and getting results
from there. The navigation context here, as given in Definition 7, yields the basis for further navigation
from this set.

During each interaction step users mark additional relevant shots from those visible. The shots that
are left unmarked are therefore irrelevant to the user search need, barring accidental misjudgments.
To continue the retrieval process, users need to be able to navigate to shots that have not been shown
before, therefore we have the following guideline.

Guideline 4. The system should show unexplored areas within the collection.

In a thread context this leads to threads containing the focal shot, but otherwise mostly unvisited
shots, having priority over threads which contain high numbers of previously visited shots. Typical
threads which yield unexplored areas are the time thread, since when there is one relevant shot in
a video there is a high chance that there are more nearby in the timeline, and the visual similarity
threads, which yield a set of visually similar results based on the focal shot, likely relevant to the
search need. Even when no relevant shots are present in the interface, users should still have a clear
idea of what to do next. The interface should therefore always present a viable default navigation
option to the users, even when no relevant shots are present in the current navigation context.

Guideline 5. The system should always yield a default navigation path.
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This covers where to navigate, but should a user browse through more retrieved results of the current
search query, or should he browse through related shots based on the current focus shot? Such a
decision needs to be made on the spot, and without too much repercussion when the wrong choice has
been made. This leads to following.

Guideline 6. The user has to be able to efficiently inspect the potential relevance of the navigation
options in the navigation context.

But, mistakes can and will be made, which should have limited impact on search performance. Fur-
thermore, users might decide later on that they would have liked to follow a different retrieval path
altogether. So, users should be able to go back to an earlier situation and choose again. To that end, we
use the observation that people are known to be good at visually [Ware 2000] or spatially [Robertson
et al. 1998] remembering earlier interface states, so this backtracking step should be made as visual
as possible.

Guideline 7. The system should aid the user to return to earlier navigation options by visual or
spatial means.

During this backtracking or any other navigation, the interface should remain consistent during
use, and not switch through various panes. Even though the focus sometimes stays the same when
this happens, this would remove or at least fragment the navigation context. This requires the users to
reexamine the interface and all visual components before they can continue, which takes a lot of time.
Therefore, we have the following.

Guideline 8. The interface should not switch between different panes.

Within this single interface pane we can further optimize the time between a user decision on a
visible shot and the response of the interface. This should allow users to make the next decision sooner.
An indirect means of interaction, such as using a mouse for controlling the navigation, yields extra
interface actions for users: they need to move the pointer to the correct shot, and then click on it.
If we eliminate this, users can respond faster. For example, the usage of efficiently placed keyboard
shortcuts would already allow experienced users to navigate through the collection without having to
resort to mouse movements, and browse and select more items in less time. A more direct mapping
between user action and interface response is therefore beneficial for browsing efficiency.

Guideline 9. The interface should use a clear mapping between navigation and visualization.

We have based the preceding nine guidelines on related work, which is summarized in Table II
together with their defining characteristics for the query, inspection, and navigation phases. The im-
plementation of individual guidelines varies between systems, and we have summarized the guidelines
and their implementations in various related works in Figure 3.

These nine guidelines both help with analyzing the current result, and in determining where to
navigate next. As such, they are similar to the focus and context techniques. The guidelines yield
focus- and context-based browsing through a collection, where users focus on an active result, and the
context around it is determined by both user actions and the collection itself, and optimized to show
the most relevant results first.

3. TECHNIQUES FOR TARGETED VIDEO SEARCH

The guidelines in the previous section do not yet yield specific details. In this section we list a series of
techniques for the individual elements that help build an efficient targeted search video browser. We
then combine these techniques into a prototype video search interface: the ForkBrowser.
ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 8, No. 4, Article 51, Publication date: November 2012.
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Fig. 2. An overview of selected related work with their defining characteristics listed for each stage in the retrieval process.

Fig. 3. The nine guidelines and their implementations within selected related works (see Figure 2 for the index). For each
guideline we follow the definition as given in Section 2 to determine whether systems follow that guideline or not.

3.1 Threads

The set of threads should be as diverse as possible to allow interesting navigation options to users
(Guideline 6), and to show as much diversity of the collection to users as possible (Guideline 4). We
specify the following types of threads.

—The default navigation thread is a multishot dynamic thread that initially represents a list of results
obtained from a query interface used to seed the initial browser. This thread yields the means of
entry into a collection, and allows the user to find initial results. Furthermore, it also acts as a
fallback navigation option when no other relevant results are visible.

—Time threads are static threads containing all shots in their original sequence. This allows users to
inspect a shot depending on context, and it allows users to browse through nearby relevant results.

—The history thread is a multishot dynamic thread that contains the list of previous focal shots. This
allows the user to go back to earlier results.

—Multiple visual similarity threads are single-shot dynamic threads that show shots relevant to sf
based on visual similarity using Algorithm a. This yields a set of perceptually similar results based
on the current focal shot.
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To make inspecting a single shot efficient, as required by Guideline 1, we propose an interface display-
ing individual threads as a sequence of individual shots. These are as a default depicted as keyframes.
On-demand, users are able to view in-place motion icons [Luan et al. 2007] when they need more de-
tail. These show up to 16 frames of the entire shot at high speed. This provides a compromise between
storage capacity and the video itself. Given typical shot lengths showing 16 frames yields more than
enough information about objects present in the shot, and camera motions used, while the storage
capacity needed to store 16 frames per shot for each shot for all videos is still manageable.

The focal shot is in the center and is the largest shot shown. This lets users focus on the focal
shot first, while the related information from the rest of the thread is observed in the periphery. To
allow users to get more detail when the search need requires this, the system allows users to zoom
in on the focal shot. Zooming also determines the amount of context that can be shown in multiple
threads. The number of shots shown in each thread is dependent on the zoom level, which influences
the size of each image, and the available amount of screen real estate. Also, since users focus on
the focal shot only shots shown within a limited cone of vision from this focal shot are accurately
seen. The number of visible shots in each thread is therefore determined by the complexity of the
search topic. During practical use we found that on average users are able to perceive six shots per
thread.

This covers the length of threads, but not the amount. From any focus shot a number of relevant
threads can be shown, based on the defined types given earlier. The number of displayed threads is
dependent on both the interface and whether there are related threads for any focus shot. Intuitively,
visualizing too many extra threads inhibits search efficiency, since users have to process much more in-
formation from the screen before a decision can be made. But too few threads leads to no benefit from
unseen parts of the dataset. So, in practice we need to find a balance between these two conflicting
criteria.

3.2 Direct Mapping

To make video retrieval as efficient as possible, we need an interface which is controllable as directly
as possible (see Guideline 9). We therefore design the spatial layout of the interface around its navi-
gation. This is a two-step process. First, we need to select an controller interface. Second, we need to
adapt the visual interface to this configuration. Since this controller interface by itself should allow
for fast interaction this removes devices such as the mouse and voice control, since these are either
indirect and/or slow. Modern touch-screen interfaces would allow for fast and direct interaction with
the graphical interface. However, when manipulating the visualization directly the hand will obscure
the underlying visual information, requiring to remove the hand after each iteration.

We have chosen to use a traditional keyboard since this is inexpensive, well known, offers tactile
feedback when buttons are pressed so the user does not have to look at the keyboard itself, and is
fast to use. Next, we borrow from the field of modern computer games which evolved to use the so-
called “W A S D” configuration for movement of player characters. These buttons have been chosen
because they allow the character to move, while still having plenty of extra keyboard buttons nearby
the left hand that directly control other features of the game. We take this same configuration, and
place all displayed threads in directions such that they correspond to the directions on a keyboard.
This provides a direct spatial mapping between depicted direction and keyboard button. See Figure 4.
All other functions are located on buttons near the directional buttons, so that they are within reach
of the users’ hand. The interface is designed to be controlled with one (left) hand only. This leaves
the other hand free to click on relevant shots with the mouse. Our direct mapping leads to the layout
depicted in Figure 4.
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Fig. 4. The layout of the interface is based on the required keyboard interactions. The user navigates from center-placed focal
shot s f , to shots in related threads using several directional keyboard commands. The shots that are increasingly further away
from s f are more and more peripheral to the user, and require more actions to reach. Other interface actions, such as playing a
shot (tab), selecting (space), or deselecting (x) shots, or selecting while browsing (shift + direction) are also directly controlled by
the keyboard. All keyboard commands are placed such that all actions are accessible with the left hand only, leaving the right
hand free to use the mouse if needed.

3.3 Active Zooming

To enable users to inspect a thread more closely, or to label many shots at once as required in Guide-
line 3, we propose active zooming, which smoothly rearranges the shots in a chosen thread as a grid
on the screen, while hiding all other threads. This allows the user to “zoom in” into a thread in such a
way that it does not violate Guideline 8.

Navigation options change depending on whether the chosen thread is static or dynamic. For static
threads the number of initial shots on a grid is fixed, and users can navigate between pages of results,
or increase/decrease the number of shots in a grid. This allows users to rapidly browse through a single
static thread.

For dynamic threads, the contents are determined by some user-given origin, and the initial number
of shots depends on their similarity to the focus shot. The number of items shown is determined by the
measure of similarity. The system automatically derives an optimal threshold based on the similarity
decay curve, and users have the option to interactively increase or decrease the cutoff threshold which
is initially set to show the top 20% results when looking at the similarity scores. Changing T allows a
user to adjust the context and thereby show more images with the chance that they will not be similar
anymore, or less images with the chance that images that were similar are missed. Independent of the
type of thread, users always have the choice to label single shots, label all shots at once, or return to
the previous visualization by stopping active zooming.

3.4 Relevance Feedback

The default navigation thread initially starts with the results from a user query, meant as a starting
point into the collection only. We expect these results to be exhausted after a number of iterations. To
be able to continue searching through the collection we use a relevance feedback method that uses the
entire collection to gather new results.

During the search session users hopefully find relevant shots within the collection. As soon as there
are enough results or when users indicate that the default navigation thread is no longer suitable, the
system initiates a background learner process. The specific implementation of the learner process can
be altered. We chose to take this to the largest extent possible, and train a Support Vector Machine
classifier [Chang and Lin 2001] on the entire dataset each time users find potentially relevant results.
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The required positive and negative examples for this are automatically derived from user actions in
the browser interface. Positives are selected from the set of user-marked relevant results. Retrieving
negative examples is more difficult, as we do not wish to burden users with extra steps of marking ir-
relevant items. Negatives are therefore based on unobtrusive user monitoring of the shown focus and
context. When something is relevant, users will navigate toward it and thereby placing it in the focus.
During this, potential relevant shots will appear in other threads in the context, with each individual
shot often appearing multiple times during the navigation process. When users do not explicitly under-
take action to mark these as relevant, the system will eventually mark these as negative examples for
the search task. To do so, the system keeps track of how many times a shot was shown in the interface.
Each shot x accumulates a chance pt

x that the shot is seen over time t, which can be 1 maximum. This
is determined by the summation of a weighted neighborhood distance to the focal shot, where a shot
actually being the focal shot has the highest chance to be seen.

pt
x = min

(
1, pt−1

x + w × Dsf ,sx

)

As soon as pn reaches a certain threshold the shot is marked as a negative result. This whole pro-
cess is unobtrusive, though users have an option to explicitly mark shots as negative as well, which
explicitly sets pn = 1. See also Figure 4.

Next, the system trains an SVM classifier, as commonly used in image/video retrieval [Tong and
Chang 2001; Gosselin and Cord 2004; Chen et al. 2005; Cord et al. 2007]. Again, there are several
kinds of possible solutions here, though the core consideration here is interactive processing time. In
our specific implementation positive and negative examples are transported to a compute cluster and
the relevant and irrelevant examples are used to train a Support Vector Machine model [Chang and
Lin 2001], using the procedure as described in Snoek et al. [2008] on 4000 dimensional feature vectors.
Because speed is essential here, we have adapted the SVM kernel to use a precomputed kernel matrix
of intershot distances, which is kept in the distributed memory of the cluster [Snoek et al. 2008]. This
allows new models to be trained at near-interactive speeds. A typical run with 200 shots selected takes
about 2 to 6 seconds on a dataset of 200 hours of video consisting of 35,766 individual elements. For
our purposes this is fast enough, so we did not need to consider further optimizations such as iterative
retraining of SVM models or using other classifiers.

Results are fed back into the interface as an updated default navigation thread in order to keep
navigation clear, as per Guideline 5.

3.5 Putting It All Together

The aforeside techniques have been incorporated into the generalized workflow for targeted video
search. See Figure 5 for an update with respect to Figure 1. The preceding interface rules have subse-
quently been used to define the MediaMill ForkBrowser targeted video search interface, which displays
a single navigation context with the focal shot in the center of the visualization. Each thread is repre-
sented as a list of images in a specific direction, so that users can spatially map them out and follow a
path through the dataset. The focal shot and its context is displayed using a fisheye [Furnas 1986]-like
method to further guide user attention to the focal shot. When a single thread shows significantly more
relevant results than others, users have the option to enable active zooming. This enables a seamless
zoom into the selected thread, which then provides users with a means of inspecting and selecting
large sets of relevant items in less user interaction steps for that particular thread only. See Figure 4
for a mapping between threads and tines, and Figure 11 for a screenshot depicting the ForkBrowser
together with active zooming.
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Fig. 5. Updated workflow which shows how ForkBrowser is used to perform targeted video search. See Section 3 for details on
the individual methods used.

4. EXPERIMENTAL SETUP AND EVALUATION

Each individual component of the ForkBrowser has one or several parameters to be configured which
we can tune for optimal efficiency. Of course, it is not feasible to optimize each parameter with a
separate user study. We therefore opt for parameter optimization using simulated users whereas the
real users evaluate the system as a whole.

4.1 Dataset and Task

We use the same dataset for all our experiments, which is the TRECVID benchmark dataset of 2007
and 2008. This is a video collection totaling 300 hours of video material, provided by the Netherlands
Institute for Sound and Vision. The video collection contains news magazines, science news, news
reports, documentaries, and educational programs. Shot boundary information for the collection is
provided by Petersohn [2004], and automatic speech recognition on these videos in Dutch is provided by
Huijbregts et al. [2007]. We added a series of semantic concept detector results, as explained in Snoek
et al. [2008] to allow users to perform query by concept searches into this collection.

On top of this dataset NIST provides a series of search topics. Typical topics of 2007 include “Find
shots of people walking or riding a bicycle.”, “Find shots of a train in motion.” and “Find shots of a
woman talking toward the camera in an interview - no other people visible.” Topics for 2008 were more
specific, and contained, for example, “Find shots of a person looking through a microscope.” For easy
reference we use the official TRECVID topic numbering scheme.

4.2 Experimental Setup

There are several parameters in the components of Figure 5 that can be tuned in order to provide the
most possible relevant results in each phase of interactive search. Specifically, we want to know the
following.

—Q1: The optimal number of displayed threads,
—Q2: The optimal display length of individual threads,
—Q3: When to use active zooming,
—Q4: When to use relevance feedback.

To answer these questions we have implemented the workflow described in Figure 5 as a deterministic
simulated user experiment by viewing this workflow as a deterministic state machine. For each step
in the query and browse stages, there is a best choice of action, based on which shots are relevant
to a query and which aren’t. By explicitly expanding this state machine we get a deterministic user
simulator. The parameters of each component can be varied, and the effects of the parameter changes
measured.
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Each action performed is denoted as a User Interaction Step, or UIS. In order to have consistency
between the various simulated user experiments we chose for a fixed limit of User Interaction Steps
rather than a limit in search time. Each real-world user would require a different time to evaluate
information, and this is difficult to translate to simulated users. We measured approximately 1.9 ± 0.8
UIS per second on average over all topics for all expert users, which translates to 574 UIS in a five-
minute timeframe. The UIS/second also varies according to the difficulty per topic.

We chose 500 UIS as a limit, which approximates to slightly less than 5 minutes for expert users.
After 500 UIS the search session is stopped, and results are tabulated. We assume that all topics are
equally complex, and use a default tine length of 6 shots in each direction. As soon as a relevant shot
is positioned as the focal shot sf , it is marked as “retrieved”, and will not be considered anymore if it
appears elsewhere in the interface.

The experiments Q1 to Q4 above shall aid with finding optimal parameter settings for the Fork-
Browser, and as such do not try to optimize implementations for all the guidelines. Specifically, these
experiments help to optimize performance in Guidelines 4 (show unexplored), 6 (inspect navigation
options), and partially 9 (mapping between nav and vis).

4.3 Simulating the Query Stage

In interactive search, we need an entry point into the data, defined as the initial query thread. Users
create a query thread by selecting (a combination of) semantic concepts, keywords, or example images
to be used in query by example. For the user simulation we need something similar without having
to resort to manual intervention. However, which query method to use is nontrivial for a computer.
We therefore perform all simulated user experiments for all topics with the set of semantic concepts
defined in Snoek et al. [2008] as the set of possible initial queries. The concept that yields the best
results for a topic is taken as the query thread for that topic.

4.4 Simulating the Browsing Stage

Given a specific sf , the system generates a set of shots for each of the visible threads during the brows-
ing stage. The first sf is the first result in the query thread. The simulated user follows the same
diagram as given in Figure 5. Specifically, for each UIS the simulated user performs one of the follow-
ing actions.

(1) Judge a shot as ”relevant” when this is labeled as such in the ground truth.
(2) If there are relevant shots visible in any visual similarity or time thread, follow the thread with

the most results visible.
(3) If there is no relevant shot visible, follow the query thread.

This is the basic browsing scenario for simulated users. Each of the experiments listed in the follow-
ing sections alters this basic ruleset slightly for the purpose of the experiment.

4.5 Q1: Estimate Benefit of Multiple Relevant Threads

In this experiment we measure the benefit of displaying extra threads for an individual focal shot by
using simulated users for various combinations of enabled/disabled threads. Specifically:

—only the query thread enabled,
—query and time threads enabled,
—query thread and one or more dynamic visual similarity threads enabled,
—query, time, and dynamic visual similarity threads enabled.
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Fig. 6. This graph shows a combination of results. Each row shows the result of an individual TRECVID 2008 topic, with the
number indicating the TRECVID topic ID. The topics are sorted by best performing ForkBrowser result for easy reading. The left
two bar plots indicate which kind of actions simulated users performed during their 500 User Interaction Steps. Move actions
through query thread are gray, through time are green, and visually similar are yellow. The scatter plot on the right displays
the resulting number of relevant results found after these interactions. The rightmost text indicates the chosen starting concept
for each topic. Results indicate that having time and visual similarity threads is beneficial, since they provide a large boost to
the found number of results.

Fig. 7. Average number of positives found after 500 User Interaction Steps for all topics at varying tine lengths for the Fork-
Browser.

The two visual similarity threads here are based on Gabor and Wiccest [van Gemert et al. 2010]
similarity features, respectively.

The results, depicted in Figure 6, indicate that having more threads yields better performance in
almost all cases. Also, the results indicate that the extra similarity threads do allow users to find some
specific results faster. For example, in topic 227: face filling more than half the frame a large number
of results were found because of the visual similarity between faces.

4.6 Q2: Estimate Optimal Tine Display Length

We performed a simulated user experiment to determine the length of tines on screen. Real-world users
are limited in what they can understand within a reasonable timeframe on screen, while simulated
users do not have this drawback. We are interested to see what would have been the optimal length
for simulated users, and performed experiment Q1, but now with all threads enabled, and varying tine
lengths. The results of this experiment are depicted in Figure 7. Simulated user results indicate that
the tine length should not go beyond 10. After that the number of interaction steps needed to reach
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Fig. 8. These boxplots show the difference between the number of relevant results retrieved after 500 UIS when active zooming
is enabled after the user spots N positive results in a single thread. Postive scores indicate benefit when active zooming is used.
The results indicate that using active zooming when too few positive results are visible on average deteriorates the number
of found results, though several individual topics exist which benefit from AZ. On average, when the user always activates AZ
when more than 4 positive results are visible the end result will yield more relevant shots.

that individual relevant result from a single thread takes so much UIS that it would have been better
not to see that result at all, and discover it elsewhere instead. Analysis with real users showed that
the number of shots shown in each direction was topic dependent, with more difficult topics requiring
the user to zoom-in more, which reduced tine length. On average a tine length of 6 was used. For the
ForkBrowser interface, which shows 6 threads (2 similarity threads, time thread in both directions,
query thread and history thread) this implies 36 shots are visible. In the worst-case scenario where all
shots are different except the ones of the last navigation direction this implies 5×6+1 = 31 previously
unknown shots are presented to the user.

4.7 Q3: Determine when Active Zooming Should Be Used

For this experiment we want to determine at which number of relevant shots in a single thread it is
most efficient to enable active zooming. Also, we want to determine whether the number of currently
displayed relevant shots in other threads affects performance, and if so, when this would influence
results. The experiment is set up in such a way that a simulated user browses through a series of 4
related threads with 6 shots visible at a time from each thread. When active zooming is enabled the
user either sees 30 shots from that thread, or, for dynamic threads, a number determined by the visual
similarity between the results and the focus shot. The act of enabling or disabling active zooming costs
one UIS, the act of selecting all visible items costs another UIS, and deselecting mistakes also costs
one UIS per shot. The simulated users will determine whether to proceed with selecting results or
switching back to the browser just after enabling active zooming, so a mistaken activation still costs
2 UIS. The choice to switch to active zooming mode is dependent on the number of shots relevant in a
single thread versus the number of relevant shots seen in other threads. We measure active zooming
performance by altering the threshold at which the simulated user activates active zooming.

The results are shown in Figure 8. As expected, these results indicate that AZ can best be used
when multiple positive results are visible in a single thread. As soon as there are 4 or more positive
results the number of UIS required to select positive results is lower than without AZ, though there
are several individual topics which still benefit even when less consequitive relevant shots are shown.
In a real scenario users will typically have a better indication of when to use active zooming because
of the known search need, so users typically know when to use AZ even when less than 4 shots are
relevant.
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Fig. 9. This graph shows the benefit of activating relevance feedback after different numbers of UIS without finding any
results for all topics, sorted by baseline result. The baseline here is based on the results obtained by the simulation run with the
ForkBrowser, as depicted in Figure 6. The graph shows that activating RF after only a few nonrelevant items found is already
highly beneficial, and enables the user to greatly increase the number of found results.

4.8 Q4: Determine Benefit of Relevance Feedback

As indicated in Section 3.4, when users cannot find new relevant results within the collection an option
is to use relevance feedback to rerank the collection based on past browsing behavior. However, using
relevance feedback when there are not enough results gathered might yield a suboptimal ranking.
Also, it can happen that there are still relevant results in Tq which are not yet visible, and browsing a
little longer would have shown these results.

To determine this, we measure the number of found results within 500 UIS for various numbers
of user interaction steps done without selecting any relevant result. After this limit is reached, the
system performs reranking and this is then loaded as the new Tq and browsing continues from that
point until 500 UIS total have been reached. This implies that a single retrieval session can feature
multiple relevance feedback rerankings.

Results are displayed in Figure 9. Results indicate that the benefit is greatest when the system ac-
tivates RF after only 10 negative results have been found. Note that the relevance feedback algorithm
does require moderate computing requirements, and in our case each relevance feedback reranking
typically takes two to five seconds to calculate. With this timeframe taken into account it might be
beneficial to let the user browse more than the optimal number of 10 results.

When the RF activation threshold is set at 25 UIS, the benefit is only significant with topics that
yielded poor results in the baseline. In almost all cases performances increase or stay the same. The
one exception is 239: “people playing with children”, where results significantly deteriorate when using
relevance feedback. This is caused by the fact that most of the relevant shots were found using the time
thread of a single video, and the relevance feedback mechanism inhibited finding this specific video.

4.9 ForkBrowser Performance at TRECVID

In order to evaluate targeted video search using the ForkBrowser we participated in the 2007, 2008,
and 2009 NIST TRECVID Interactive Search tasks [Smeaton et al. 2006]. This gives us a framework
for a comparison between the ForkBrowser and the CrossBrowser with respect to effectiveness and
efficiency. It also gives us an indication how the ForkBrowser measures up to the state-of-the-art in
video retrieval [Hauptmann and Christel 2004]. See Figure 10 for an overview of results for the topics
of 2008. The graph shows that the ForkBrowser and CrossBrowser consistently received high marks.
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Fig. 10. Trecvid 2008 interactive search results. The graph shows that the CrossBrowser and ForkBrowser consistently yield
high scores on a variety of different topics.

Fig. 11. Thread-based visualization in the ForkBrowser. In this example from the TRECVID 2007 corpus, the top tine displays
query-by-keyword results, the horizontal tines display the timeline of a “Klokhuis” episode, the diagonal tines display dynamic
threads related to the center image, and finally the stem of the fork displays the current browse history. The picture on the right
shows the ForkBrowser with active zooming enabled.

In 2009 similar results were achieved, even though the dataset increased threefold, with an average
precision of 0.246 for the CrossBrowser and 0.241 for the ForkBrowser, both browsers using active
zooming and relevance feedback strategies, compared to 0.186 of the nearest other system. Also, the
capability to view details on demand of individual shots by either looking at motion icons or by looking
at the context in time, yielded many relevant results. For example, most of the results obtained for 2009
topic “Find dogs walking, running or jumping” were only found thanks to the capability of playing shots
at rapid speeds.

5. DISCUSSION

The results in the previous section indicate that the ForkBrowser has excellent performance in the
hands of expert users. In this section we discuss some of the unexpected results and some limitations
in terms of efficiency and usability.

When we look at efficiency, we found that the quality of results obtained with the ForkBrowser are
less dependent on the initial query than we expected. For example, the topic 239: “Find people standing,
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Initial query top 100 total found
people walking or running 18 206
crowd 10 135
sports game 9 118
people marching 6 89
vegetation 5 116
military personel 5 74

Fig. 12. A list of the top 6 initial queries for “Find people standing, walking or playing with children”. Depicted is the number of
relevant results top 100 in the initial query, and number of relevant results found after 500 steps using that query as a starting
point.

walking or playing with children” yields 206 positive results after 500 interaction steps when the user
starts with the concept person walking or running. This concept was determined as optimal by the
system, as it contains 18 positive results in the top 100. When we look at several other concepts,
however, see Figure 12, we see that this number of found results, though lower than 206 still yield
relatively high numbers of results. The number of relevant results in the top 100, however, lowers
drastically, and the conceptual link between some initial queries and the topic is unlikely to be found by
real-world users. We found similar results for many other topics. This seems to indicate that interfaces
that allow users to navigate through multiple threads help alleviate the effect of poorly chosen initial
queries.

The guidelines proposed in Section 2 give us a framework for designing an interactive targeted video
search system. The ForkBrowser implements all of these guidelines, but also many other systems in
literature do already implement many of the guidelines, and these systems might be further improved
by implementing all of them. We also note here that our evaluations didn’t take into account the
ease of learning the interface. The ForkBrowser interface is quite different from other user interfaces,
which requires users to spend time with the interface before they are able to master it. However,
the TRECVID results do show that the ForkBrowser in the hands of an expert user yields very good
results. Other systems based on more traditional layouts might be easier to learn. Examples from
recent TRECVID benchmarks include the Informedia Storyboard interface [Christel and Yan 2007]
and the FXPal MediaMagic [Adcock et al. 2007], which use a recognizable grid layout to browse through
results, while the VisionGo video search engine [Luan et al. 2007] uses a layout where the user browses
through a linear list at only three images per step.

6. CONCLUSION

In this article, we proposed a technique for targeted search through large video collections. Targeted
search focuses on fast retrieval based on an initial set of results from a query system. Based on a
focus + context-based browsing methodology, we have proposed a set of guidelines to which efficient
targeted video search interfaces should adhere. We compare these guidelines with existing interfaces
in literature, which do already implement many of these guidelines.

Subsequently, we follow these guidelines in designing the ForkBrowser, a browser that allows users
to navigate through a collection by following related threads linked to a single focal shot.

We set up a user simulation framework to validate and optimize parameters of the ForkBrowser in
a series of user simulation experiments. Results show a clear benefit of having a multithread browser
versus a single-thread browser. Also, the experiments show a clear benefit of using relevance feedback
and indicate under which conditions it should be applied. Furthermore they indicate that active zoom-
ing is very helpful for certain topics, and never deteriorates results. Besides automated experiments we
also performed real user experiments by participation in the international TRECVID 2007, 2008, and

ACM Transactions on Multimedia Computing, Communications and Applications, Vol. 8, No. 4, Article 51, Publication date: November 2012.



51:18 • O. de Rooij and M. Worring

2009 benchmarks. The results show that the ForkBrowser, together with active zooming and relevance
feedback, consistently performs very well.
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NATSEV, A. P., HAUBOLD, A., TEŠIĆ, J., XIE, L., AND YAN, R. 2007. Semantic concept-based query expansion and re-ranking for
multimedia retrieval. In Proceedings of the 15th International Conference on Multimedia. ACM, New York, 991–1000.
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