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Abstract

In this paper we describe our TRECVID 2012 video retrieval
experiments. The MediaMill team participated in four tasks:
semantic indexing, multimedia event detection, multimedia
event recounting and instance search. The starting point for
the MediaMill detection approach is our top-performing bag-
of-words system of TRECVID 2008-2011, which uses mul-
tiple color SIFT descriptors, averaged and difference coded
into codebooks with spatial pyramids, and kernel-based ma-
chine learning. This year our concept detection experiments
focus on establishing the influence of difference coding, the
use of audio features, concept-pair detection using regu-
lar concepts, pair detection by spatiotemporal objects, and
concept(-pair) detection without annotations. Our event de-
tection and recounting experiments focus on representations
using concept detectors. For instance search we study the
influence of spatial verification and color invariance. The
2012 edition of the TRECVID benchmark has again been
a fruitful participation for the MediaMill team, resulting in
the runner-up ranking for concept detection in the semantic
indexing task.

1 Introduction

Robust video retrieval is highly relevant in a world that is
adapting swiftly to visual communication. Online services
like YouTube and Vimeo show that video is no longer the
domain of broadcast television only. Video has become the
medium of choice for many people communicating via the
Internet. Most commercial video search engines provide ac-
cess to video based on text, as this is still the easiest way
for a user to describe an information need. The indices of
these search engines are based on the filename, surrounding
text, social tagging, closed captions, or a speech transcript.
This results in disappointing retrieval performance when
the visual content is not mentioned, or properly reflected in
the associated text. In addition, when the videos originate
from non-English speaking countries, such as China, or the
Netherlands, querying the content becomes much harder as
robust automatic speech recognition results and their accu-
rate machine translations are difficult to achieve.

To cater for robust video retrieval, the promising solu-

tions from the literature are mostly semantic [23,27], where
detectors are related to objects, like a flag, scenes, like a
beach, people, like female human face closeup, and events
like landing a fish in. Any one of those brings an under-
standing of the current content. The elements in such a
lexicon of detectors offer users a semantic entry to video by
allowing them to query on presence or absence of visual con-
tent elements. Last year we presented the MediaMill 2011
semantic video search engine [26], which for the first time
included event detection. This year, the MediaMill team
participated in four tasks: semantic indexing, multimedia
event detection, multimedia event recounting and instance
search. Our semantic indexing experiments focus on estab-
lishing the influence of difference coding, the use of audio
features, concept-pair detection using regular concepts, pair
detection by spatiotemporal objects, and concept(-pair) de-
tection without annotations. Our event detection and re-
counting experiments focus on representations using con-
cept detectors [10, 19]. For instance search, we study the
influence of spatial verification and color invariance. Taken
together, the MediaMill 2012 semantic video search engine
provides users with robust semantic access to Internet video
collections.

The remainder of the paper is organized as follows. We
first define our bag-of-words foundation in Section 2. Then
we highlight our detection approaches for concept(-pair)s in
Section 3 We turn our attention to complex event detection
in Section 4. Recounting video events is the topic of Sec-
tion 5. Finally, we detail our instance search experiments
in Section 6.

2 Bag-of-Words Foundation

Our TRECVID 2012 concept and event detection builds on
previous editions of the MediaMill semantic video search en-
gine [24,26,30,32], which draws inspiration from the bag-of-
words propagated by Schmid and her associates [13,18,40],
as well as keypoint-based color descriptors [33], difference
encoding [11, 20, 41], soft codebook representations [36, 38],
and efficient algorithmic refinements [17,31], a GPU imple-
mentation [34], and compute clusters.



2.1 Spatio-Temporal Sampling

The visual appearance of a semantic concept, an event or
an instance in video has a strong dependency on the spatio-
temporal viewpoint under which it is recorded. Salient
point methods [29] introduce robustness against viewpoint
changes by selecting points, which can be recovered under
different perspectives. Another solution is to simply use
many points, which is achieved by dense sampling. Appear-
ance variations caused by temporal effects are addressed by
analyzing video beyond the key frame level. By taking more
frames into account during analysis, it becomes possible to
recognize concepts that are visible during the shot, but not
necessarily in a single key frame.

Temporal multi-frame selection In [25, 28] we demon-
strated that a concept detection method that considers more
video content obtains higher performance over key frame-
based methods. We attribute this to the fact that the con-
tent of a shot changes due to object motion, camera motion,
and imperfect shot segmentation results. Therefore, we em-
ploy a multi-frame sampling strategy for concept and event
detection.

Harris-Laplace point detector In order to determine
salient points, Harris-Laplace relies on a Harris corner de-
tector. By applying it on multiple scales, it is possible to
select the characteristic scale of a local corner using the
Laplacian operator [29]. Hence, for each corner, the Harris-
Laplace detector selects a scale-invariant point if the local
image structure under a Laplacian operator has a stable
maximum.

Dense point detector For concepts with many homoge-
nous areas, like scenes, corners are often rare. Hence, for
these concepts relying on a Harris-Laplace detector can be
suboptimal. To counter the shortcoming of Harris-Laplace,
random and dense sampling strategies have been proposed
[7,12]. We employ dense sampling, which samples an image
grid in a uniform fashion using a fixed pixel interval between
regions. In our experiments we use an interval distance of
6 pixels and sample at multiple scales.

Spatial pyramid weighting Both Harris-Laplace and dense
sampling give an equal weight to all keypoints, irrespec-
tive of their spatial location in the image frame. In order
to overcome this limitation, Lazebnik et al . [13] suggest to
repeatedly sample fixed subregions of an image, e.g ., 1x1,
2x2, 4x4, etc., and to aggregate the different resolutions
into a so called spatial pyramid, which allows for region-
specific weighting. Since every region is an image in itself,
the spatial pyramid can be used in combination with both
the Harris-Laplace point detector and dense point sampling.
Similar to [18, 25] we use a spatial pyramid of 1x1 and 1x3
regions in our experiments.

2.2 Visual Descriptors

In the previous section, we addressed the dependency of the
visual appearance of semantic concepts in a video on the
spatio-temporal viewpoint under which they are recorded.
However, the lighting conditions during filming also play an
important role. Burghouts and Geusebroek [4] analyzed the
properties of color features under classes of illumination and
viewing changes, such as viewpoint changes, light intensity
changes, light direction changes, and light color changes.
Van de Sande et al . [33] analyzed the properties of color
features under classes of illumination changes within the
diagonal model of illumination change, and specifically for
data sets as considered within TRECVID.

SIFT The SIFT feature proposed by Lowe [16] describes
the local shape of a region using edge orientation his-
tograms. The gradient of an image is shift-invariant: taking
the derivative cancels out offsets [33]. Under light intensity
changes, i.e.,a scaling of the intensity channel, the gradient
direction and the relative gradient magnitude remain the
same. Because the SIFT feature is normalized, the gradi-
ent magnitude changes have no effect on the final feature.
To compute SIFT features, we use the version described by
Lowe [16].

TSIFT TSIFT is an unpublished color descriptor.

C-SIFT In the opponent color space, the O1 and O2 chan-
nels still contain some intensity information. To add invari-
ance to shadow and shading effects, we have proposed the
C-invariant [9] which eliminates the remaining intensity in-
formation from these channels. The C-SIFT feature uses the
C invariant, which can be intuitively seen as the gradient
(or derivative) for the normalized opponent color spaceO1/I
and O2/I. The I intensity channel remains unchanged. C-
SIFT is known to be scale-invariant with respect to light
intensity.

RGB-SIFT For the RGB-SIFT, the SIFT feature is com-
puted for each RGB channel independently. Due to the
normalizations performed within SIFT, it is equal to trans-
formed color SIFT [33]. The feature is scale-invariant, shift-
invariant, and invariant to light color changes and shift.

We compute the SIFT [16] and ColorSIFT [33] features
around salient points obtained from the Harris-Laplace de-
tector and dense sampling. All descriptors are then reduced
to 80 dimensions with PCA.

2.3 Audio Descriptors

As low-level audio features, we extract Mel-frequency cep-
stral coefficients (MFCCs) over a 10ms window using CMU’s
Sphinx [1]. MFCCs are widely used in speech recognition:
they describe the spectral shape of audio. The derivatives
of the MFCCs (δ MFCC) and the second derivative (δδ
MFCC) are also computed.



2.4 Word Encoding

To avoid using all low-level visual and audio features from
a video, we follow the well known codebook approach.

Hard coding For both the visual and audio features, we
first assign them to discrete codewords from a predefined
codebook. Then, we use the frequency distribution of the
codewords as a compact feature vector representing an im-
age frame or audio window. By using a vectorized GPU
implementation [34], our codebook transform process is an
order of magnitude faster for the most expensive feature
compared to the standard implementation. Two important
variables in the codebook representation are codebook con-
struction and codeword assignment. Based on previous ex-
periments, balancing accuracy and performance, we employ
codebook construction using k-means clustering in combi-
nation with hard codeword assignment and a maximum of
4,096 codewords.

Difference coding In is well known that the traditional
hard-assignment may be improved by using soft-assignment
through kernel codebooks [38]. A kernel codebook uses a
kernel function to smooth the hard-assignment of (image)
features to codewords by assign descriptors to multiple clus-
ters, weighted by their distance to the center. Recently,
many improved codeword assignment approaches have been
proposed [11, 20, 41]. We employ difference coding. To be
precise, we follow both the Fisher vector [20] and VLAD [11]
schemes. The former is based on a Gaussian Mixture Model
of the PCA-reduced descriptor space with 256 components,
the latter is based on a k-means clustering of the PCA-
reduced descriptor space with 1024 components. We also
employ difference coding with Fisher vectors on the MFCCs.

The output of the word encoding is a bag-of-words vector,
which forms the foundation for both concept detection and
event detection.

3 Detecting Concepts in Video

Learning robust concept detectors from audiovisual features
is typically achieved by kernel-based learning methods. Sim-
ilar to previous years, we rely predominantly on the support
vector machine framework [39] for supervised learning of
semantic concepts. Here we use the LIBSVM implementa-
tion [5] with probabilistic output [15,21]. In order to handle
imbalance in the number of positive versus negative train-
ing examples, we fix the weights of the positive and negative
class by estimation from the class priors on training data.
We use the Histogram Intersection kernel and its efficient
approximation as suggested by Maji et al . [17]. For differ-
ence coded bag-of-words we use a linear kernel [20, 41].
In general, we obtain good parameter settings for a sup-

port vector machine, by using an iterative search on both C
and kernel function K(·) on cross validation data [37]. From
all parameters q we select the combination that yields the

best average precision performance, yielding q∗. We mea-
sure performance of all parameter combinations and select
the combination that yields the best performance. We use
a 3-fold cross validation to prevent over-fitting of param-
eters. Rather than using regular cross-validation for sup-
port vector machine parameter optimization, we employ an
episode-constrained cross-validation method, as this method
is known to yield a less biased estimate of concept detection
performance [37].

3.1 Concept-Pair Detection

The new concept-pair detection task requires the detection
of rare combinations of concepts in which the context is
no longer informative (e.g. animal & snow, dog & indoor).
We did a first attempt for spatiotemporal concept detec-
tion. Our method for concept-pair detection employs three
main steps: (i) localized detection-by-tracking; (ii) BOW-
features; and (iii) temporal fusion over frames.
Feature extraction: In our tradition of single con-

cept detection, we extract RGB-SIFT descriptors densely
at each frame and perform codebook projection. Undoubt-
edly, more features can be used, but given the dimension of
the test data we restrict our attention for the moment to
this color descriptor. For codebook construction and pro-
jection we follow the work of [30] by using Random Forests
and a spatial pyramid.
Hierarchical segmentation: We perform object local-

ization using our detector which has won the PASCAL VOC
2012 object detection task [35]. For the first frame only we
perform hierarchical image segmentation using the method
from [8] for retaining the candidate boxes. We obtain the
initial over-segmented image, that is used for building the
hierarchy, from [35]. We run an SVM classifier on each can-
didate box and retain only the best box for each class in the
same manner as in [30].
Detection by tracking: In the subsequent frames we

perform the first step — RGB-SIFT descriptor extraction
and codebook projection over the complete image. We con-
tinue by tracking each of the previously detected best boxes.
For each tracked best box we re-detect its content by run-
ning the corresponding classifier over the features extracted
from it.
Temporal fusion: In the end, for each frame and each

class of interest we have estimated detection scores. For
the final ranking we need detection scores over the com-
plete shot. In this step we perform Mk = (µk,Σk,πk,Tk).
For each test shot we estimate all the class likelihoods —
lk = p(X|Mk), ∀k ∈ {1, ..9}. These scores are subsequently
whitened and used for ranking.
We use the above system for the 9 localizable objects out

of 20: animal, bicycle, bird, car, dog, flag, person, table,
telephone. For the remaining concepts we use our regular
concept detection.
The localized detection models are trained on Pascal-

VOC 2007 data annotated with bounding boxes and another
600 frames per class, hand annotated from the TRECVID
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Figure 1: Comparison of MediaMill video concept detection experiments with other concept detection approaches in the TRECVID 2012

Semantic Indexing task.

training data for this task. For training the temporal mod-
els we use 600 shots per class from the TRECVID SIN task
training data. We train a different model for each class
and each possible sequence length (2 to 17 frames) and at
test time we apply the model corresponding to the input
sequence length. We use 9 hidden states per time step:
Ct = (C1

t
, C2

t
, ..C9

t
) because we have 9 true classes which

can be present in each frame.
At test time, we use a number of 5 frames around the

central frame if the video is shorter than 100 frames and
17 frames otherwise. We also consider shots shorter than 5
frames. Selecting frames around the central frame is a viable
choice because a large number of shots start and end in a
camera-off state (contain black frames at the extremities
of the shot). As a final concept-pair score we return the
sum in log space of the two detection scores — the above
method returns log-likelihoods and we take the log over the
detection probabilities of the regular concept detectors.

3.2 Learning from web video

We experimented with concept detection without using the
provided expert annotations. Given a query concept, we
automatically download videos from YouTube, by sending
queries with the concept name.
The downloaded videos serve as a raw training material

and prevent us from dependence on any manual supervision
during training. All harvested videos are shot segmented

and the social tags associated to the videos are propagated
to the middle keyframe of each shot. We select the impor-
tant frames from the video using an unpublished algorithm.
Once we have selected the important video frames per con-
cept, we extract features and train concept models.

3.3 Submitted Concept Detection Results

Our experiments [3, 22] focus on establishing the influence
of difference coding for concept detection, the use of audio
features, concept-pair detection using regular concepts, pair
detection by spatiotemporal objects, and concept(-pair) de-
tection without annotations.

3.3.1 Semantic indexing task

An overview of our submitted concept detection runs is de-
picted in Figure 1.

Run: Leonard The Leonard run is our baseline. It is based
on SIFT, TSIFT, and C-SIFT descriptors computed for a
maximum of 10 frames per shot, each at least 4 frames apart.
The descriptors are quantized using hard-assignment and
VLAD difference coding. We learn concept scores using a
non-linear SVM with histogram intersection kernel and a
linear SVM. Fusion is performed using a simple AV G rule
combination, the MAX per shot is the final score. This run
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Figure 2: Comparison of MediaMill video concept pair detection experiments, including baselines, with other concept pair detection

approaches in the TRECVID 2012 Concept Pair Detection task.

achieved a mean infAP of 0.289, with the overall highest
infAP for the concepts: landscape and lakes.

Run: Raj The Raj run adds MFCC audio descriptors to
our baseline. During training we consider a video positive
if one of its shots is positive, during classification we con-
sider all shots of a positive video as positive also. Fusion is
performed using a simple AV G rule combination. This run
achieved a mean infAP of 0.289 also, with the overall high-
est infAP for the concepts: meeting and office. We conclude
that our audiovisual fusion is not optimally exploiting the
benefit of audio yet.

Run: Sheldon The Sheldon run is based on the same color
descriptors as the baseline, but uses Fisher difference coding
in combination with a linear SVM only. The classifiers have
been applied on a maximum of 10 frames per shot, each
at least 4 frames apart. The final score is based on a sim-
ple MAX rule. This run achieved a mean infAP of 0.297,
with the overall highest infAP for the concepts: basketball,
boat ship, chairs, computers, nighttime, and scene text. We
conclude that Fisher difference coding of color descriptors is
more robust than VLAD combined with traditional coding.

3.3.2 No annotation task

We submitted three runs (partly) using training data ob-
tained from YouTube. These are evaluated as part of the
light condition of the SIN task.

Run: Bernadette The Bernadette run is most selective in
obtaining training examples from YouTube. For concept de-
tection it uses the implementation of Leonard. As expected
it is not competitive compared to expert annotation. How-
ever, it outperforms our Penny run which uses more, but
apparently noisy, YouTube annotations.

Run: Penny The Penny run is comparable to Bernadette
but uses more training data from YouTube.

Run: Howard The Howard run is an average fusion of
Leonard, using provided SIN task labels, and Bernadette.
This simple fusion is always worse than the baseline.

3.3.3 Concept pair task

We provided pair detection baselines based on single concept
detectors and submitted two concept pair detection runs,
see Figure 2.

Run: Baselines

• baseline-firstconcept: this pair-run is based on a rank-
ing of the first concept only.

• baseline-secondconcept: this pair-run is based on a
ranking of the second concept only.

• baseline-combine-sum: this pair-run is based on a sum
of the scores of concept 1 and concept 2.

• baseline-combine-mul: this pair-run is based on a prod-
uct of the scores of concept 1 and concept 2.

The baselines are among the top performing runs, win-
ning in total 4 concept pairs. Using a strategy which simply
relies on the first concept of the pair only, results in the best
retrieval result for the pair Driver & Female Human Face.
In contrast, the second concept is more reliable for the pair
Person & Underwater. As expected, the more rare concept
in a pair is most suited for joint-detection. In terms of mean
average precision the baselines using sum and product com-
binations of the individual concept detectors perform almost
similar (0.055 vs 0.056). However, the product combination
is the best performer for 3 pairs: Beach & Mountain, Ani-
mal & Snow and Bird & Waterscape/Waterfront.



Run: Amy Our Amy run exploits spatiotemporal pair de-
tection for the pairs having concepts that can be localized.
It falls back to the Leonard detectors for the other con-
cepts. This run is the best performer for the pair Two Peo-
ple & Vegetation, but it should be noted that the detection
is based on the detectors without spatiotemporal analysis.
We attribute the relatively poor accuracy of the spatiotem-
poral analysis for pair detection to the lack of training data
used for the local object detectors. More training data for
localized objects in video is mandatory before spatiotempo-
ral reasoning will be a viable approach.

Run: Siri For this run we created a training dataset by
downloading videos from YouTube tagged with both con-
cept names. For concept pairs for witch YouTube did not
retrieve enough videos we modified the search query. For
example instead of using a query consisting of Bird and
Waterscape waterfront we used Bird and Water. Follow-
ing the bi-concept approach [14], we identify the relevant
videos and learn a joint detector for concept pairs directly.
In addition, we calculate the ‘tag informativeness’ by mea-
suring how consistent each tag is with the majority of other
tags provided for the same video. We used Borda Count to
combine the semantic and visual scores into a single rank-
ing. The Siri run performs poorly for most pairs, which we
attribute to the poor matching between tags and concept
pair definitions. However, since the approach does not de-
pend on individual concept detectors nor expensive manual
expert annotations, we do consider the use of social tagged
video for concept pair detection of interest for future version
of this challenging task.

3.4 1,346 Concept Detectors

In addition to the 346 concept detectors from the TRECVID
SIN task, we have also employed our Sheldon run setting on
the entire concept set of the ImageNet Large Scale Visual
Recognition Challenge 2011 [6], containing 1,000 object cat-
egories. All 1,346 detectors are included in the 2012 Medi-
aMill semantic video search engine.

4 Detecting Events in Video

We participated in the multimedia event detection task. We
explore two event representations, one founded on the same
bag-of-words used for concept detection, the other based on
a representation of concepts [10, 19]. In addition, within
the SESAME team [2], we also investigated together with
SRI International and the University of Southern California
several additional multimedia approaches to video event de-
tection.

4.1 Event as bag-of-words

Our baseline approach to visual event detection is based on
the visual bag-of-words discussed in Section 2. Similar to

concept detection we rely on the support vector machine
framework [39] for supervised learning of events. We use
the Histogram Intersection kernel and its efficient approxi-
mation as suggested by Maji et al . [17]. For difference coded
bag-of-words we use a linear kernel [20, 41].

4.2 Event as bag-of-concepts

Our pipeline consists of three consecutive steps: concept
detection, semantic video representation and learning the
event model. In the concept detection step, we apply a
set of predefined concept detectors on the extracted video
frames. Each concept detector is a SVM classifier trained on
low-level visual features so as to detect a particular concept.
The concept detectors are trained on the 346 categories from
the TRECVID semantic indexing task and 1,000 categories
from ImageNet large scale visual recognition competition
data. These 1,346 categories encompass various objects,
scenes, people and actions. Each video frame is represented
by a vector of 1,346 elements, obtained by applying all the
detectors on the frames.
After the concept detection step, we aggregate the detec-

tion scores to reach a semantic representation for videos.
This representation determines how confidently each con-
cept has been detected throughout the video.
Finally, we create the event detector by training a classi-

fier on the semantic representation of training videos. We
use two different classifiers in our system: a non-linear SVM
with approximated histogram intersection kernel and a ran-
dom forest variant.

4.3 Submitted Event Detection Results

Run: LowLevel This run is based on a weighted fusion of
event detectors based on color SIFT difference coding, color
SIFT average coding and MFCC difference coding.

Run: HighLevel This run is based on semantic represen-
tations only and does not contain any low-level modalities.
The ranking is obtained by late fusion of two classifiers: a
non-linear SVM with approximated HIK kernel and a ran-
dom forest variant. This is the best performing event de-
tector run in MED2012 based on concept detectors only.

Run: AllLevel This run is the combination of our LowLevel
and HighLevel runs. The output of different modalities are
fused by weighted averaging. The weights are determined
based on the average precision of each modality using a
validation set in a 10-fold cross-validation setting. This is
our best performing run, it shows that low-level and high-
level event representations complement each other.

5 Recounting Events in Video

Our recounting system learns from the event kit description
for each event category the relevant concepts per video clip.



The algorithm selects the concepts out of a lexicon of 1,346.
After finding the best set of concepts for each event class,
we sort them for each of the categories deemed important
for the recounting, e.g., objects, actions, scene and people.

In addition to the selected concepts we report output from
automatic speech recognition, video optical character recog-
nition, camera motion and statistics related to the pres-
ence of frontal faces, which we obtained from SRI Interna-
tional and the University of Southern California within the
SESAME team [2].

5.1 Submitted Event Recounting Results

The results from our participation in the multimedia event
recouting task are described in the notebook paper by the
SESAME team [2].

6 Searching Instances in Video

Our approach builds on the bag-of-words model. The frame-
work consists of two components: offline indexing and online
searching.

Offline indexing For each testing video clip, a set of
frames are extracted with a fixed rate (1 frame every 2 sec-
onds in our submissions). Then several types of local de-
scriptors are extracted on each frame and quantized into
visual word histograms. Inverted file structure is used to
index the whole dataset for efficient online searching.

Online searching Each example frame of the instance
is used as an independent query and the similarity score of
a testing frame is accumulated. We use histogram inter-
section to measure the similarity between two frames. The
maximum of the frame scores is taken as the video score,
based on which a ranked list of videos is returned.

6.1 Submitted Instance Search Results

An overview of our 4 submissions is described as follows.

Run: Baihu The Baihu run is our baseline. Three ver-
sions of color SIFT features [33] are used, namely RGB-
SIFT, OpponentSIFT and CSIFT. A large codebook with
500,000 visual words is constructed per descriptor. This run
achieved a mean infAP of 0.093.

Run: Xuanwu The Xuanwu run adds a spatial verifica-
tion step to re-rank the top 100 video clips returned by the
Baihu run. A global homograph transformation is estimated
using RANSAC and the initial result is re-ranked based on
the number of inliers consistent with the estimated geomet-
rical relation. This run achieved a mean infAP of 0.088,
worse than the baseline, but it improved on 7 query topics.

Run: Zhuque The Zhuque run also uses the provided
binary masks. In this run, each query is searched twice, one
using visual words extracted from the whole query frame
and the other only with the visual words inside the mask.
The video scores of two trials are combined. This is a dou-

bled version of the baseline. The mean infAP of this run is
0.118.
Run: Qinglong The Qinglong run is an extension of the

Zhuque run by adding color invariance features [9]. This run
achieved a mean infAP of 0.124, improving the Zhuque run
on 7 topics.
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